First Year Physics at

Roberto Mussa

First question: where to run

8												- 12
Experiment	Scans/Off.	Res.	Υ(.	5S)	Υ(-	4S)	Υ((3S)	Υ	(2S)	Υ (1S)
			10876	$6 \mathrm{MeV}$	10580	MeV	1035	5 MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$		fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	scan	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102

- Goal is to produce impactful publications as soon as possible
- Existing data sets at Υ(4S,5S) are too large
- ▶ Below Y(4S)
 - \blacksquare $\Upsilon(3S)$ offers greatest access to lower bottomonium states
 - Scan for direct production of $\Upsilon(n^3D_1)$ states
- ► Above Y(5S)
 - Scans have been done by both BaBar and Belle
 - ~6fb⁻¹ accumulated by Belle at the Υ(6S)

First question: where to run

Experiment	Scans/Off.	Res.	Υ(5S)	Υ (4	(4S)	Υ((3S)	Υ (2	(2S)	Υ (2	1S)
			10876	$6 \mathrm{MeV}$	10580	MeV	1035	5 MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$		fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	$\rm fb^{-1}$	10^{6}	fb^{-1}	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b	scan	433	471	30	122	14	99	_	_
Belle	100		121	36	711	772	3	12	25	158	6	102

- Goal is to produce impactful publications as soon as possible
- Existing data sets at Υ(4S,5S) are too large
- ▶ Below Y(4S)
 - \blacksquare $\Upsilon(3S)$ offers greatest access to lower bottomonium states
 - Scan for direct production of $\Upsilon(n^3D_1)$ states
- ► Above Y(5S)
 - Scans have been done by both BaBar and Belle
 - \sim 6fb⁻¹ accumulated by Belle at the Υ (6S)

First question: where to run

Energy	Outcome	Lumi (fb ⁻¹)	Comments
Υ(1S) On	N/A	60+	-No interest identified for Phase 2 -Low energy
Υ(2S) On	N/A	200	-No interest identified for Phase 2
Υ(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
Υ(3S) On	Many topics	200+	-Known resonance -High luminosity requirement: Phase 3
Υ(3S) Scan	Precision QED	~10	-Understanding of beam conditions needed
Υ(2D) Scan	Particle discovery	10-20	-Unknown mass
Υ(4S)+ Scan	Particle discovery?	10+?	-Energy to be determined
Y(6S) On	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required

Oggi parlero' di opzioni sopra la Y(4S)

Boundary conditions

- Goals of Phase 2
 - Machine study for settings to reach high luminosity
 - Understand beam background for safe VXD installation
 - Establish conditions for stable machine operation
 - Reach target luminosity of ~1x10³⁴ cm⁻² s⁻¹
- Phase 2 Operating Conditions
 - ~4-5mos. of machine studies, ~1-2mos. physics
 - Energy spread assumed to be ~5MeV (similar to Belle)
 - Maximum possible energy 11.06 11.25 GeV
 - Stable operation close to Υ(4S) strongly preferred
 - Large uncertainty on Phase 2 luminosity (20±20 fb⁻¹)
- Phase 3
 - Operate at nominal conditions (1+x10³⁴ cm⁻² s⁻¹)
 - Some combination of $\Upsilon(4S)$ and other energies?

Performance: conversions

- Conversion photons: sacrifice efficiency for improved resolution
- Consider increased material to compensate for luminosity

Performance: tracking

- ► $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S/2S) \rightarrow \mu^+\mu^- MC (50/50 split)$
- ► Impact of lack of VXD: $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S)$ not feasible
- $ightharpoonup \Upsilon(nS)
 ightharpoonup \mu\mu$ mass resolution affected as well

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

Performance: photons

- Phase 2 material effects do not appear to be significant for ECL
- ► Photon energy for $\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P) \rightarrow \gamma \Upsilon(1S/2S)(\mu^{+}\mu^{-})$ MC

FANGS CRUSTANGS SANGS

High energy scans

BABAR:

PRL102:012001 (2009)

Ldt = 25 pb⁻¹ per point, E=10.54-11.2; dE=5 MeV Total 3.3fb⁻¹

 $Rb = \sigma(bb)/\sigma(\mu\mu)$

Impressive match with prediction by Tornqvist PRL 53:878 (1984)

Tornqvist used Eichten's coupled channel model.

