First Year Physics at

Roberto Mussa
Belle II
INFN Torino

First question: where to run

- Goal is to produce impactful publications as soon as possible
- Existing data sets at $\Upsilon(4 \mathrm{~S}, 5 \mathrm{~S})$ are too large
- Below $\mathrm{r}(4 \mathrm{~S})$

■ $\Upsilon(3 S)$ offers greatest access to lower bottomonium states

- Scan for direct production of $\Upsilon\left(n^{3} D_{1}\right)$ states
- Above r(5S)
- Scans have been done by both BaBar and Belle
- $\sim 6 \mathrm{fb}^{-1}$ accumulated by Belle at the $\Upsilon(6 \mathrm{~S})$

First question: where to run

- Goal is to produce impactful publications as soon as possible
- Existing data sets at $\Upsilon(4 \mathrm{~S}, 5 \mathrm{~S})$ are too large
- Below $\mathrm{r}(4 \mathrm{~S})$

■ $\Upsilon(3 S)$ offers greatest access to lower bottomonium states

- Scan for direct production of $\Upsilon\left(n^{3} D_{1}\right)$ states
- Above r(5S)
- Scans have been done by both BaBar and Belle
- 6fb $^{-1}$ accumulated by Belle at the $\mathrm{Y}(6 \mathrm{~S})$

First question: where to run

Energy	Outcome	Lumi (fb ${ }^{-1}$)	Comments
$\Upsilon(1 S)$ On	N/A	60+	-No interest identified for Phase 2 -Low energy
$\mathrm{Y}(2 \mathrm{~S}) \mathrm{On}$	N/A	200	-No interest identified for Phase 2
Y(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
$\Upsilon(3 S)$ On	Many topics	200+	-Known resonance -High luminosity requirement: Phase 3
$\Upsilon(3 S)$ Scan	Precision QED	~10	-Understanding of beam conditions needed
Y(2D) Scan	Particle discovery	10-20	-Unknown mass
$\Upsilon(4 S)+$ Scan	Particle discovery?	10+?	-Energy to be determined
$\mathrm{Y}(6 \mathrm{~S}) \mathrm{On}$	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required
Oggi parlero' di opzioni sopra la $\mathrm{Y}(4 \mathrm{~S})$			

Boundary conditions

- Goals of Phase 2

■ Machine study for settings to reach high luminosity

- Understand beam background for safe VXD installation
- Establish conditions for stable machine operation
- Reach target luminosity of $\sim 1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Phase 2 Operating Conditions

■ $\sim 4-5 \mathrm{mos}$. of machine studies, $\sim 1-2 \mathrm{mos}$. physics
Energy spread assumed to be $\sim 5 \mathrm{MeV}$ (similar to Belle)

- Maximum possible energy 11.06-11.25 GeV
- Stable operation close to $\Upsilon(4 \mathrm{~S})$ strongly preferred
- Large uncertainty on Phase 2 luminosity ($20 \pm 20 \mathrm{fb}^{-1}$)
- Phase 3
\square Operate at nominal conditions ($1+x 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
\square Some combination of $\Upsilon(4 \mathrm{~S})$ and other energies?

Performance: conversions

- Conversion photons: sacrifice efficiency for improved resolution
- Consider increased material to compensate for luminosity

Performance: tracking

- $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S / 2 S) \rightarrow \mu^{+} \mu^{-}$MC (50/50 split)
- Impact of lack of VXD: $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(2 S)$ not feasible
- $\Upsilon(\mathrm{nS}) \rightarrow \mu \mu$ mass resolution affected as well

Upsilon3S_Mrecoil

$\mathrm{m}(\Upsilon(1 S, 2 S) \rightarrow \mu \mu)$

Minimum pion momentum

Performance: photons

- Phase 2 material effects do not appear to be significant for ECL
- Photon energy for $\Upsilon(3 S) \rightarrow \gamma \chi_{\mathrm{b} 2}(2 \mathrm{P}) \rightarrow \gamma \Upsilon(1 \mathrm{~S} / 2 \mathrm{~S})\left(\mu^{+} \mu^{-}\right) \mathrm{MC}$

$\mathrm{E}_{\gamma}{ }^{*}(\mathrm{GeV})$

4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

High energy scans

BABAR :

PRL102:012001 (2009)
Ldt $=25 \mathrm{pb}^{-1}$ per point, $\mathrm{E}=10.54-11.2$; dE=5 MeV Total $3.3 \mathrm{fb}^{-1}$
$\mathrm{Rb}=\sigma(\mathrm{bb}) / \sigma(\mu \mu)$
Impressive match with prediction by Tornqvist PRL 53:878 (1984)

Tornqvist used Eichten's coupled channel model.

