
HTCondor deployment
using puppet

Alessandro Italiano

Agenda

• HTCondor configuration structure

• Puppet introduction

• Puppet module to deploy HTCondor

installation

• In a linux environment it is a quick step, just install the repo
for your distribution and then install htcondor

Configuration

- Each HTCondor program configure itself parsing the various
configuration files that might be used. Environment variables
may also contribute to the configuration.

- The order in which attributes are defined is important, as later
definitions override existing definitions

Configuration order

The order in which items are parsed is:

1. Condor global configuration file
2. Condor local files
3. ENVIRONMENTS variables

Configuration order:
global configuration file

• CONDOR_CONFIG = /etc/condor/condor_config

•if not exported in the bash environment it is defined in the init script

• general configuration

• can be shared between all the servers belong to the cluster

Configuration order:
local configuration file

•It can be enabled in the CONFIG_FILE

•LOCAL_CONFIG_FILE

• lists one or more configuration files. The leftmost (first) in the list is parsed first.

•LOCAL_CONFIG_DIR

•lists one or more directories. The leftmost (first) in the list is parsed first

•lexicographical ordering by file name determines the ordering of file consideration

• “computer” is lexicographical first than “computing”

•LOCAL_CONFIG_DIR_EXCLUDE_REGEXP in order to exclude some files

Configuration order:
environment variables

• prefixed with ”_CONDOR_”

• Once the condor program find them, the prefix is striped off
and what remains is used as configuration

• For security reason not any environment variables with the
prefix will be considered

Configuration macros

 <macro_name> = <macro_definition>

• macro_name is case insensitive

• white space can be omitted

• macro_definition is a string which can be a macro
substitution

• more than 5000 macros well know as KNOBS

Configuration macros example

•HAD_PORT = 51450

•DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD,

REPLICATION

•COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

•START = (KeyboardIdle > 15 * $(MINUTE)) && \

((LoadAvg - CondorLoadAvg) <= 0.3)

configuration conclusion
• HTCondor is a highly distributed framework. Several

components running on different hosts

• At the same time we have all the features to configure
HTCondor in a flexible way:

• files order, macro substitution, SUBSYSTEM macro

• Flexibility can lead to complexity

• can we really use a storage file system to deploy our
configuration ?

Manual deployment

Server

Login

Manual deployment

Server

Login install
conf2
conf3
restart

Manual deployment

Server

Login install
conf2
conf3
restart

Server

Manual deployment

• Two main issues

• Repetitive tasks: waste time

• Host can have inconsistent state due to

• reinstallation

• manual change

Manual deployment, the common habits

Admin1
Admin2 Admin3

server1

service 1 server2

service1

server1

IT team of the same
computing center

Automate deployment

Central server

Define config host1
Define config host2
Define config host3
Define config host4
Define config host5
Define config host6

host1

host2

Automate deployment

Central server

Define config host1
Define config host2
Define config host3
Define config host4
Define config host5
Define config host6

host1

host2

Automate deployment

Central server

Define config host1
Define config host2
Define config host3
Define config host4
Define config host5
Define config host6

host1host1

host2

Automate deployment

Central server

Define config host1
Define config host2
Define config host3
Define config host4
Define config host5
Define config host6

host1host1

host2

Automate deployment

Central server

Define config host1
Define config host2
Define config host3
Define config host4
Define config host5
Define config host6

host1host1

host2host1

/// Automate Openstack deployment- Cloud Computing School - Bari, 11/2014 //

Automate, why it is really important

Save time avoiding repetitive action
Synchronisation

Replication
Optimisation

IT infrastructure under control
Contextualisation

Recovery
High level definition

Configuration language

Automate, why it is really important

Admin1
Admin2

Admin 4

Admin3
Admin5

Automation tool

server1

service 1

server2

Puppet, one solution !