R.Mussa, First Year Physics at Belle-II

CCC Model

Updated model

E. Eichten QWG 2008, Nara

- o Physical masses for heavy flavor mesons
- Measured masses for quarkonium states
- Added features
 - Include relativistic corrections Tensor interaction
 - Include EM current couplings to ³D₁ states
- Some tuning
 - o Fit the leptonic width of 15 (cc, bb) and 1D (cc) states
 - Allow some adjustment of resonance masses above threshold.

Eichten 2008: rethinking at CCCM

The bottom threshold region is simple compared to the charm region:

Can ignore D states

- Direct coupling of EM current to n³D₁ states is small.
- Negligible mixing between ³S₁ and ³D₁ states.

Only the ground state B mesons are needed (B, B*, B_s, B_s*)

Analysis includes the lowest seven 3S_1 (bb) states and nine final heavy-light pair states.

Mass differences between B_u and B_d states can be ignored.

$$m(B^0) - m(B^+) = 0.37 \pm 0.24 \text{ MeV}$$

Eichten 2008: rethinking at CCCM

BELLE-I scans

- 61 points, 50/pb, 10.75-11.05 GeV- 16 points, 1/fb, 10.63-11.02 GeV

Not just Rb analysis: also $Y\pi\pi$ Exclude Ali's peak at 10.91

BELLE-II wishes

We may think to take 10 fb⁻¹ at 10.75 (where Rb collapses and R starts rising); not a scan, just stay there

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

wishes for BELLE-II

We may think to take 10 fb⁻¹ at 10.75 (where Rb collapses and R_Y starts rising) ... and 10 fb⁻¹ at 10.65 (where Rb shows a dip, just above the B*B* threshold)

Study these channels: BB,B*B,B*B,Y $\pi\pi$,Y η at 10.65,10.75

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

CLEO-c scans in Charmonium region

CCCM in Charmonium region

- Model of Dubynskiy & Voloshin [Mod. Phys. Lett. A21, 2779 (2006)]
- Express exclusive channels in terms of dimensionless R_k
- Parametrize R_k in terms of expected threshold behavior & relative production rates in the presence of a $\psi(4040)$

Y(6S) results in Belle-I

Preliminary evidence for $\Upsilon(6S) \rightarrow \pi \pi h_b(nP)$, via $\pi Z_b^{\pm}(106XX)$ decay

Resonance structure of $\Upsilon(6S) \to \pi\pi\Upsilon(pS)$ decays not fully studied

Conclusioni

Partiamo dal presupposto che Ldt<40fb⁻¹

Risoluzione energia dei fotoni non eccessiva

Molto inefficienti su low momentum tracks.

Y(3S) e' la best option per ~ 150 fb⁻¹ ed e' preferibile farla in fase 3

Un test run sul picco della Y(6S), anche di soli 40fb⁻¹, ci darebbe 10x gli eventi presi in Belle-I. SE i macchinisti sono disposti ad andare così in alto, questo e' il punto piu' interessante.

Le zone dei due dip in Rb, 10.65 +10.75 GeV, si prestano a studi sui coupled channels effects.

Outline

Physics with 600 M Y(3S):

- The η,π transitions
- Hindered E1 transitions
- M1 transitions to $\eta_b(1,2S)$
- D waves
- $Y(3S) \rightarrow \pi\pi \ Y(1,2S)$
- Antinuclei from Y(3S)

Target Ldt: 150 fb⁻¹

All during BEAST-2 Phase?
Or
50 during BEAST-2, and
100 while taking first Y(4S)

data (3 ab⁻¹)

Experiment	Scans/Off.	Res.	$\Upsilon(5)$	(S)	Υ (4	4S)	$\Upsilon(3)$	(3S)	$\Upsilon(2$	(2S)	Υ (1S)
			10876	MeV	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	${ m fb^{-1}}$		$\rm fb^{-1}$	10^{6}								
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	can	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102

Alternative scenarios:

Running at $\Upsilon(4S)$ and continuum point Running at $\Upsilon(6S)$, 30 fb⁻¹ = 6x Belle-I

Scan of $\Upsilon(1^3D_1)$, $7x2fb^{-1}$ points, 14 total Scan of $\Upsilon(2^3D_1)$, $10x1.5fb^{-1}$ points, 15 total

Can we do them during BEAST-2 Phase?