CCC Model

- Updated model
o Physical masses for heavy flavor mesons
- Measured masses for quarkonium states
- Added features
o Include relativistic corrections - Tensor interaction
- Include EM current couplings to ${ }^{3} D_{1}$ states
- Some tuning
- Fit the leptonic width of $1 S(c c, b b)$ and $1 D(c c)$ states
- Allow some adjustment of resonance masses above threshold.

Eichten 2008: rethinking at CCCM

The bottom threshold region is simple compared to the charm region:

Can ignore D states

- Direct coupling of EM current to $n^{3} D_{1}$ states is small.
- Negligible mixing between ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{3} \mathrm{D}_{1}$ states.

Only the ground state B mesons
are needed $\left(B, B^{*}, B_{s}, B_{s}{ }^{*}\right)$
Analysis includes the lowest seven ${ }^{3} S_{1}(b b)$ states and nine final heavy-light pair states.

Mass differences between B_{u} and B_{d} states can be ignored.

$$
m\left(B^{0}\right)-m\left(B^{+}\right)=0.37 \pm 0.24 \mathrm{MeV}
$$

Eichten 2008: rethinking at CCCM

4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

BELLE-I scans

- 61 points, 50 / pb, 10.75-11.05 GeV
- 16 points, 1 / fb, $10.63-11.02 \mathrm{GeV}$

Not just Rb analysis: also $\mathrm{Y} \pi \pi$ Exclude Ali's peak at 10.91

4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

BELLE-II wishes

We may think to take $10 \mathrm{fb}^{-1}$ at 10.75 (where Rb collapses and R_{Y} starts rising); not a scan, just stay there

4th Belle-II Italian Meeting

R.Mussa, First Year Physics at Belle-II

We may think to take $10 \mathrm{fb}^{-1}$ at 10.75 (where Rb collapses and R_{Y} starts rising) ... and $10 \mathrm{fb}^{-1}$ at 10.65 (where Rb shows a dip, just above the $B^{*} B^{*}$ threshold)

Study these channels: $\mathrm{BB}, \mathrm{B}^{*} \mathrm{~B}, \mathrm{~B}^{*} \mathrm{~B}^{*}, \mathrm{Y} \pi \pi, \mathrm{Y} \eta$ at $10.65,10.75$
4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

CLEO-c scans in Charmonium region

BELLE, BABAR (ISR) and CLEO-C have scanned the charmonium region deconvoluting all 2,3,4 body contributions. The D*D* threshold region at $\mathrm{Ecm}=4015 \mathrm{MeV}$ is particularly interesting.

CCCM in Charmonium region

© Model of Dubynskiy \& Voloshin [Mod. Phys. Lett. A21, 2779 (2006)]

- Express exclusive channels in terms of dimensionless R_{k}
- Parametrize R_{k} in terms of expected threshold behavior \& relative production rates in the presence of a $\psi(4040)$

4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

9Fit to CLEO data: one large deviation near D*D* threshold OThis model needs interference with a new narrow resonance at $\mathrm{E}_{\mathrm{cm}}=4015 \mathrm{MeV}$ to explain dip in DD

- Preliminary evidence for $\Upsilon(6 S) \rightarrow \pi \pi h_{b}(n P)$, via $\pi Z_{b}{ }^{ \pm}(106 X X)$ decay

- Resonance structure of $\Upsilon(6 \mathrm{~S}) \rightarrow \pi \pi \Upsilon(\mathrm{pS})$ decays not fully studied

Voloshin PRD84, 031502 (2011)
12 GeV
\longmapsto
Phase space at $\Upsilon(6 S)$ is sufficient for $W_{b 0} \rho$?

$$
\begin{array}{cccccccc}
& \mathbf{Z}_{\mathbf{b}} & & \mathbf{W}_{\mathbf{b 0}} & \mathbf{X}_{\mathbf{b}} & \mathbf{W}_{\mathbf{b} 1} & & \mathbf{W}_{\mathbf{b} 2} \\
0^{-(}\left(1^{+}\right) & 1^{+}\left(1^{+}\right) & 0^{+}\left(0^{+}\right) & 1^{-}\left(0^{+}\right) & 0^{+}\left(1^{+}\right) & 1^{-}\left(1^{+}\right) & 0^{+}\left(2^{+}\right) & 1^{-}\left(2^{+}\right)
\end{array}
$$

