# Update on $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$ and first glance at $\mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}^{0}$ time-dependent CP analysis 

Alessandro Gaz, Stefano Lacaprara INFN \& University of Padova
$4^{\text {th }}$ Belle II Italian Collaboration Meeting
Roma3, 21-22/12/2015

## Outline

- $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$
- Introduction and motivation
- Analysis strategy
- Helicity
- Background with $100 \mathrm{fb}^{-1}$ (BG0X and BG1X)
- Impact of machine background on reconstruction
- $\mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}^{0}$
- First glance: efficiency and time resolution
- Summary and outlook


## Introduction/Motivation

- This is a sensitivity study for the timedependent CP-violation analysis of $B^{0} \rightarrow \varphi \mathrm{~K}^{0}$;
- Time-dependent CP asymmetry is little affected by "wrong-phase amplitudes",
 so it's expected to be tightly related to $\sin 2 \beta / \varphi_{1}\left(\psi K^{0}\right)$ (and $V_{u b}$ );
- NP can enter in the loop, shifting CPV parameters from $\mathrm{B}^{0} \rightarrow \mathrm{cc} \mathrm{K}^{0}$ more than SM prediction (small);
- A good channel for early data:
- Competition with LHCb
- Errors dominated by statistics, quick progress wrt Belle/BaBar.
- Good channel for detector commissioning
- Vtx, B-flavour tag, PID, ...
$4^{\text {th }}$ Belle2 Italia meeting, 21/12/2015, Roma
P. Urquijo
(BELLE2-NOTE-PH-2015-004)



## Analysis strategy

- The most complete approach for this channel is a Dalitz plot analysis of K+K-K0 BaBar: PRD 85, 112010 (2012) Belle: PRD 82, 073011 (2010)
- Start with a simpler quasi-two body approach, restricting the $\mathrm{K}+\mathrm{K}$ invariant mass range around the $\varphi$ mass;
- $\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \quad \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$
- $\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \quad \mathrm{K}_{\mathrm{S}}\left(\pi^{0} \pi^{0}\right)$
- $\varphi\left(\pi^{+} \pi^{-} \pi^{0}\right) \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$
- $\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \quad \mathrm{K}_{\mathrm{L}}$ (not yet)
- Need to separate vector component ( $\varphi$ ) from scalar:
- helicity analysis
- Background

Not studied at BaBar/Belle:
$x$ Low $\varphi \rightarrow 3 \pi$ branching fraction (15\%);
$x$ Higher background;
$\checkmark$ Better $\Delta$ t resolution (higher p track);
$\checkmark$ Practice for $\omega K^{0}$.

## Efficiency and $\Delta t$ resolution




$4^{\text {th }}$ Belle2 Italia meeting, 21/12/2015, Roma

|  | Selection $\varepsilon$ | $\Delta$ t resolution |
| :--- | :--- | :--- |
| $\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \mathrm{K}_{\mathrm{s}}$ | $35.2 \% \pi^{+} \pi^{-}$ |  |
| $\varphi\left(\pi^{+} \pi^{-} \pi^{0}\right) \mathrm{K}_{\mathrm{s}}\left(\pi^{+} \pi^{-}\right)$ | 28.11 ps |  |
| $\mathrm{J} / \psi\left(\mu^{+} \mu^{-}\right) \mathrm{K}_{\mathrm{s}}$ |  | 1.42 ps |

$\pi^{0}$ reconstruction likely to improve Event selection in backup
S.Lacaprara, A.Gaz

## Helicity angles



## Multidimensional fit

- The extraction of the parameters of interest (mostly S and C), is done performing a multi-dimensional maximum likelihood fit, using the variables:
- $\Delta t$;
- $\Delta \mathrm{E} ;$
- $\mathrm{Mbc}_{\mathrm{bc}}$;
- M( $\varphi$ );

The pdf is of the form:

- $\varphi$ helicity; (new)
- Continuum suppression variable. (new)
- Right now I'm using the old package RooRarFit, updated to cope with the newer version of ROOT/RooFit.
- We would like to maintain and develop this tool also for the other (time-dependent) analyses.
- Integrating RooRarFit in BASF2 w/ Luigi Di Gioi


## Multidimensional fit



## Backgrounds

Two main background sources:
A RooPlot of " $\mathrm{M}_{\mathrm{bc}}{ }^{\prime \prime}$

1) Combinatorial: dominated by continuum ( $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow u \bar{u}, \mathrm{~d} \bar{d}, \mathrm{~s} \bar{s}, c \bar{c}$ ) events.