Available free of charge
Server configuration defined at high level

Resources,classes and modules
Master/Agent, Masterless deployment

Node definition, manifest/site.pp
puppetAgent as daemon, cronJob or onDemand

Catalog compilation
Reports

Puppet basic

• Define host configuration using the puppet language syntax

• Puppet will try to apply it on the host once it has a valid
catalog which is the result of the compilation of the node
definition

Puppet basics: resource

Define the single action to take on the target host.
There are a list of builtin resource as well as user
defined resource

Puppet basics: provider

Providers implement the same resource type on different
kinds of systems. They usually do this by calling out to
external commands.
For example, package resources on Red Hat systems
default to the yum provider

Puppet basics: class
Classes are named
blocks of Puppet code,
which are not applied
until they are invoked
by name. They can be
added to a node’s
ca ta l og by e i t he r
declaring them in your
manifests

https://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html#compilation-and-catalogs

Puppet basics: module

Modules are self-contained bundles of code and
data. You can write your own modules or you can
download pre-built modules from the Puppet Forge
You will never instantiate a module

http://forge.puppetlabs.com/

Puppet basics: site.pp

The place [a file] where we declared all the
classes or resources we wanted to apply

Puppet Agent/Master workflow

Organise configuration using “hiera”

• Hiera is a key/value lookup tool
• Split configuration from puppet logic
• Hierarchical config
• Fine or macro

Hierarchy definition

Puppet example

#cat site.pp

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 15,
}

Puppet example
#cat site.pp

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 15,
}

node ‘myserver.ba.infn.it’ {

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 30,
 version => ‘3.8.1-1puppetlabs1',
}
}

It doesn’t work, duplication declaration

Puppet example
#cat site.pp

node ‘myserver.ba.infn.it’ {

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 30,
 version => ‘3.8.1-1puppetlabs1',
}
}

node default {

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 15,
}
}

Puppet example
#cat site.pp

hiera_include(‘default’)

#cat common.yaml
——-
default:
 - puppet::agent

puppet::agent::puppet_server: puppet.ba.infn.it
puppet::agent::environment: production
puppet::agent::splay: true
puppet::agent::puppet_run_interval: 15

#cat debian.yaml
puppet::agent::version: ‘3.8.1-1puppetlabs1’

#cat nodes/myserver.ba.infn.it
puppet::agent::puppet_run_interval: 15

syntax comparison

#cat site.pp

hiera_include(‘default’)

#cat nodes/myserver.ba.infn.it
puppet::agent::puppet_run_interval: 30

#cat debian.yaml
puppet::agent::version: ‘3.8.1-1puppetlabs1’

#cat common.yaml
——-
default:
 - puppet::agent

puppet::agent::puppet_server: puppet.ba.infn.it
puppet::agent::environment: production
puppet::agent::splay: true
puppet::agent::puppet_run_interval: 15

#cat site.pp

node ‘myserver.ba.infn.it’ {

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 30,
 version => ‘3.8.1-1puppetlabs1',
}
}

node default {

class { 'puppet::agent':
 puppet_server => puppet.ba.infn.it,
 environment => production,
 splay => true,
 puppet_run_interval => 15,
}
}

A puppet module to deploy
HTCondor

• already available a puppet module developed at Bristol
University

• It uses classes to deploy the configuration

• static approach

• can it really support 5000 knobs ?

• pre defined configuration files structure

HTCondor puppet module,
desiderata

• taking into account my short experience deploying HTCondor
by hand the module should provide the following features

• support all the current and the future knobs

• exploiting the LOCAL_CONFIG_DIR in order to group knobs
into configuration files following the personal administrator
criteria

• configuration files name follow the administrator criteria

• use defined resource types instead of class to support it

HTCondor puppet module
features

• select the repo and install it

• install condor and pin it at

• handle the service

• Issue the condor_reconfig

• configure security using password

• configure cgroup in order to apply memory limit

• dynamically define HTCondor configuration using hiera

core feature supply by a
“defined resources type”

example

example

exploiting merge_behavior in order
to provide fine host customization

• Available with the parser future
• merge multiple dictionary in one main data structure
• the single dictionary can be defined in the hierarchy hiera files
• you can define the hierarchy direction using “deep” or

“deeper” in the hiera configuration file

Example

example