BB

Y(?S)

Y(6S)

Y(5S)
Mussa, First J

$$
\begin{aligned}
& B\left(1 P_{1}\right) B_{s}^{*}, B^{*} B_{s}\left(1 P_{1}\right), B\left(1 P_{2}\right) B_{s}^{*}, B^{*} B_{s}\left(1 P_{2}\right) \\
& B\left(1 P_{1}\right) B_{s^{\prime}} B B_{s}\left(1 P_{1}\right), B\left(1 P_{2}\right) B_{s^{\prime}} B B_{s}\left(1 P_{2}\right)
\end{aligned}
$$

$$
B^{*} B\left(1 P_{1}\right), B^{*} B\left(1 P_{2}\right)
$$

$B B\left(1 P_{1}\right), B B\left(1 P_{2}\right)$

$$
B^{*}
$$

$$
B_{s}^{*} B_{s}^{*}
$$

$B^{*} B_{s}^{*} B_{s} B_{s}$

$$
B^{*} B_{s^{\prime}} B B_{s}^{*}
$$

$$
B^{*} B^{*} R R
$$

$$
\begin{aligned}
& B^{-B} B B^{*}
\end{aligned}
$$

10500

LER Beam Energy (GeV)

SuperKEK Limits
.

Conclusioni

Partiamo dal presupposto che $\mathrm{Ldt}<40 \mathrm{fb}^{-1}$
Risoluzione energia dei fotoni non eccessiva
Molto inefficienti su low momentum tracks.
$\mathrm{Y}(3 S) \mathrm{e}^{\prime}$ la best option per $\sim 150 \mathrm{fb}^{-1}$ ed e' preferibile farla in fase 3
Un test run sul picco della $Y(6 S)$, anche di soli $40 \mathrm{fb}^{-1}$, ci darebbe 10x gli eventi presi in Belle-I. SE i macchinisti sono disposti ad andare cosi in alto, questo e' il punto piu' interessante.

Le zone dei due dip in $\mathrm{Rb}, 10.65+10.75 \mathrm{GeV}$, si prestano a studi sui coupled channels effects.

Physics with $600 \mathrm{M} \mathrm{Y(3S):}$

Experiment	Scans/Off. Res.fb^{-1}	$\begin{array}{\|c} \Upsilon(5 S) \\ 10876 \\ \mathrm{MeV} \\ \mathrm{fb}^{-1} \\ 10^{6} \end{array}$	$$	$\begin{gathered} \Upsilon(3 S) \\ 10355 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{gathered}$	$\begin{gathered} \Upsilon(2 S) \\ 10023 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{gathered}$	$\begin{gathered} \Upsilon(1 S) \\ 9460 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{gathered}$
CLEO	17.1	0.40 .1	$16 \quad 17.1$	1.2	1.210	1.221
BaBar	54	R_{b} scan	433471	30122	1499	-
Belle	100	12136	711772	312	25158	6102

- The η, π transitions

- Hindered E1 transitions
- M1 transitions to $\eta_{b}(1,2 S)$
- D waves
$-\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi \pi \mathrm{Y}(1,2 S)$
- Antinuclei from Y(3S)

Target Ldt: $150 \mathrm{fb}^{-1}$

All during BEAST-2 Phase? Or
50 during BEAST-2, and 100 while taking first $Y(4 S)$ data ($3 \mathrm{ab}^{-1}$)

Alternative scenarios:
Running at $\Upsilon(4 \mathrm{~S})$ and continuum point Running at $\Upsilon(6 \mathrm{~S}), 30 \mathrm{fb}^{-1}=6 \times$ Belle-I

Scan of $Y\left(1^{3} D_{1}\right), 7 \times 2 \mathrm{fb}^{-1}$ points, 14 total Scan of $\Upsilon\left(2^{3} D_{1}\right), 10 \times 1.5 \mathrm{fb}^{-1}$ points , 15 total

Can we do them during BEAST-2 Phase?
Luminosity ramp-up scenarios:

- at $\mathrm{L} 1=1 \times 10^{34}, 0.75 \mathrm{fb}^{-1} /$ day

How many days to reach L1?
How long will Phase-II last?

The $\pi \tau / \eta$ transitions: TH vs EXP

Hadron transition puzzle: solved?