- On a real analysis this is modeled on the data from the $\mathrm{M}_{\mathrm{bc}}$ sideband.
- Showing results based on the $100 \mathrm{fb}^{-1}$ (uu, dd, ss, cc) equivalent production of continuum MC.
- $80 \mathrm{fb}^{-1}$ w/o machine background BGx0
- $20 \mathrm{fb}^{-1}$ w/ machine background BGx1

1) Peaking: not yet

## Background composition $-\mathrm{K}^{+} \mathrm{K}^{-} \pi^{+} \pi{ }^{-}$



$4^{\text {th }}$ Belle2 Italia meeting, 21/12/2015, Roma


S.Lacaprara, A.Gaz
at "preselection" level:

Decay candidate reconstructed

Before selection cuts
$20 \mathrm{fb}^{-1}$ BGx1

## Background composition $-\mathrm{K}^{+} \mathrm{K}^{-} \pi^{0} \pi^{0}$



## Background composition $-\pi^{+} \pi^{-} \pi^{0} \pi^{+} \pi^{-}$





$4^{\text {th }}$ Belle2 Italia meeting, 21/12/2015, Roma
S.Lacaprara, A.Gaz

## Background rejection

## sgn $\quad \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+} \pi^{-} \quad \mathrm{K}^{+} \mathrm{K}^{-} \pi^{0} \pi^{0} \quad \pi^{+} \pi^{-} \pi^{0} \pi^{+} \pi^{-}$

Selection efficiency [all cuts] (x $10^{-6}$ )

|  | BGx0 | BGx1 | BGx0 | BGx1 | BGx0 | BGx1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{u} \bar{u}$ | $8.8 \pm 0.2$ | $6.4 \pm 0.4$ | $1.78 \pm 0.12$ | $1.39 \pm 0.20$ | $658.3 \pm 2.3$ | $469.8 \pm 3.7$ |
| d $\bar{d}$ | $7.6 \pm 0.5$ | $5.7 \pm 0.8$ | $1.47 \pm 0.21$ | $0.75 \pm 0.31$ | $717.3 \pm 4.7$ | $515.6 \pm 8.0$ |
| SS | $50.6 \pm 1.3$ | $39.4 \pm 2.2$ | $9.53 \pm 0.56$ | $7.70 \pm 1.00$ | $952.3 \pm 5.6$ | $699.1 \pm 9.5$ |
| cc | $25.3 \pm 0.5$ | $20.8 \pm 0.9$ | $5.05 \pm 0.22$ | $3.31 \pm 0.35$ | $1049.3 \pm 6.3$ | $759.4 \pm 5.3$ |

- NB no cut on continuum suppression variable (yet)
- Likely very powerful, still some problems (see backup for details).
- Less background rejection from $s \bar{s}$ and $c \bar{c}(\varphi)$
- $\varphi \rightarrow 3 \pi$ has much more background than $\varphi \rightarrow$ KK
- w/o machine background higher probability to pass the selection.
- Most likely as the signal (not yet done)
- The difference arises from several different sources.


## Impact of machine background





Real $\varphi \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$candidates

## Impact of machine background





Real $K_{s} \rightarrow \pi^{0} \pi^{0}$ candidates

## Impact of machine background





## Impact of machine background




## First glance at $B^{0} \rightarrow \eta^{\prime} K^{0}$

- Same studies as for $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$
- $\mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}^{0}$ has large $\mathrm{BR} 6.6 \times 10^{-5}$

CLEO, PRL 81, 1786 (98)

$$
\sim 10 x \mathrm{BR}\left(\mathrm{~B}^{0} \rightarrow \varphi \mathrm{~K}^{0}\right)
$$

