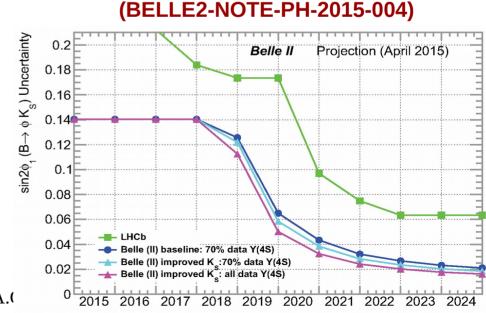
Update on $B^0 \to \phi K^0$ and first glance at $B^0 \to \eta' K^0$ time-dependent CP analysis

Alessandro Gaz, **Stefano Lacaprara** INFN & University of Padova


4th Belle II Italian Collaboration Meeting Roma3, 21-22/12/2015

Outline

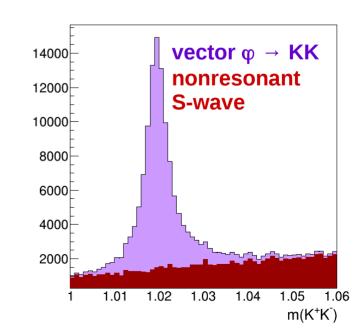
- $B^0 \rightarrow \phi K^0$
 - Introduction and motivation
 - Analysis strategy
 - Helicity
 - Background with 100 fb⁻¹ (BG0X and BG1X)
 - Impact of machine background on reconstruction
- $B^0 \rightarrow \eta' K^0$
 - First glance: efficiency and time resolution
- Summary and outlook

Introduction/Motivation

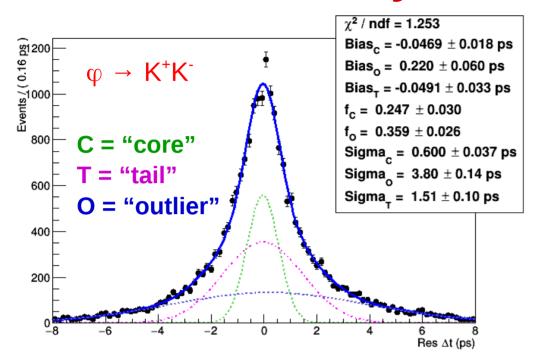
- This is a sensitivity study for the timedependent CP-violation analysis of $B^0 \to \phi \ K^0$;
 - Time-dependent CP asymmetry is little affected by "wrong-phase amplitudes", u,d so it's expected to be tightly related to $\sin 2\beta/\phi_1(\psi K^0)$ (and V_{ub});
 - NP can enter in the loop, shifting CPV parameters from
 B⁰ → cc K⁰ more than SM prediction (small);
- A good channel for early data:
 - Competition with LHCb
 - Errors dominated by statistics, quick progress wrt Belle/BaBar.
- Good channel for detector commissioning
 - Vtx, B-flavour tag, PID, ...

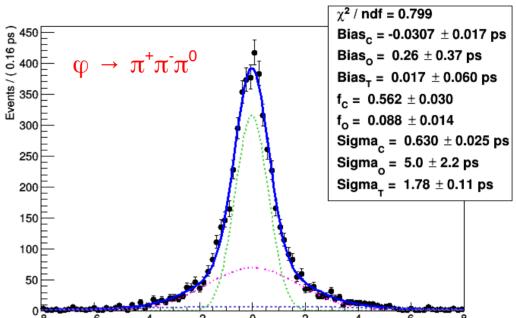
P. Urquijo

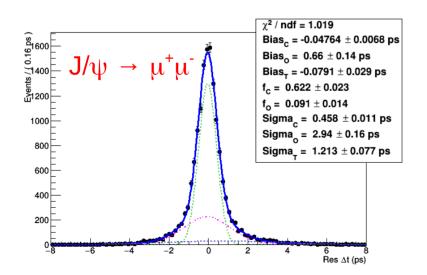
4th Belle2 Italia meeting, 21/12/2015, Roma


S.Lacaprara, A.

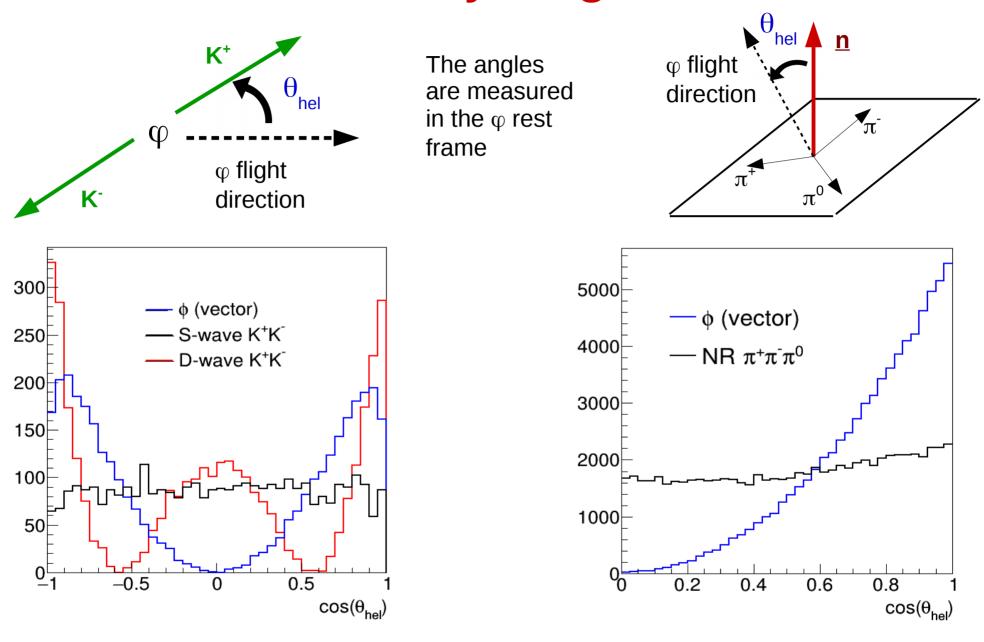
Analysis strategy


- The most complete approach for this channel is a Dalitz plot analysis of K+K-K⁰ BaBar: PRD 85, 112010 (2012) Belle: PRD 82, 073011 (2010)
- Start with a simpler quasi-two body approach, restricting the K^+K^- invariant mass range around the ϕ mass;
 - ϕ (K+K-) K_S (π + π -)
 - φ (K+K-) K_S ($\pi^0\pi^0$)
 - φ ($\pi^+\pi^-\pi^0$) K_S ($\pi^+\pi^-$)
 - φ (K+K-)
 K_I (not yet)


- Not studied at BaBar/Belle:
- **x** Low $\varphi \rightarrow 3\pi$ branching fraction (15%);
- Higher background;
- ightharpoonup Better Δt resolution (higher p track);
- \checkmark Practice for ωK^0 .