Luminosity ramp-up scenarios:

- at L1 = $1x10^{34}$, 0.75 fb⁻¹ /day How many days to reach L1? How long will Phase-II last?

The $\pi\pi/\eta$ transitions: TH vs EXP

 $\pi\pi$ transitions

Hadron transition puzzle: solved?

- Above heavy flavor production threshold the usual QCDME fails.
 - The transitions rate are much larger than expected.
 - The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
 - A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
 - It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold (v -> zero). This is the factor. Other light hadrons may be present or not.
 - The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
 - The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual SU(3) and chiral symmetry expectations are recovered.
- Resolves the puzzles in n transitions.

From Eichten's talk at Krakow

For lower states, QCDME works:

$$R_{Q\bar{Q}}(n \to m) \equiv \frac{\Gamma(n^3 S_1 \to m^3 S_1 + \eta)}{\Gamma(n^3 S_1 \to m^3 S_1 + \pi^+ \pi^-)}$$

Ratio	theory	experiment
$R^{c\bar{c}}(2 \to 1)$	3.29×10^{-3}	9.78×10^{-2}
$R^{b\bar{b}}(2 \to 1)$	1.16×10^{-3}	1.16×10^{-3}
$R^{b\bar{b}}(3 \to 1)$	4.57×10^{-3}	$<4.13\times10^{-3}$
$R^{b\bar{b}}(4 \to 1)$	2.23×10^{-3}	2.45
$R^{b\bar{b}}(4 \to 2)$	5.28×10^{-4}	

~ 30 > theory sets
$$C_3/C_1$$
 = 0.143 ± 0.024 related to $\pi\pi$ suppression ~ 1000 > theory

$$\begin{array}{ll} 2M(D^0)\text{-}M(\psi') = 53.11 \; MeV/c^2 & 2M(B^0)\text{-}M(\Upsilon 3S) = 204 \; MeV/c^2 \\ 2M(D^+)\text{-}M(\psi') = 43.57 \; MeV/c^2 & 2M(B^+)\text{-}M(\Upsilon 3S) = 204 \; MeV/c^2 \\ 2M(D_s)\text{-}M(\psi') = 250.5 \; MeV/c^2 & 2M(B_s)\text{-}M(\Upsilon 3S) = 378 \; MeV/c^2 \end{array}$$

Large enhancement of $\psi' \rightarrow \eta \psi$ explained by the proximity of the $D\overline{D}_{s}D_{s}\overline{D}_{s}$ thresholds.

Large isospin violation in $\psi' \rightarrow \pi h_c$ due to the large D^0 - D^+ mass difference

In bottomonium, degenerate $B^0\overline{B}^0/B^+B^-$ threshold \rightarrow no isospin violation. The eta transition 3S to 1S is still in the ballpark: wavefunction overlaps can suppress is, like it happens in hindered E1 transitions. We ought to measure it, and (precisely) the E1 hindered transitions from 3S to 1P states.

The η transitions

Testing QCD multipole expansion In low mass region:

$$Y' \rightarrow \eta Y : M2 *E1 + M1 *M1$$

$$Y' \rightarrow \pi\pi Y : E1*E1$$

$$(Y' \rightarrow \eta Y)/(Y' \rightarrow \pi \pi Y) \sim (\Lambda_{QCD}/m_b)^2$$

Three more transitions should be visible from Y(3S) but experimental limits, where available, are below theory expectations:

- B(Y(3S) →
$$\eta$$
Y(1S)) theory: 5-10× 10⁻⁴

-
$$Y(1D) \rightarrow \eta Y(1S)$$

Voloshin: PLB 562, 68(2003)

QCD Axial Anomaly should enhance Y(1D) ^ 9500

ηY(1S) with respect to Y(1D) $^ ππ$ Y(1S): no

quantitative estimates available.