- Constructive interference between penguin diagrams
- CPV first observed in 2006 by BaBar
- Statistically limited ( $\sim 1500 \eta^{\prime} \mathrm{K}_{\mathrm{s}}{ }^{\text {s }}$ )
- Many decay channels:
- $B^{0} \rightarrow \eta^{\prime}(\rho \gamma) \mathrm{K}_{\mathrm{S}}$ (Not yet) BR: 29\%

(a)

(c)

(b)

(d)
- $\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}\left(\pi^{+} \pi^{-}\right)$

BR: .43*. $40 * .7=12 \%$

- $\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+\pi} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}\left(\pi^{\circ} \pi^{\circ}\right) \quad \mathrm{BR}: .43^{*} .40^{*} .3=5 \%$
- $\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi^{0}\right) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right) \quad \mathrm{BR}: .43^{\star} .23^{*} .7=7 \%$
- $\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi^{\circ}\right) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{S}}\left(\pi^{\circ} \pi^{\circ}\right) \quad$ BR: . $43^{*} .23^{*} .3=3 \%$
- $B^{0} \rightarrow \eta^{\prime} K^{0}$ (Not yet)
- Large combinatorial background
$B R_{\text {Tot }}\left(\eta^{\prime} \rightarrow\left(\eta \pi^{+} \pi^{-}\right) K_{S}^{0}\right)=27 \%$


## $B^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi\right) K_{S}^{0}\left(\pi^{+} \pi\right)$ distributions



## $B^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}^{0}\left(\pi^{+} \pi^{-}\right)$



## $\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi^{0}\right) \pi^{+} \pi\right) \mathrm{K}_{\mathrm{S}}^{0}\left(\pi^{+} \pi^{-}\right)$distributions



$$
\mathbf{B}^{0} \rightarrow \eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi^{0}\right) \pi^{+} \pi^{-}\right) \mathbf{K}_{\mathbf{S}}^{0}\left(\pi^{+} \pi^{-}\right)
$$





4 bene $\angle$ ıtana meeung, $\angle 1 / 1 \angle / \angle U 1 כ$, коma


จ.LdC̈dpIaId, A.GdZ



## Channels summary

|  | $\begin{aligned} & \text { BR } \\ & 10^{-5} \end{aligned}$ | Selection $\varepsilon$ | $\Delta t$ resolution |
| :---: | :---: | :---: | :---: |
| $\eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}^{0}{ }_{s}$ | 1.1 | $\begin{aligned} & 29.6 \% \pi^{+} \pi^{-} \\ & 12.5 \% \pi^{0} \pi^{0} \end{aligned}$ | 2.25 ps |
| $\eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi^{0}\right) \pi^{+} \pi^{-}\right) \mathrm{K}^{0}{ }_{s}$ | 0.6 | $\begin{aligned} & 13.2 \% \pi^{+} \pi^{-} \\ & --\quad \pi^{0} \pi^{0} \end{aligned}$ | 2.04 ps |
| $\varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \mathrm{K}_{\mathrm{s}}$ | 0.35 | $\begin{aligned} & 35.2 \% \pi^{+} \pi^{-} \\ & 13.7 \% \pi^{0} \pi^{0} \end{aligned}$ | 2.11 ps |
| $\varphi\left(\pi^{+} \pi^{-} \pi^{0}\right) \mathrm{K}_{\mathrm{s}}\left(\pi^{+} \pi^{-}\right)$ | 0.07 | 28.3\% | 1.42 ps |
| $J / \psi\left(u^{+} u^{-}\right) \mathrm{K}_{\mathrm{s}}$ | 52 | -- | 0.90 ps |

## Conclusions / outlook

- $B^{0} \rightarrow\left(\varphi / \eta^{\prime}\right) \mathrm{K}_{\mathrm{S}}^{0}$ channels studied for time-dependent CPV
- $\Phi$ advanced, $\eta$ ' preliminary: both encouraging
- $\eta^{\prime}$ : more channels to be analyzed, background, ...
- Large samples of generic and signal MC have become available, thanks a lot to the people involved in the production!
- Things so far look ok: the impact of the machine background on tracking, vertexing and PID is reasonably small (but visible);
- Still some problem with event topology/continuum suppression: under investigation
- Use the MC that is going to be released soon for a full scale analysis exercise.