- Need to separate vector component (φ) from scalar:
 - helicity analysis
- Background

Efficiency and Δt resolution


4 th Belle2 Italia meeting, 21/12/20	15, Roma
---	----------

	Selection ϵ	Δt resolution
φ (K ⁺ K ⁻) K _s	$35.2\% \pi^{+}\pi^{-}$ $13.7\% \pi^{0}\pi^{0}$	2.11 ps
$\varphi(\pi^+\pi^-\pi^0)K_s(\pi^+\pi^-)$	28.3%	1.42 ps
J/ψ(μ ⁺ μ ⁻)K _s		0.90 ps

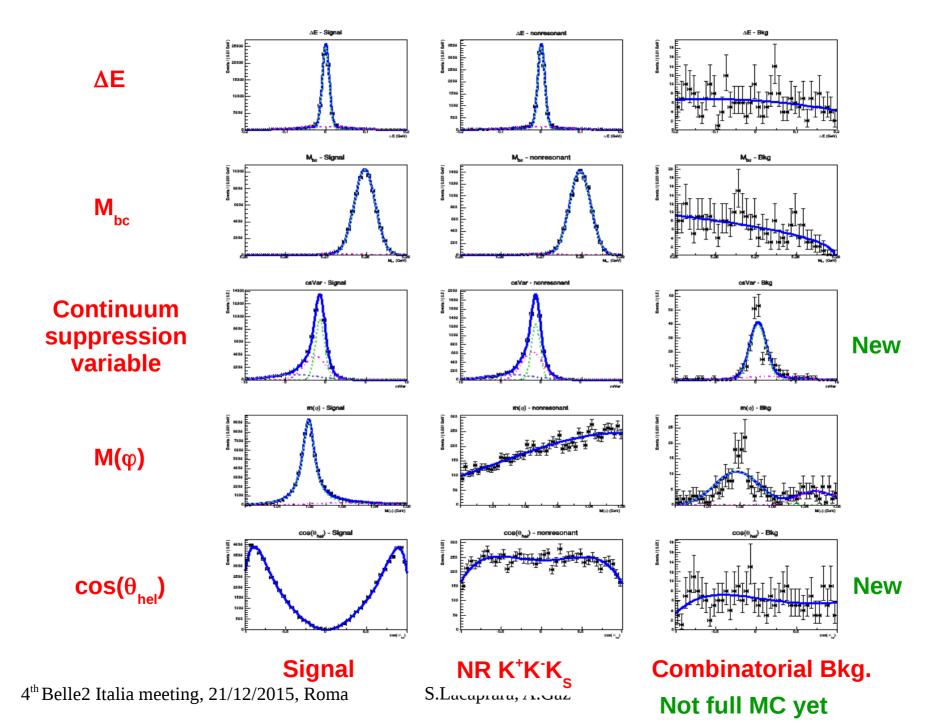
 π^0 reconstruction likely to improve Event selection in backup

Res Δt (ps)

Helicity angles

Multidimensional fit

 The extraction of the parameters of interest (mostly S and C), is done performing a multi-dimensional maximum likelihood fit, using the variables:

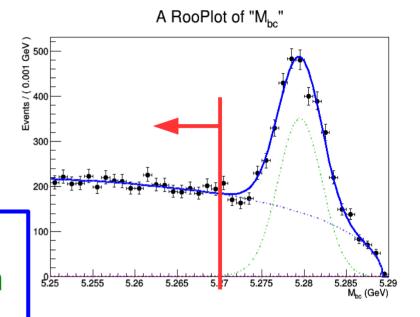

- Δt;
- ∆E;
- M_{bc};
- M(φ);

The pdf is of the form:

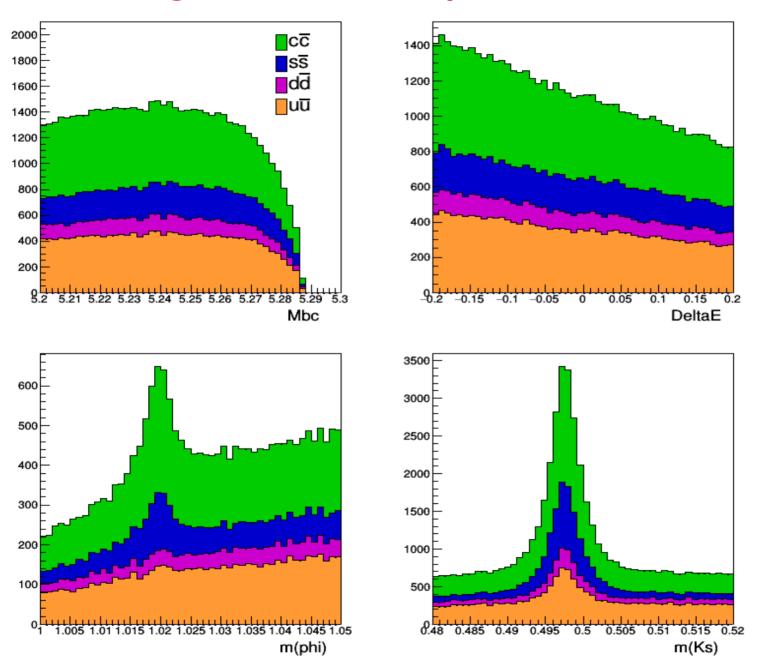
$$\mathcal{P}^{i}_{j} \equiv \mathcal{T}_{j} \left(\underline{\Delta t^{i}, \sigma^{i}_{\Delta t}, \varphi^{i}} \right) \cdot \prod_{k} \underline{\mathcal{Q}_{k,j}(x^{i}_{k})}$$
 time dependent part time integrated

- φ helicity; (new)
- Continuum suppression variable. (new)
- Right now I'm using the old package RooRarFit, updated to cope with the newer version of ROOT/RooFit.
 - We would like to maintain and develop this tool also for the other (time-dependent) analyses.
 - Integrating RooRarFit in BASF2 w/ Luigi Di Gioi

Multidimensional fit



Backgrounds

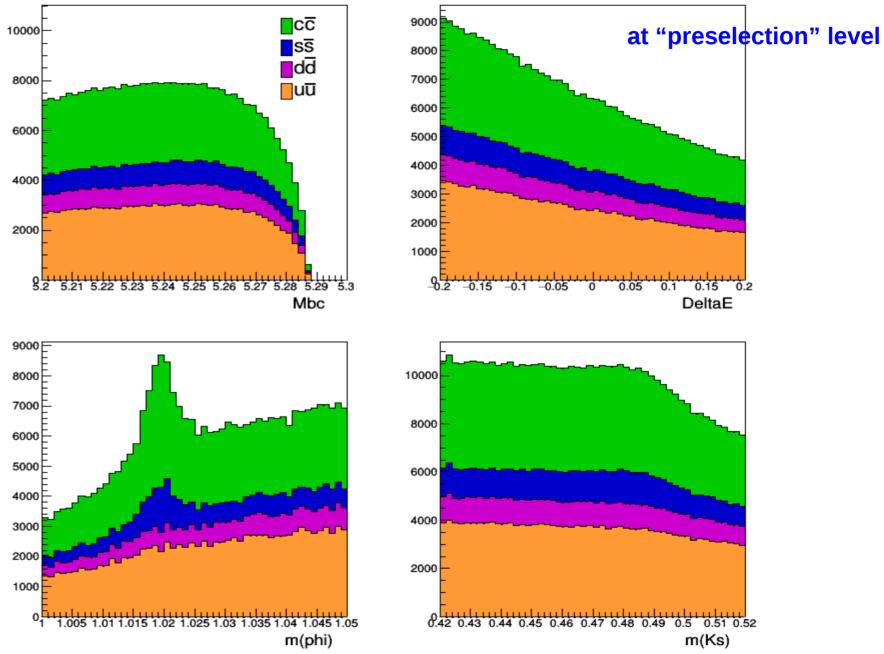

Two main background sources:

- 1) Combinatorial: dominated by continuum $(e^+e^- \rightarrow u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c})$ events.
 - On a real analysis this is modeled on the data from the M_{hc} sideband.
 - Showing results based on the 100 fb⁻¹ (**uu**, **dd**, **ss**, **cc**) equivalent production of continuum MC.
 - 80 fb⁻¹ w/o machine background **BGx0**
 - 20 fb⁻¹ w/ machine background **BGx1**

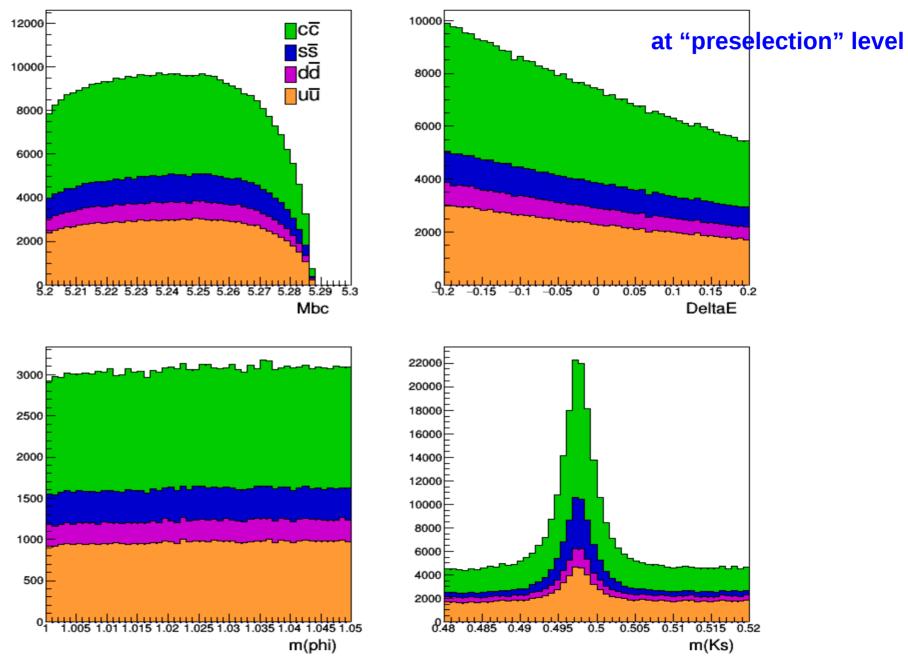
Background composition – $K^{\dagger}K^{\dagger}\pi^{\dagger}\pi^{\dagger}$

at "preselection" level:

Decay candidate reconstructed

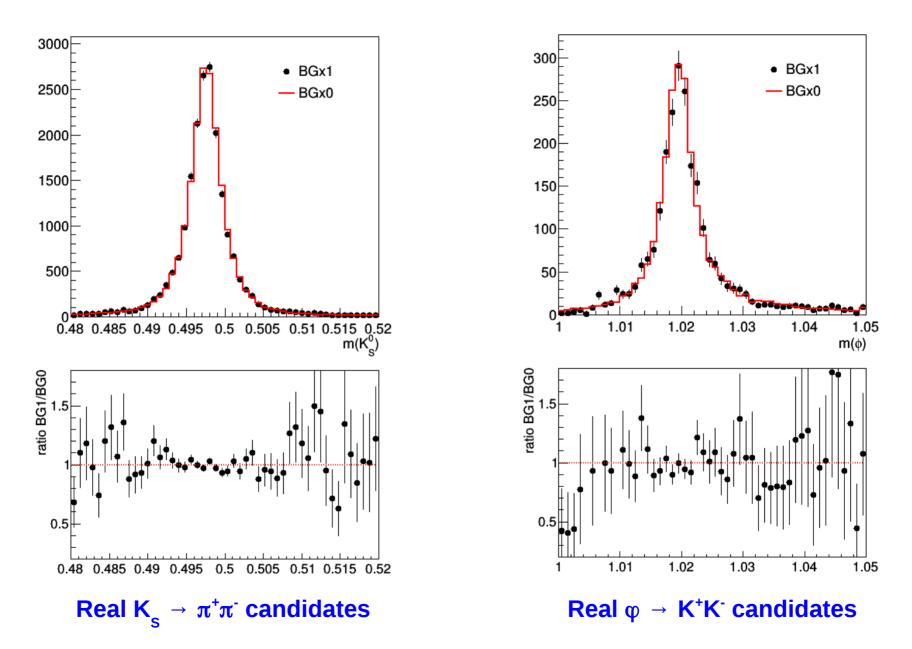

Before selection cuts

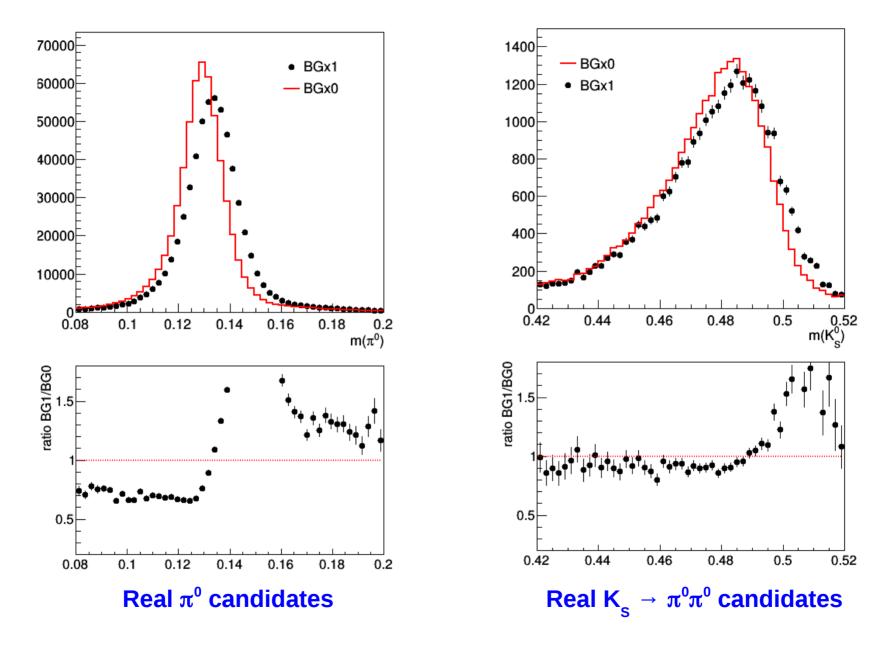
20 fb⁻¹ BGx1

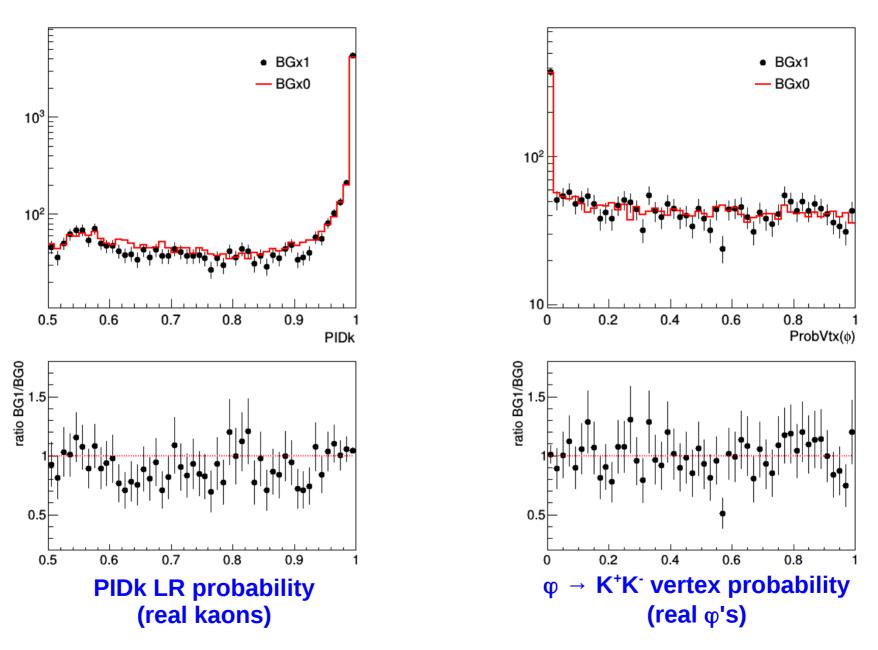

4th Belle2 Italia meeting, 21/12/2015, Roma

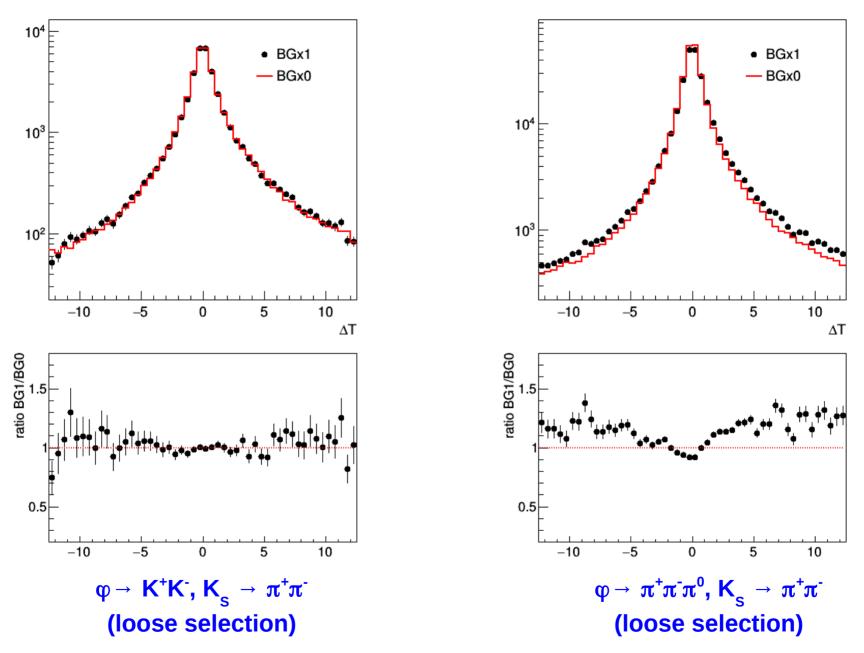
S.Lacaprara, A.Gaz

Background composition – K⁺K⁻ π⁰π⁰


Background composition — $\pi^{\dagger}\pi^{\bar{}}\pi^{0}$ $\pi^{\dagger}\pi^{\bar{}}$

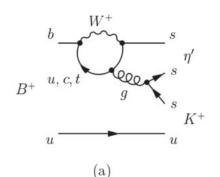


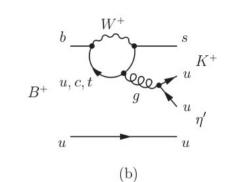

Background rejection

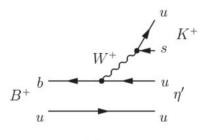

Sgn	K ⁺ K ⁻	$\pi^+\pi^-$	K ⁺ K ⁻	$\pi^0\pi^0$	$\pi^+\pi^-\pi^0$	$\mathbf{n}^{+}\mathbf{n}^{-}$
	Selection efficiency [all cuts] (x 10 ⁻⁶)					
	BGx0	BGx1	BGx0	BGx1	BGx0	BGx1
uu	8.8 ± 0.2	6.4 ± 0.4	1.78 ± 0.12	1.39 ± 0.20	658.3 ± 2.3	469.8 ± 3.7
$d\overline{d}$	7.6 ± 0.5	5.7 ± 0.8	1.47 ± 0.21	0.75 ± 0.31	717.3 ± 4.7	515.6 ± 8.0
SS	50.6 ± 1.3	39.4 ± 2.2	9.53 ± 0.56	7.70 ± 1.00	952.3 ± 5.6	699.1 ± 9.5
CC	25.3 ± 0.5	20.8 ± 0.9	5.05 ± 0.22	3.31 ± 0.35	1049.3 ± 6.3	759.4 ± 5.3

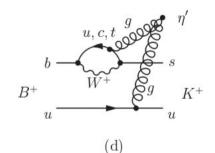
- NB no cut on continuum suppression variable (yet)
 - Likely very powerful, still some problems (see backup for details).
- Less background rejection from ss and cc (ϕ)
- $\phi \rightarrow 3\pi$ has much more background than $\phi \rightarrow KK$
- w/o machine background higher probability to pass the selection.
 - Most likely as the signal (not yet done)
 - The difference arises from several different sources.

First glance at $B^0 \rightarrow \eta' K^0$

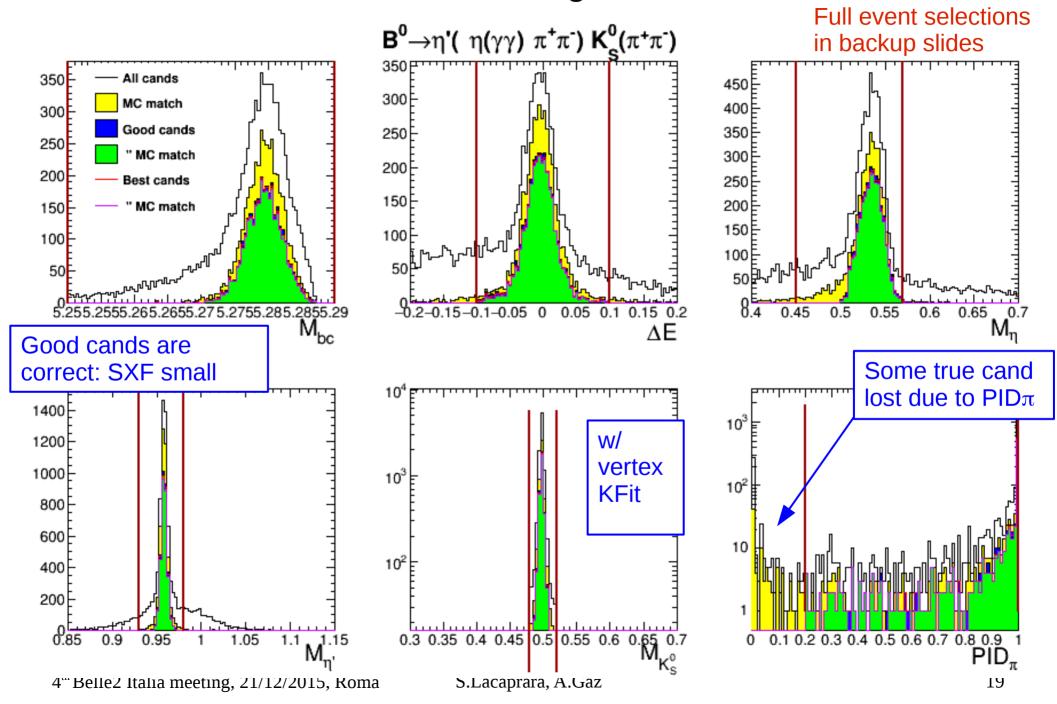

- Same studies as for $B^0 \rightarrow \phi K^0$
 - $B^0 \rightarrow \eta' K^0$ has large BR 6.6x10⁻⁵

