Dissípative effects,
Mixing índuced $C P$ violation ($A_{r e}$),

$$
\Delta \Gamma\left(B^{\circ}\right) \approx \Gamma\left(B_{H}\right)-\Gamma\left(B_{L}\right)
$$

with partial reconstruction of

$$
\mathrm{B}^{\circ} \rightarrow \mathrm{D}^{*}-\ell v_{\ell}
$$

Perspectives

- Theoretical motivations
- Data sets
- Fit method
- Progress report
- Status \& perspectíves
- Consider BB as an Open Quantum System:
- i.e., interacting with an environment
- Weak coupling (gravitational interaction):
- dynamics well known
- standard time evolution equations modified by interaction with environment
- dissipation effects described by 6 new parameters, each of the scale of about

$$
\frac{M_{B}^{2}}{M_{\text {Planck }}} \simeq 10^{-18} \mathrm{GeV} \quad\left(\simeq 10^{-6} \Gamma_{B}\right)
$$

- test in fact simplified model with just one dissipative parameter

Benatti, Floreanini, Romano
"Irreversibility and dissipation in neutral B-meson decays"
Nuclear Physics B 602 (2001) 541-571

教

- Time evolution of untagged $B^{0} \rightarrow \ell \vee X$

$$
N(\mathrm{~T})=N_{0} e^{-|\mathrm{T}|}\left[1+\frac{q_{\ell} \xi}{1+\xi}(\cos \omega \mathrm{T}+\sin \omega \mathrm{T})+\mathscr{D}(1+|\mathrm{T}|)+\delta^{2}\left(-\mathrm{T}+\frac{\mathrm{T}^{2}}{2}\right)\right]
$$

- where:
$-\tau=\Gamma \Delta t$
$-\xi=\left(|p|^{2}-|q|^{2}\right) /\left(|p|^{2}+|q|^{2}\right)$
$-\delta=\Delta \Gamma / 2 \Gamma$
- $\omega=\Gamma \Delta \mathrm{m}_{\mathrm{d}}$
more details in S.Marcantoni's thesis:
"Dissipative effects in neutral B meson decays"
Universita' Trieste AA 20132014
- \mathscr{D} : adimensional dissipative parameter
- Similar relations apply to tagged events
- Test feasibility on BABAR data ($415 \mathrm{fb}^{-1}$)
- 5×10^{6} signal events from $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-} \boldsymbol{l}^{+} v$ decays with partial $D^{*-}->\pi_{S}^{-} D^{0}$, which does not need reconstruction of the D°.
- Well established, high efficient selection of Bo states, used for world class BABAR measurements:

$$
\begin{aligned}
& \Gamma^{-1}=1.504 \pm 0.013_{-0.013}^{+0.018} p s \\
& \Delta m_{d}=0.511 \pm 0.007 \pm 0.007 \mathrm{ps}^{-1}
\end{aligned}
$$

lepton tag, PRD 01200473 (2006), $81 \mathrm{fb}^{-1}$

$$
\delta_{C P}=\left(0.29 \pm 0.84_{-0.61}^{+1.88}\right) \times 10^{-3}
$$

Kaon tag PRL 11200686 (2012), $425 \mathrm{fb}^{-1}$

- Maín issue :
- Δt measurement

- Decay vertex from ℓ, π_{s} and beam spot intersection
- Tracks from unresolved D° (green) are not identified

Δt with partial reco: "other" side

Δt with partial reco: BIAS

Bías: $\Delta t_{\text {meas }}<\Delta t_{\text {true }}$
 beam spot intersection