## Backup Slides

## Motivations

- $b \rightarrow s$ penguin dominated decays:
$-B \rightarrow \eta^{\prime} K^{0}, \omega K^{s}, \pi^{0} K^{0}$ are sensitive to $\sin 2 \varphi_{1}$ :
$A_{f}(\Delta t)=\frac{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f\right)-\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f\right)+\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}=-C_{f} \cos \left(\Delta m_{B} \Delta t\right)+S_{f} \sin \left(\Delta m_{B} \Delta t\right)$
- in case of pure penguin amplitude $S_{f} \approx \sin 2 \varphi_{1}$
- Presence of color-suppressed tree amplitudes shift $S_{f}$ from $\sin 2 \varphi_{1}$ for a value of $0.01 \sim 0.1$
- Depending on decay mode
- Examining for a larger deviations of $S_{f}$ from $\sin 2 \varphi_{1}$ is an important test of the Standard Model


## Event selection $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$

- $\mathrm{M}_{\mathrm{bc}}>5.25$;
- $|\Delta \mathrm{E}|<0.2\left(\varphi \rightarrow \mathrm{KK}, \mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)$;
- $-0.1<\Delta \mathrm{E}<0.2\left(\varphi \rightarrow \mathrm{KK}, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right)$;
- $-0.4<\Delta \mathrm{E}<0.2\left(\varphi \rightarrow 3 \pi, \mathrm{~K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)$;
- $1.00<M\left(K^{+} K^{-}\right)<1.05$;
- $0.97<M\left(\pi^{+} \pi^{-} \pi^{0}\right)<1.04$;
- $\mathrm{d}_{0}\left(\mathrm{~K}^{ \pm}\right)<0.08$;
- $Z_{0}\left(K^{ \pm}\right)<0.3 ;$
- $0.48<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)<0.52$;
- $0.10<\mathrm{M}\left(\pi^{0}\right)<0.14$;
- $0.44<M\left(K_{s} \rightarrow \pi^{0} \pi^{0}\right)<0.51$;
$K_{s}$ : stdKshorts
$\pi^{0}: \quad$ stdPio
- At least one PXD hit for each $\mathrm{K}^{ \pm} / \pi^{ \pm}$from $\varphi$ decay;
- $\operatorname{PIDk}(\mathrm{K})>0.2$;
- VtxPvalue $\left(\mathrm{K}_{\mathrm{s}}, \varphi, \mathrm{B}\right)>0.0001$.


## Selection efficiencies $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$

- In the next slides I'm showing the probability of background events to pass the cuts at two different stages:
- Preselection: basically the output of the basf2 job that produces the root output file to be processed in the following stage;
- Selection: this restricts to the events that are going to be used in the multidimensional time-dependent fit (*);
- Still considering only the channels:

1) $\varphi\left(K^{+} K^{-}\right) \quad K_{s}\left(\pi^{+} \pi^{-}\right)$
2) $\varphi\left(K^{+} K^{-}\right) K_{s}\left(\pi^{0} \pi^{0}\right)$
3) $\varphi\left(\pi^{+} \pi^{-} \pi^{0}\right) \mathrm{K}_{\mathrm{s}}\left(\pi^{+} \pi^{-}\right)$
(work on $K_{L}$ mode yet to begin)
(*) without including a cut on a very powerful continuum/BB discriminating variable, that will likely be introduced.

## MC samples

- Showing results based on the $100 \mathrm{fb}^{-1}$ equivalent production of continuum MC:

|  | BGx0 |  | BGx1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | \# events (M) | equiv. lumi (fb |  |  |
|  |  |  |  |  |
| $\mathbf{1})$ | \# events (M) | equiv. lumi (fb ${ }^{-1}$ ) |  |  |
| $\mathbf{u \overline { u }}$ | 128.40 | 80 | 32.10 | 20 |
| $\mathbf{d} \overline{\mathbf{d}}$ | 32.08 | 80 | 8.02 | 20 |
| $\mathbf{s} \overline{\mathbf{s}}$ | 30.64 | 80 | 7.66 | 20 |
| $\mathbf{c} \overline{\mathbf{c}}$ | 106.32 | 80 | 26.58 | 20 |