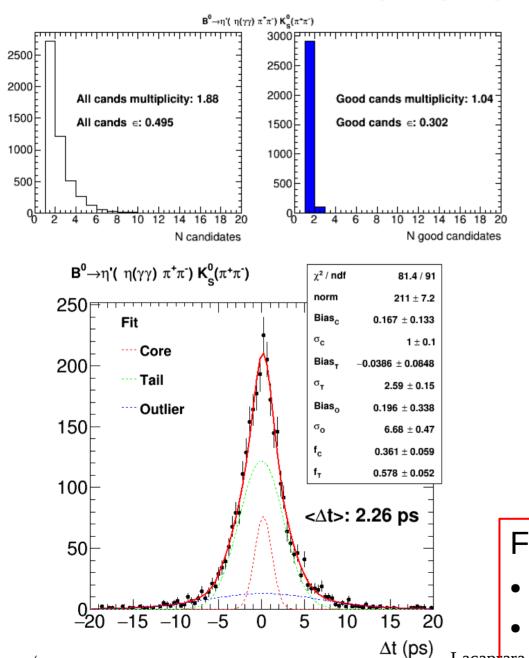

CLEO, PRL 81, 1786 (98)

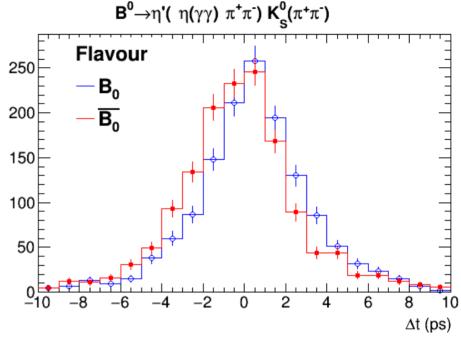

~10x BR(B
$$^{0} \rightarrow \phi K^{0}$$
)

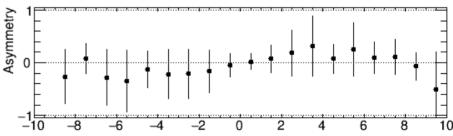

- Constructive interference between penguin diagrams
- CPV first observed in 2006 by BaBar
 - Statistically limited (~1500 η' K⁰_S)
- Many decay channels:
 - $B^0 \to \eta' (\rho \gamma) K^0_s$ (Not yet) BR: 29%
 - $B^0 \rightarrow \eta' (\eta (\gamma \gamma) \pi^+\pi^-) K^0_S (\pi^+\pi^-)$
 - B⁰ → η' (η (γγ) π+π-) K⁰_S (π⁰π⁰)
 - B⁰ → η' (η (π+π-π⁰) π+π-) K⁰_S (π+π-)
 - $B^0 \rightarrow \eta' (\eta (\pi^+\pi^-\pi^\circ) \pi^+\pi^-) K^0_S (\pi^\circ\pi^\circ)$
 - B⁰ → η' K⁰_L (Not yet)
- Large combinatorial background

BaBar: PRD 79, 052003, Belle: PRL 98, 031802



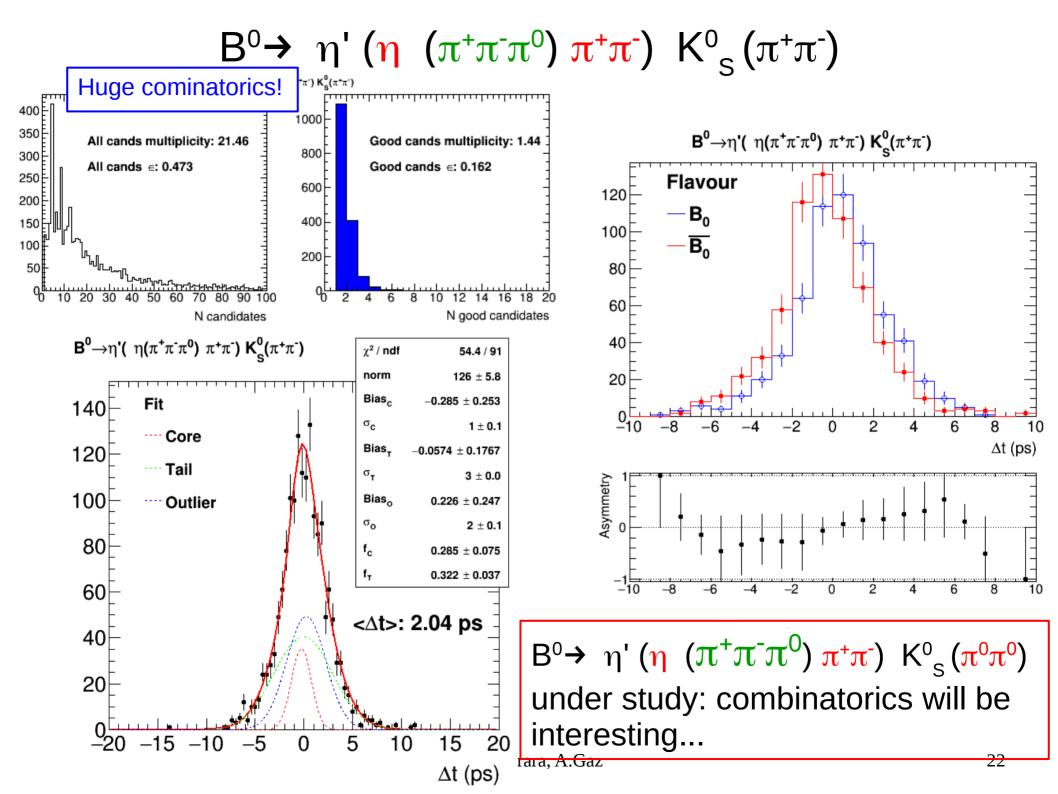



 $BR_{Tot} (\eta' \rightarrow (\eta \pi^+\pi^-)K_S^0)=27\%$


B⁰ \rightarrow η' (η (γγ) π⁺π⁻) K⁰_S (π⁺π⁻) distributions

B⁰ \rightarrow η' (η (γγ) $\pi^+\pi^-$) $K^0_s(\pi^+\pi^-)$

For B⁰ $\rightarrow \eta' (\eta (\gamma \gamma) \pi^{+}\pi^{-}) K^{0}_{S}(\pi^{0}\pi^{0})$


- Efficiency ~0.5x (as for φK^0)
- Same Δt resolution (see backup)

د.Lacaprara, A.Gaz

20

B⁰ \rightarrow η' (η (π⁺π⁻π⁰) π⁺π⁻) K⁰_S (π⁺π⁻) distributions

Channels summary

	BR 10 ⁻⁵	Selection ε	∆t resolution
η' (η (γγ) π ⁺ π ⁻) K ⁰ _s	1.1	29.6% π ⁺ π ⁻ 12.5% π ⁰ π ⁰	2.25 ps
η' (η ($\pi^+\pi^-\pi^0$) $\pi^+\pi^-$) K^0_s	0.6	13.2% $\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$	2.04 ps
φ (K ⁺ K ⁻) K _s	0.35	35.2% π ⁺ π ⁻ 13.7% π ⁰ π ⁰	2.11 ps
$\varphi(\pi^+\pi^-\pi^0)K_{_{\rm S}}(\pi^+\pi^-)$	0.07	28.3%	1.42 ps
J /ψ(μ ⁺ μ ⁻)K _s	52		0.90 ps

Conclusions / outlook

- $B^0 \rightarrow (\phi / \eta') K_s^0$ channels studied for time-dependent CPV
 - Φ advanced, η' preliminary: both encouraging
 - η ': more channels to be analyzed, background, ...
- Large samples of generic and signal MC have become available, thanks a lot to the people involved in the production!
 - Things so far look ok: the impact of the machine background on tracking, vertexing and PID is reasonably small (but visible);
 - Still some problem with event topology/continuum suppression: under investigation
- Use the MC that is going to be released soon for a full scale analysis exercise.