- B(
$$\chi_{b0}(2P) \rightarrow \eta \eta_b$$
)~ few 10⁻³ (S-wave)

Voloshin: Mod.Phys.Lett. A19, 2895(2004)

$$\frac{\Gamma(\chi_{b0}(2P) \to \eta \eta_b)}{\Gamma(\chi_{b0}(2P) \to \gamma \Upsilon)} \approx \frac{\pi^3}{3\alpha} \frac{p_{\eta} f_{\eta}^2 m_{\eta}^4}{\omega_{\gamma}^3 m_b^2 \Delta^2} \approx 0.2 \left(\frac{f_{\eta}}{0.16 \text{ GeV}}\right)^2 \left(\frac{1 \text{ GeV}}{\Delta}\right)^2$$

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

		charmonium	bottomo	nium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
$\overline{X_0}$	0++		3756		10562.2
X_0'	0^{++}	<u> </u>	4024		10652.2
$X'_0 X_1$	1++	X(3872)	3890		10607.2
Z	1+-	$Z_c^+(3900)$	3890	$Z_h^{+,0}(10610)$	10607.2
Z'	1+-	$Z_c^+(4020)$	4024	$Z_h^+(10650)$	10652.2
X_2	2++		4024	_	10652.2
$\overline{Y_1}$	1	Y(4008)	4024	$Y_b(10891)$	10891.1
Y_2	1	Y(4260)	4263	$Y_b(10987)$	10987.5
Y_3	1	Y(4290) (or $Y(4220)$)	4292		10981.1
Y_4	1	Y(4630)	4607	_	11135.3
Y_5	1	<u> </u>	6472	<u> </u>	13036.8

BEAST-II inventory

Feb. 4, 2015

Phase-2 sensors in VXD volume

sensor	contact person	number	location	DAQ	note
PXD + SVD	C. Marinas K. Nakamura	2 PXD ladders 4 SVD ladders	decided +X	Belle II DAQ	
diamond w/ PIN diode (beam BG, abort)	L. Vitale	4 diamonds 64 PIN diodes	diamond: decided	Belle II monitor DB (EPICS)	PIN diode location: around diamond and beam pipe
FE-I4 pixels (Synchrotron rad. and track multiplicity)	C. Marinas	3 arms	decided (90, 180, 270)	?	arm design has to be fixed
CLAWS (beam BG)	C. Marinas	2 ladders	decided (135 and 225)	?	
Scintillator PIN diode (beam BG)	H. Nakayama K. Nakamura	~60 (scintillator) ? (PIN diode)	not decided	?	Basically put them around QCS
BGO (Bhabha events)	J. Liau	8 (if space allows)	under discussion	BEAST DAQ	Acceptance is overlapped with PXD cooling block.
temperature (NTC), humidity (DMT242B)	L. Vitale	not decided	not decided	Belle II monitor DB	
(crosscheck for FOS)	See b	ackup slides fo	r more on the	se systems.	
FOS + L-shape (temp. and humidity)	l. V <mark>ila</mark> D. Moya	?	?	?	sensor on outer cover?
PLUME (beam BG)	I. Ripp-Baudot	1 ladder	not decided	EPICS DB BEAST DAQ?	baseline: PLUME-2 (hopefully PLUME-3)

Phase 2 Detectors

- VXD BEAST assembly
 - SVD, PXD ladders
 - Dedicated background and environment sensors (see next page)
- Scintillators and PIN diodes around QCS
- Neutron detector in dock space

- Beam Exorcism for A STable Belle II
- Collection of radiation monitoring detectors used during beam commissioning stages (Phase 1 and Phase 2)
- Inner detector
 - One octant of PXD + SVD (integrated into Belle 2 DAQ)
 - FANGS, CLAWS, PLUME: 5 out of 8 remaining octants
 - Designed to minimize amount of additional material
- Outer detector
 - Nominal Belle II configuration
 - Drift chamber (CDC), PID (TOP/ARICH), calorimeter (ECL), muons (KLM)

Commissioning

SuperKer

- Other
 - "Dock space" has He-3 and TPCs for neutron detection
 - Beampipe has ~6μm gold plating (compared to 10μm for nominal)

- VerteX Detector configuration
 - 2 PiXel Detector / 4 Silicon Vertex Detector ladders
 - Similar to final Belle II vertex detector components

 - Integrated into Belle II DAQ system

- ► FE-I4 ATLAS Near Gamma Sensors
 - Radiation-hard Si pixel detectors

- sCintillation Light And Waveform Sensors
 - Plastic scintillator with Si photomultipler readout
 - Located at ϕ =135° and 225°

- Pixelated Ladder with Ultra-low Material Embedding
 - CMOS pixels on light support structure
 - Complementary to CLAWS, same location
 - Final orientation under study

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

Neutron Detectors

- He-3 tubes and micro-TPCs in dock space
 - TPCs image direction of incoming fast neutrons, but detected rate is low
 - He-3 measure rate of thermal neutrons, which is high