- I also took a look at the very recently released signal MC:
$\rightarrow$ Bd -> phiKS_K+K-pi+pi-, BGx0
$\rightarrow$ Bd -> phiKS_K+K-piOpiO, BGx0
$\rightarrow$ Bd -> phiKS_2pi+2pi-pi0, BGx0


## Selection efficiencies $-\mathrm{K}^{+} \mathrm{K}^{-} \pi^{+} \pi^{-}$

| BGx0 | Preselection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -3 | Selection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -6 |
| :---: | :---: | :---: |
| $\mathbf{u} \overline{\mathbf{u}}$ | $0.628 \pm 0.002$ | $8.8 \pm 0.2$ |
| $\mathbf{d} \overline{\mathbf{d}}$ | $0.670 \pm 0.005$ | $7.6 \pm 0.5$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $1.459 \pm 0.007$ | $50.6 \pm 1.3$ |
| $\mathbf{c \overline { c }}$ | $1.030 \pm 0.003$ | $25.3 \pm 0.5$ |


| BGx1 | Preselection <br> efficiency $\left(\mathbf{x} \mathbf{1 0}^{-3}\right)$ | Selection <br> efficiency $\left(\mathbf{x} \mathbf{1 0}^{-6}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{u \overline { u }}$ | $0.540 \pm 0.004$ | $6.4 \pm 0.4$ |
| $\mathbf{d} \overline{\mathbf{d}}$ | $0.620 \pm 0.009$ | $5.7 \pm 0.8$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $1.260 \pm 0.013$ | $39.4 \pm 2.2$ |
| $\mathbf{c} \overline{\mathbf{c}}$ | $0.890 \pm 0.006$ | $20.8 \pm 0.9$ |

Events without background have a higher probability to pass the selection.
The difference arises from several different sources.

## Selection efficiencies $-K^{+} K^{-} \pi^{0} \pi^{0}$

| BGx0 | Preselection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -3 | Selection <br> efficiency $\left(\mathbf{x} \mathbf{1 0}^{-6}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{u} \overline{\mathbf{u}}$ | $10.694 \pm 0.009$ | $1.78 \pm 0.12$ |
| $\mathbf{d} \overline{\mathbf{d}}$ | $11.806 \pm 0.019$ | $1.47 \pm 0.21$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $13.729 \pm 0.021$ | $9.53 \pm 0.56$ |
| $\mathbf{c} \overline{\mathbf{c}}$ | $13.907 \pm 0.011$ | $5.05 \pm 0.22$ |


| BGx1 | $\left.\begin{array}{c}\text { Preselection } \\ \text { efficiency }(\mathbf{x ~ 1 0} \\ \mathbf{- 3}\end{array}\right)$ | Selection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -6 |
| :---: | :---: | :---: |
| $\mathbf{u} \overline{\mathbf{u}}$ | $9.343 \pm 0.017$ | $1.39 \pm 0.20$ |
| $\mathbf{d} \overline{\mathbf{d}}$ | $10.475 \pm 0.036$ | $0.75 \pm 0.31$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $12.283 \pm 0.040$ | $7.70 \pm 1.00$ |
| $\mathbf{c} \overline{\mathbf{c}}$ | $12.501 \pm 0.022$ | $3.31 \pm 0.35$ |

Events without background have a higher probability to pass the selection. The difference arises from several different sources.

## Selection efficiencies $-\pi^{+} \pi^{-} \pi^{0} \pi^{+} \pi^{-}$

| BGx0 | Preselection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -3 | Selection <br> efficiency $\left(\mathbf{x 1 0} \mathbf{1 0}^{\mathbf{6}}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{u} \overline{\mathbf{u}}$ | $4.612 \pm 0.006$ | $658.3 \pm 2.3$ |
| $\mathbf{d \overline { d }}$ | $5.026 \pm 0.012$ | $717.3 \pm 4.7$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $8.087 \pm 0.016$ | $952.3 \pm 5.6$ |
| $\mathbf{c} \overline{\mathbf{c}}$ | $868.8 \pm 0.009$ | $1049.3 \pm 6.3$ |