Backup Slides

Motivations

- b → s penguin dominated decays:
 - $B \rightarrow \eta' K^0$, ωK^s , $\pi^0 K^0$ are sensitive to $\sin 2\phi_1$:

$$A_{f}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f) - \Gamma(B^{0}(\Delta t) \to f)}{\Gamma(\overline{B}^{0}(\Delta t) \to f) + \Gamma(B^{0}(\Delta t) \to f)} = -C_{f}\cos(\Delta m_{B}\Delta t) + S_{f}\sin(\Delta m_{B}\Delta t)$$

- in case of pure penguin amplitude S_f ≈ sin2φ₁
- Presence of color-suppressed tree amplitudes shift S_f from $\sin 2\phi_1$ for a value of 0.01~0.1
 - Depending on decay mode
- Examining for a larger deviations of S_f from $\sin 2\phi_1$ is an important test of the Standard Model

Event selection $B^0 \rightarrow \phi K^0$

•
$$M_{bc} > 5.25$$
;

■
$$|\Delta E| < 0.2 \ (\phi \to KK, K_S \to \pi^+\pi^-);$$

■ -0.1 <
$$\Delta$$
E < 0.2 (ϕ → KK, K_s → $\pi^0\pi^0$);

■ -0.4 <
$$\Delta$$
E < 0.2 ($\phi \rightarrow 3\pi$, K_S $\rightarrow \pi^{+}\pi^{-}$);

•
$$1.00 < M(K^+K^-) < 1.05$$
;

•
$$0.97 < M(\pi^{+}\pi^{-}\pi^{0}) < 1.04;$$

$$- d_0(K^{\pm}) < 0.08;$$

$$z_0(K^{\pm}) < 0.3;$$

• At least one PXD hit for each K^{\pm}/π^{\pm} from ϕ decay;

• VtxPvalue(
$$K_s$$
, ϕ , B) > 0.0001.

■
$$0.48 < M(K_S \rightarrow \pi^+\pi^-) < 0.52;$$

•
$$0.10 < M(\pi^0) < 0.14$$
;

■
$$0.44 < M(K_S^- \rightarrow \pi^0 \pi^0) < 0.51;$$

$$\pi^0$$
: stdPi0

Selection efficiencies $B^0 \rightarrow \phi K^0$

- In the next slides I'm showing the probability of background events to pass the cuts at two different stages:
 - Preselection: basically the output of the basf2 job that produces the root output file to be processed in the following stage;
 - Selection: this restricts to the events that are going to be used in the multidimensional time-dependent fit (*);
- Still considering only the channels:

1)
$$\varphi (K^+K^-) K_S (\pi^+\pi^-)$$

2)
$$\varphi (K^+K^-) K_S (\pi^0\pi^0)$$

3)
$$\varphi (\pi^{+}\pi^{-}\pi^{0}) K_{s} (\pi^{+}\pi^{-})$$

(work on K_I mode yet to begin)

(*) without including a cut on a very powerful continuum/BB discriminating variable, that will likely be introduced.

MC samples

 Showing results based on the 100 fb⁻¹ equivalent production of continuum MC:

	BGx0		BGx1	
	# events (M)	equiv. lumi (fb ⁻¹)	# events (M)	equiv. lumi (fb ⁻¹)
uū	128.40	80	32.10	20
dd	32.08	80	8.02	20
ss	30.64	80	7.66	20
cc	106.32	80	26.58	20

- I also took a look at the very recently released signal MC:
 - Bd -> phiKS_K+K-pi+pi-, BGx0
 - → Bd -> phiKS_K+K-pi0pi0, BGx0
 - → Bd -> phiKS_2pi+2pi-pi0, BGx0

Selection efficiencies – $K^{\dagger}K^{\dagger}\pi^{\dagger}\pi^{\dagger}$

BGx0	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uu	0.628 ± 0.002	8.8 ± 0.2
dd	0.670 ± 0.005	7.6 ± 0.5
SS	1.459 ± 0.007	50.6 ± 1.3
с с	1.030 ± 0.003	25.3 ± 0.5

BGx1	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uu	0.540 ± 0.004	6.4 ± 0.4
dd	0.620 ± 0.009	5.7 ± 0.8
ss	1.260 ± 0.013	39.4 ± 2.2
с с	0.890 ± 0.006	20.8 ± 0.9

Events without background have a higher probability to pass the selection.

The difference arises from several different sources.

Selection efficiencies – K⁺K⁻ π⁰π⁰

BGx0	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uū	10.694 ± 0.009	1.78 ± 0.12
dd	11.806 ± 0.019	1.47 ± 0.21
SS	13.729 ± 0.021	9.53 ± 0.56
cc	13.907 ± 0.011	5.05 ± 0.22

BGx1	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uu	9.343 ± 0.017	1.39 ± 0.20
dd	10.475 ± 0.036	0.75 ± 0.31
ss	12.283 ± 0.040	7.70 ± 1.00
с с	12.501 ± 0.022	3.31 ± 0.35

Events without background have a higher probability to pass the selection.

The difference arises from several different sources.

Selection efficiencies $-\pi^{\dagger}\pi^{\bar{}}\pi^{0}\pi^{\bar{}}\pi^{\bar{}}\pi^{0}\pi^{\bar{}}\pi^{$

BGx0	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uu	4.612 ± 0.006	658.3 ± 2.3
dd	5.026 ± 0.012	717.3 ± 4.7
ss	8.087 ± 0.016	952.3 ± 5.6
с с	868.8 ± 0.009	1049.3 ± 6.3

BGx1	Preselection efficiency (x 10 ⁻³)	Selection efficiency (x 10 ⁻⁶)
uu	3.507 ± 0.010	469.8 ± 3.7
dd	3.917 ± 0.022	515.6 ± 8.0
SS	6.249 ± 0.028	699.1 ± 9.5
с с	6.705 ± 0.016	759.4 ± 5.3

Events without background have a higher probability to pass the selection.

The difference arises from several different sources.