- Tracks from unresolved Do pull the tag vertex towards the decay vertex
- Bías: $\Delta t_{\text {meas }}<\Delta t_{\text {true }}$
- "Cone cut" : remove tracks near to the π_{s}
- bías only reduced
- efficiency loss, resolution worsened
- Use just one track (ℓ, K)
- good only for tagged analysís
- spoils Δt resolution
- Three sets of tracks
- ℓ, π_{s} (from $B \rightarrow v \ell^{+} D^{*-} \rightarrow \pi_{s} D^{0}$) "Reco" vertex
- $D^{0} \rightarrow X$
- other B $\rightarrow X^{\prime}$
"D" vertex
"Tag" vertex
- In each event consider all possible combination of tracks (except e, π_{5}) in two sets:
- "D" side / Tag side
- Choose the combination maximizing a likelihood \mathcal{L} based on several varíables $\left(N_{\operatorname{tag}}, N_{D}, E_{\operatorname{tag}}, E_{D}, \chi_{\text {tag }}^{2}, \chi_{D}^{2}, \cos (\Theta), \Delta E^{\ldots}\right)$
- L tuned on símulated data
- Three coordinates are reconstructed
- $\mathbb{Z}_{R}: B^{0}$ decay position, from ℓ, π_{s} and beam spot constraínt ("Reco")
- $\mathbb{Z}_{\text {Tag }}$: other B decay point, from the tracks assigned to the other B
- \mathbb{Z}_{D} : obtained from the remaing tracks, representing the D^{0} decay point
- Define
- $D Z=Z_{R}-Z_{T A G}$-> evolution of the entangled $B B$ wave function
- $d Z=Z_{R} \sim Z_{D} \rightarrow D$ lifetíme projected along beam axís
- Proper time difference is computed in the "boost approximation":

$$
\Delta t \simeq \Delta Z /(c \beta \gamma)=\left(Z_{R}-Z_{\text {Tag }}\right) /(\beta \gamma c t)
$$

- Resolution (red line) is almost as good as that with fully reconstructed events (dots with error bars)!
- Grey dashed line : result with a cone cut

- First test on $B A B A R$ signal símulation, fit for $\Delta \Gamma, D_{1}$:

$$
\begin{aligned}
& \Delta \Gamma=\left(1.2_{-3.1}^{+0.7}\right) \times 10^{-2} \\
& \mathscr{D}=-(1.98 \pm 1.27) \times 10^{-3}
\end{aligned}
$$

- Test resolution effect : smear pseudo-data per event resolution by 10\%

$$
\begin{aligned}
& \Delta \Gamma=\left(-0.0014_{-0.85}^{+0.85}\right) \times 10^{-2} \\
& \mathscr{D}=-(3.78 \pm 0.86) \times 10^{-3}
\end{aligned}
$$

- Conclusion:
- Resolution effects have sizable impact on both central values and errors, possibly leading to claím (fake) 4σ discovery!
- Actual resolution should be determined with o(\%) precision
- The measurement is potentially very sensitive and interesting
- Dissipative effects have never been tested in BB entangled system
- Strong opportunity to improve the knowledge of other fundamental parameters ($\delta, \Delta \Gamma, \Gamma^{0}, \Delta \mathrm{~m}_{\mathrm{d}} \ldots$) just using BABAR data
- ... using a brand new approach for vertex reconstruction
- ... however ...

Conclusions (in fact advertisíng)

- Progress is hampered by lack of people @ work
- Depending on available resources one could perform:
- untagged measurement of ($\mathcal{D}, \delta, \Delta \Gamma, \Gamma^{0}$) on existing BABAR data
- add tagging information (increase sensitivity, + improve on $\Delta \mathrm{m}_{\mathrm{d}} \ldots$)
- perform a combíned analysis of BABAR and Belle results
- In any case
- pave the way for an elegant and sophisticated high-precision measurement with Bellez data

Backup

In the following: a recollection of some studies performed on Babar simulation

- Need careful understanding of resolution effects
- So far investigated
- track multiplicíty in Tag \& D side
- $\sigma(\Delta t)$ distribution in Tag $\& D$ side
- Δt distribution in D side
- Next plots:
- points with error bars : background subtracted data
- yellow area: MC expectation for signal (and paking background) events
- Ratio: Data/MC

- Disagreement in the total track distribution ($3^{\text {rd }} \mathrm{plot}$), equally shared by tag and decay side
- Tune: remove randomly MC events so that total multiplicity agrees.
not adjusted for $N_{\text {tracks }}$

adjusted

Símulation:

- ratio adjusted / not adjusted

Multiplicity tuning not much effective

Università DEGLI STUDI di Padova
$\sigma_{\Delta T}, N_{\text {track }}$ adjusted, for Tag \& D Side

Ratío Comparison:

- Tagsíde
- D síde

Rough agreement

- Weight MC events to have same $\sigma(\Delta t)$ as in data
- Use independent set of parameters for Tag and D side
- Plot $\sigma(\Delta t)$ after tuning as a cross check.

Num

- Cross check: compare $N_{\text {track }}$ after $\sigma(\Delta t)$ correction

Very tiny distortion Just remove events with

$$
N_{\text {track }}>9
$$

$M C$

Data