| BGx1 | Preselection <br> efficiency $(\mathbf{x ~ 1 0}$ <br> -3 | Selection <br> efficiency $(\mathbf{1 0 1 0} \mathbf{)}$ |
| :---: | :---: | :---: |
| $\mathbf{u \overline { u }}$ | $3.507 \pm 0.010$ | $469.8 \pm 3.7$ |
| $\mathbf{d} \overline{\mathbf{d}}$ | $3.917 \pm 0.022$ | $515.6 \pm 8.0$ |
| $\mathbf{s} \overline{\mathbf{s}}$ | $6.249 \pm 0.028$ | $699.1 \pm 9.5$ |
| $\mathbf{c} \overline{\mathbf{c}}$ | $6.705 \pm 0.016$ | $759.4 \pm 5.3$ |

Events without background have a higher probability to pass the selection.
The difference arises from several different sources.

## Event selection $\mathrm{B}^{0} \rightarrow \varphi \mathrm{~K}^{0}$

Main selection cuts:

- $\mathrm{M}_{\mathrm{bc}}>5.25$;
- $|\Delta \mathrm{E}|<0.2\left(\varphi \rightarrow \mathrm{KK}, \mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)$;
- $-0.1<\Delta \mathrm{E}<0.2\left(\varphi \rightarrow \mathrm{KK}, \mathrm{K}_{\mathrm{s}} \rightarrow \pi^{0} \pi^{0}\right)$;
- $-0.4<\Delta \mathrm{E}<0.2\left(\varphi \rightarrow 3 \pi, \mathrm{~K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)$;
- $1.00<M\left(K^{+} K^{-}\right)<1.05$;
- $0.97<\mathrm{M}\left(\pi^{+} \pi^{-} \pi^{0}\right)<1.04$;
- $\mathrm{d}_{0}\left(\mathrm{~K}^{ \pm}\right)<0.08$;
- $\mathrm{Z}_{0}\left(\mathrm{~K}^{ \pm}\right)<0.3$;
- At least one PXD hit for each $\mathrm{K}^{ \pm} / \pi^{ \pm}$from $\varphi$ decay;
- $\operatorname{PIDk}(\mathrm{K})>0.2$;
- VtxPvalue $\left(\mathrm{K}_{\mathrm{s}}, \varphi, \mathrm{B}\right)>0.0001$.

Objects:
K $\ddagger$ K+:all
$\mathrm{K}_{\mathrm{s}}$ : stdKshorts

- $0.48<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}\right)<0.52$;
- $0.10<\mathrm{M}\left(\pi^{0}\right)<0.14$;
- $0.44<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{0} \pi^{0}\right)<0.51$;


## Puzzle: continuum suppression

- The separation power is unrealistically high:
- Esclusive production (private and official) very different wrt inclusive BBar production.


$4^{t}$ Denle ildila meemig, $\angle 1 / 1 \angle / \angle U 1$, Kunla


## Puzzle: continuum suppression

- Moreover, there seems to be a problem with the "event topology": B decays are expected to be "spherical", while continuum events are more "jet like";
- One of the strongest variables that can separate between the two components is the angle between the thrust axis of the signal $B$ candidate and the thrust axis of the rest of the event;
- I expect the distribution of CosTBTO to be ~flat for signal (and $B \bar{B}$ events) and strongly peaking at 1 for the continuum;

- Apparently I'm getting the opposite, so this points to either a bug in the computation of this variable or a problem in the generation of the signal samples.


## Puzzle: continuum suppression

- Took a peek at the MC5 generic B $\bar{B}$ (only the first $20 \mathrm{fb}^{-1}$ chunk): $\sim 300$ events pass the selection and 25 of them are actual $B^{0} \rightarrow \varphi K_{s}$ events;


- Cannot draw strong conclusions, but it seems like the CosTBTO distribution is fine and separation power of the continuum suppression machinery is realistic.


## A look at the newly released signal MC

- I immediately ran on the new official signal MC samples that have been released a few days ago;
- Same problem as in my private samples: the CosTBTO distribution strongly peaks at $1 \ldots$;
- This is true for all the final states I am investigating;
- Looks like a problem in the generation of the signal sample (?);

- This is an open issue, so I appreciate any input from people who might have run into the same problem.