Event selection $B^0 \rightarrow \phi K^0$

Main selection cuts:

$$M_{bc} > 5.25;$$

■
$$|\Delta E| < 0.2 \ (\phi \rightarrow KK, K_s \rightarrow \pi^+\pi^-);$$

■ -0.1 < ΔE < 0.2 (
$$\phi$$
 → KK, K_S → π ⁰ π ⁰);

■ -0.4 <
$$\Delta$$
E < 0.2 ($\phi \rightarrow 3\pi$, K_S $\rightarrow \pi^{+}\pi^{-}$);

•
$$1.00 < M(K^+K^-) < 1.05$$
;

•
$$0.97 < M(\pi^+\pi^-\pi^0) < 1.04$$
;

•
$$d_0(K^{\pm}) < 0.08;$$

$$z_0(K^{\pm}) < 0.3;$$

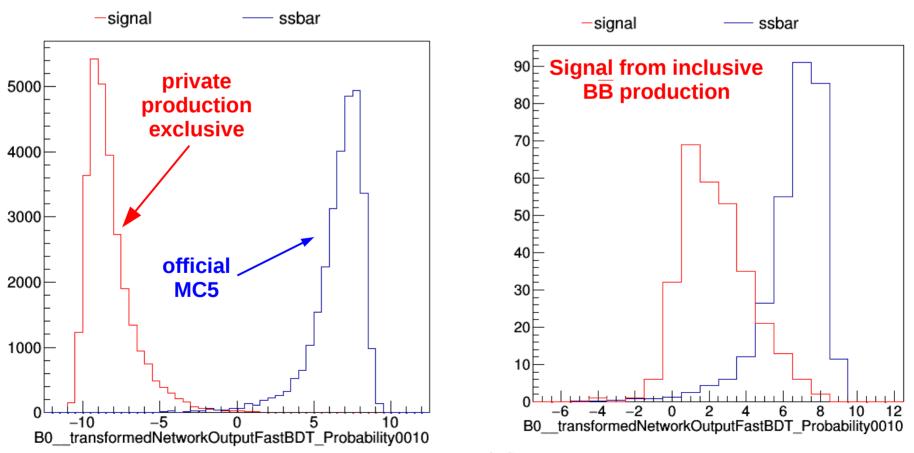
Objects:

$$K^{\pm}$$
: $K+:$ all

■
$$0.48 < M(K_s \rightarrow \pi^+\pi^-) < 0.52;$$

•
$$0.10 < M(\pi^0) < 0.14$$
;

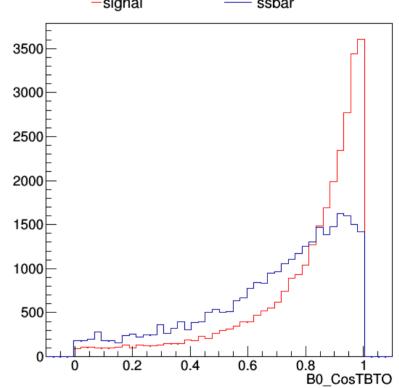
■
$$0.44 < M(K_S \rightarrow \pi^0 \pi^0) < 0.51;$$


• At least one PXD hit for each
$$K^{\pm}/\pi^{\pm}$$
 from ϕ decay;

• VtxPvalue(
$$K_s$$
, ϕ , B) > 0.0001.

Selection efficiencies look reasonable (see backup)

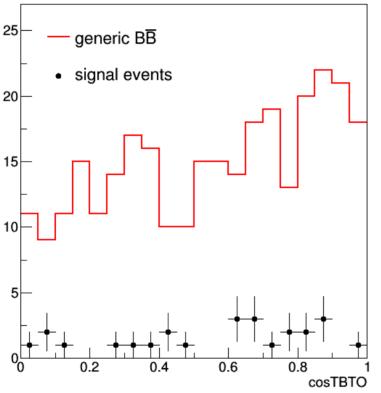
Puzzle: continuum suppression

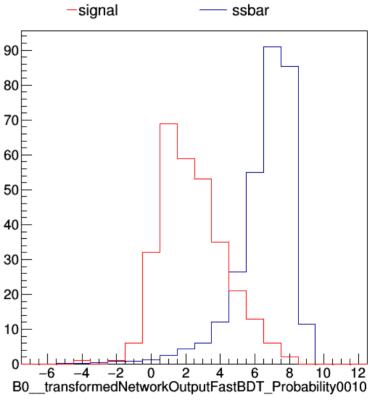

- The separation power is unrealistically high:
 - Esclusive production (private and official) very different wrt inclusive BBar production.

Puzzle: continuum suppression

Moreover, there seems to be a problem with the "event topology": B decays are expected to be "spherical", while continuum events are more "jet like";

- One of the strongest variables that can separate between the two components is the angle between the thrust axis of the signal B candidate and the thrust axis of the rest of the event;
- I expect the distribution of CosTBTO to be ~flat for signal (and BB events) and strongly peaking at 1 for the continuum;

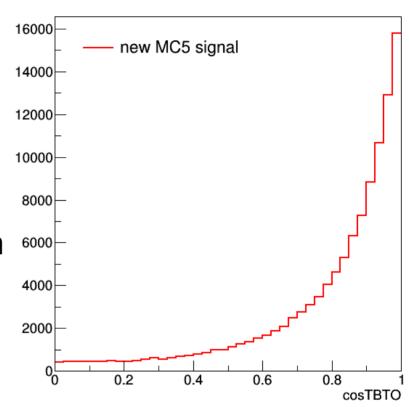



 Apparently I'm getting the opposite, so this points to either a bug in the computation of this variable or a problem in the generation of the signal samples.

Puzzle: continuum suppression

• Took a peek at the MC5 generic $B\bar{B}$ (only the first 20 fb⁻¹ chunk): ~300 events pass the selection and 25 of them are actual $B^0 \to \phi \ K_s$

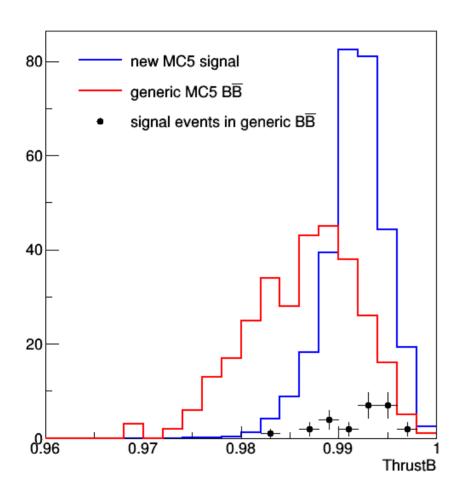
events;

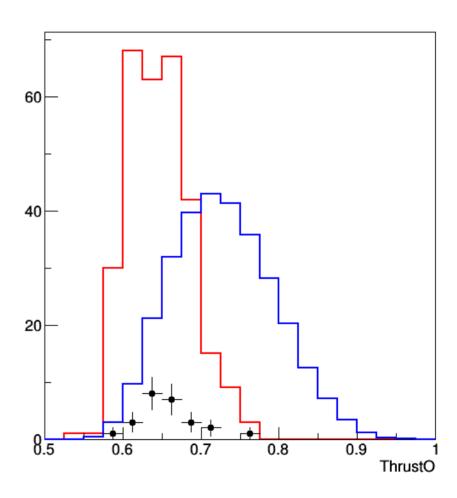


 Cannot draw strong conclusions, but it seems like the CosTBTO distribution is fine and separation power of the continuum suppression machinery is realistic.

A look at the newly released signal MC

- I immediately ran on the new official signal MC samples that have been released a few days ago;
- Same problem as in my private samples: the CosTBTO distribution strongly peaks at 1...;
- This is true for all the final states I am investigating;
- Looks like a problem in the generation of the signal sample (?);




 This is an open issue, so I appreciate any input from people who might have run into the same problem.

On backup slides I pasted the snippet of the steering file I have been using to build the continuum suppression.