On backup slides I pasted the snippet of the steering file I have been using to build the continuum suppression.

## Continuum Suppression

```
reconstructDecay('B0:ch1 -> phi:all K_S0:mdst',
    'Mbc > 5.2 and abs(deltaE) < 0.2')
vertexRave('B0:ch1', 0.0, 'B0:ch1 -> [phi -> `K+ `K-] K_S0')
matchMCTruth('B0:ch1')
# get the rest of the event:
buildRestOfEvent('B0:ch1')
# get tag vertex ('breco' is the type of MC association)
TagV('B0:ch1', 'breco')
# get continuum suppression (needed for flavor tagging)
buildContinuumSuppression('B0:ch1')
```


## Continuum suppression




## Event selection

$$
\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}^{0}\left(\pi^{+} \pi^{-}\right)
$$

- $M_{b c}>5.25$;
- | $\mid$ E $\mathrm{E} \mid<0.1$
- $0.45<M(\eta \rightarrow \gamma \gamma)<0.57$;
- $0.93<M\left(\eta^{\prime}\right)<0.98$;
- $0.48<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}\right)<0.52$;
- PIDpi $\left(\pi^{ \pm}\right)>0.2$
- $\mathrm{d}_{0}\left(\pi^{ \pm}\right)<0.08$;
- $\mathrm{Z}_{0}\left(\pi^{ \pm}\right)<0.1$;
- At least one PXD hit for each $\pi^{ \pm}$from $\eta^{\prime}$ decay;
- VtxPvalue $\left(\eta, \eta^{\prime}, K_{s}, B_{0}\right)>1 . E-5$


## Event selection

$$
\mathrm{B}^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}^{0}\left(\pi^{0} \pi^{0}\right)
$$

- $M_{b c}>5.25$;
- $-0.15<\Delta \mathrm{E}<0.25$
- $0.45<M(\eta \rightarrow \gamma \gamma)<0.57$;
- $0.93<M\left(\eta^{\prime}\right)<0.98$;
- $0.1<\mathrm{M}\left(\pi^{0}\right)<0.15$;
- $0.42<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{0} \pi^{0}\right)<0.52$;
- PIDpi $\left(\pi^{ \pm}\right)>0.2$
- $\mathrm{d}_{0}\left(\pi^{ \pm}\right)<0.08 ;$
- $\mathrm{Z}_{0}\left(\pi^{ \pm}\right)<0.15 ;$
- At least one PXD hit for each $\pi^{ \pm}$from $\eta^{\prime}$ decay;
- VtxPvalue $\left(\eta, \eta^{\prime}, B_{0}\right)>1 . E-5$


## Event selection

## $B^{0} \rightarrow \eta^{\prime}\left(\eta\left(\pi^{+} \pi^{-} \pi\right) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{S}}^{0}\left(\pi^{+} \pi^{-}\right)$

- $M_{b c}>5.25$;
- $\mid \Delta$ E $\mid<0.15$
- $0.52<M\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)<0.57$;
- $0.93<M\left(\eta^{\prime}\right)<0.98$;
- $0.1<\mathrm{M}\left(\pi^{0}\right)<0.15$;
- $0.48<\mathrm{M}\left(\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}\right)<0.52$;
- PIDpi $\left(\pi^{ \pm}\right)>0.2$
- $\mathrm{d}_{0}\left(\pi^{ \pm}\right)<0.08$;
- $\mathrm{Z}_{0}\left(\pi^{ \pm}\right)<0.15 ;$
- At least one PXD hit for each $\pi^{ \pm}$from $\eta^{\prime}$ decay;
- VtxPvalue( $\left.\eta, \eta^{\prime}, K_{s}, B_{0}\right)>1 . E-5$


## $B^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}^{0}\left(\pi^{0} \pi^{0}\right)$ distributions

 $B^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) K_{s}^{0}\left(\pi^{0} \pi^{0}\right)$



S.Lacaprara, A.Gaz

## $B^{0} \rightarrow \eta^{\prime}\left(\eta(\gamma \gamma) \pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}^{0}\left(\pi^{0} \pi^{0}\right)$