Continuum Suppression

Continuum suppression

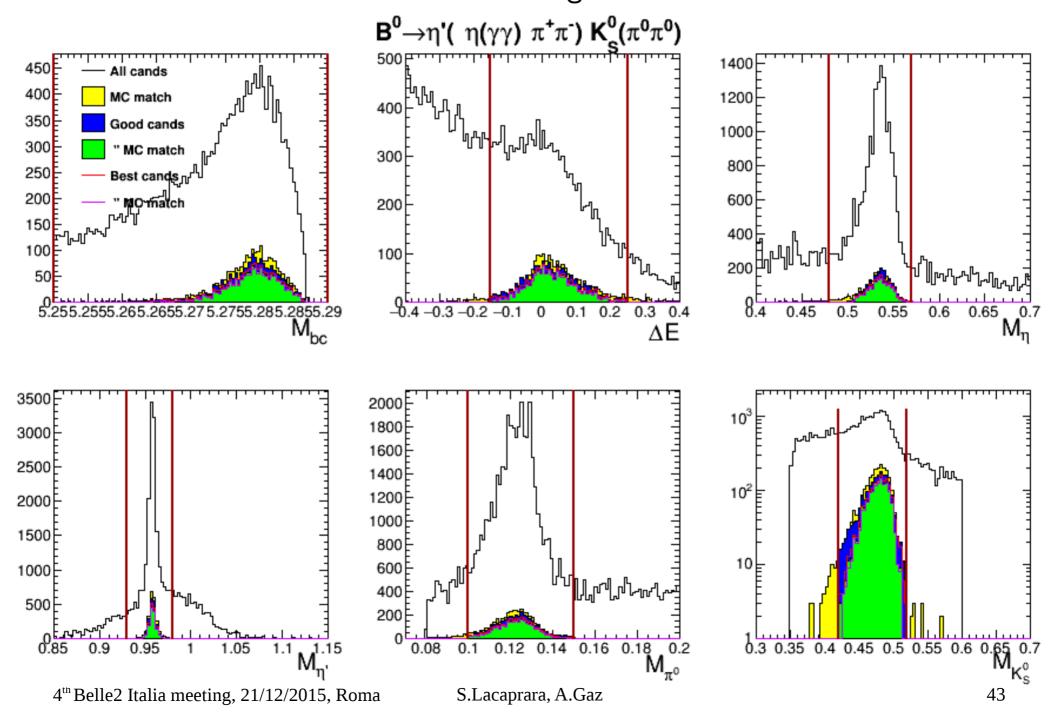
Event selection

B⁰
$$\rightarrow$$
 η' (η (γγ) $\pi^+\pi^-$) $K_S^0(\pi^+\pi^-)$

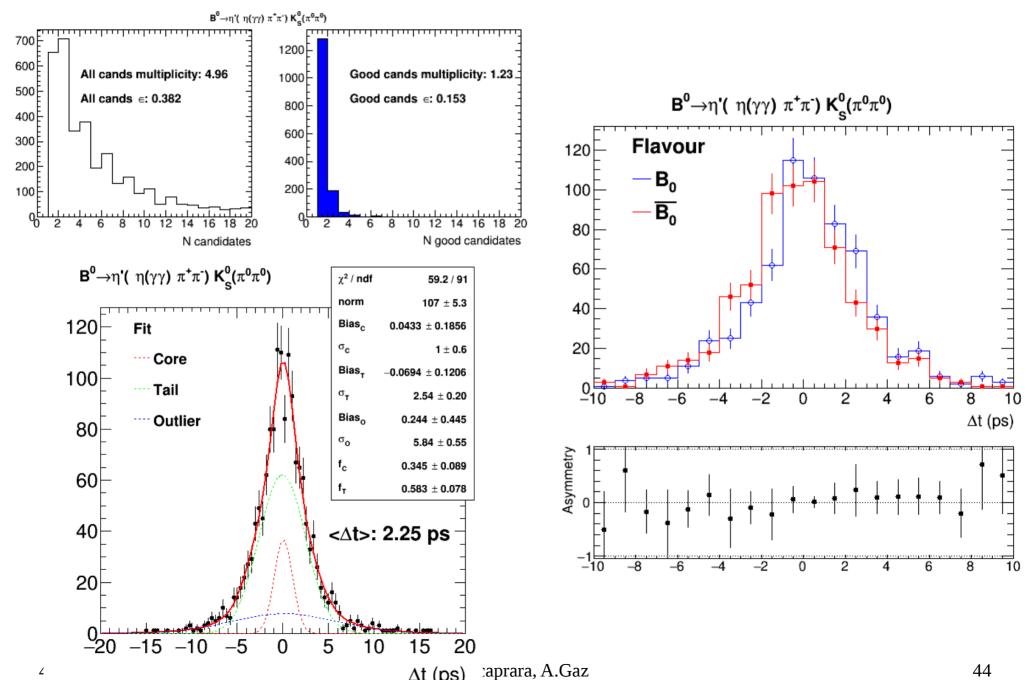
- $M_{hc} > 5.25$;
- $|\Delta E| < 0.1$
- $0.45 < M(\eta \rightarrow \gamma \gamma) < 0.57$;
- $0.93 < M(\eta') < 0.98$;
- $0.48 < M(K_s^0 \to \pi^+\pi^-) < 0.52;$
- PIDpi $(\pi^{\pm}) > 0.2$
- $d_0(\pi^{\pm}) < 0.08;$
- $Z_0(\pi^{\pm}) < 0.1;$
- At least one PXD hit for each π^{\pm} from η' decay;
- VtxPvalue(η , η ', K_s, B₀) > 1.E-5

Event selection

B⁰
$$\rightarrow$$
 η' (η (γγ) $\pi^+\pi^-$) $K_S^0(\pi^0\pi^0)$


- $M_{hc} > 5.25$;
- $-0.15 < \Delta E < 0.25$
- $0.45 < M(\eta \rightarrow \gamma \gamma) < 0.57$;
- $0.93 < M(\eta') < 0.98$;
- $0.1 < M(\pi^0) < 0.15$;
- $0.42 < M(K_s^0 \rightarrow \pi^0 \pi^0) < 0.52;$
- PIDpi(π[±])>0.2
- $d_0(\pi^{\pm}) < 0.08;$
- $z_0(\pi^{\pm}) < 0.15;$
- At least one PXD hit for each π^{\pm} from η' decay;
- VtxPvalue(η , η' , B₀) > 1.E-5

Event selection


B⁰
$$\rightarrow$$
 η' (η (π⁺π⁻π⁰) π⁺π⁻) K⁰_S (π⁺π⁻)

- $M_{hc} > 5.25$;
- $|\Delta E| < 0.15$
- $0.52 < M(\eta \rightarrow \pi^+\pi^-\pi^0) < 0.57$;
- $0.93 < M(\eta') < 0.98$;
- $0.1 < M(\pi^0) < 0.15$;
- $0.48 < M(K_s^0 \rightarrow \pi^+\pi^-) < 0.52;$
- PIDpi(π[±])>0.2
- $d_0(\pi^{\pm}) < 0.08;$
- $z_0(\pi^{\pm}) < 0.15;$
- At least one PXD hit for each π^{\pm} from η' decay;
- VtxPvalue(η , η ', K_s, B₀) > 1.E-5

B⁰ \rightarrow η' (η (γγ) $\pi^+\pi^-$) $K_s^0(\pi^0\pi^0)$ distributions

B⁰ \rightarrow η' (η (γγ) $\pi^+\pi^-$) $K^0_S(\pi^0\pi^0)$

 Δt (ps)