From Eichten's talk at Krakow

- Above heavy flavor production threshold the usual QCDME fails.
- The transitions rate are much larger than expected.
- The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
- A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
- It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold (v-> zero). This is the factor. Other light hadrons may be present or not.
- The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
- The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual $\operatorname{SU}(3)$ and chiral symmetry expectations are recovered.
- Resolves the puzzles in n transitions.

Hadron transitions: a new paradigm?

From Eichten's talk at Krakow

For lower states, QCDME works:
$R_{Q \bar{Q}}(n \rightarrow m) \equiv \frac{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\eta\right)}{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\pi^{+} \pi^{-}\right)}:$

Ratio	theory	experiment
$R^{c \bar{c}}(2 \rightarrow 1)$	3.29×10^{-3}	9.78×10^{-2}
$R^{b \bar{b}}(2 \rightarrow 1)$	1.16×10^{-3}	1.16×10^{-3}
$R^{b \bar{b}}(3 \rightarrow 1)$	4.57×10^{-3}	$<4.13 \times 10^{-3}$
$R^{b \bar{b}}(4 \rightarrow 1)$	2.23×10^{-3}	2.45
$R^{b \bar{b}}(4 \rightarrow 2)$	5.28×10^{-4}	

~ 30 > theory sets $C_{3} / C_{1}=0.143 \pm 0.024$ related to $\pi \pi$ suppression ~ 1000 > theory
$2 \mathrm{M}\left(\mathrm{D}^{0}\right)-\mathrm{M}\left(\psi^{\prime}\right)=53.11 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}^{0}\right)-\mathrm{M}(\Upsilon 3 S)=204 \mathrm{MeV} / \mathrm{c}^{2}$
$2 \mathrm{M}\left(\mathrm{D}^{+}\right)-\mathrm{M}\left(\psi^{\prime}\right)=43.57 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}^{+}\right)-\mathrm{M}(\mathrm{Y} 3 \mathrm{~S})=204 \mathrm{MeV} / \mathrm{c}^{2}$
$2 \mathrm{M}\left(\mathrm{D}_{\mathrm{s}}\right)-\mathrm{M}\left(\psi^{\prime}\right)=250.5 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}_{\mathrm{s}}\right)-\mathrm{M}(\Upsilon 3 \mathrm{~S})=378 \mathrm{MeV} / \mathrm{c}^{2}$
Large enhancement of $\psi^{\prime} \rightarrow \eta \psi$ explained by the proximity of the $D \bar{D}, D_{s} \bar{D}_{\bar{s}}$ thresholds.
Large isospin violation in $\psi^{\prime} \rightarrow \pi h_{c}$ due to the large $\mathrm{D}^{0}-\mathrm{D}^{+}$mass difference
In bottomonium, degenerate $\mathrm{B}^{0} \overline{\mathrm{~B}}^{0} / \mathrm{B}^{+} \mathrm{B}^{-}$threshold \rightarrow no isospin violation
The eta transition $3 S$ to 1 S is still in the ballpark: wavefunction overlaps can suppress is, like it happens in hindered E1 transitions. We ought to measure it, and (precisely) the E1 hindered transitions from 3S to 1P states.

The η transitions

Testing QCD multipole expansion In low mass region:
$\mathrm{Y}^{\prime} \rightarrow \eta \mathrm{Y}: \mathrm{M} 2^{\star} \mathrm{E} 1+\mathrm{M} 1^{*} \mathrm{M} 1$
$\mathrm{Y}^{\prime} \rightarrow \pi \pi Y: E 1 * E 1$
$\left(\mathrm{Y}^{\prime} \rightarrow \eta \mathrm{Y}\right) /\left(\mathrm{Y}^{\prime} \rightarrow \pi \pi \mathrm{Y}\right) \sim\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}\right)^{2}$
Three more transitions should be visible from $Y(3 S)$ but experimental limits, wheie250 available, are below theory expectations:
$-\mathrm{B}(\mathrm{Y}(3 S) \rightarrow \eta \mathrm{Y}(1 S)) \quad$ theory: $5-10 \times 10^{-4}$ BaBarprd84,42003(2011) $<1 \times 10^{-4}$

- $\mathrm{Y}(1 \mathrm{D}) \rightarrow \eta \mathrm{Y}(1 S)$

Voloshin: PLB 562, 68(2003)
QCD Axial Anomaly should enhance $Y(1 D) \wedge 9500$ $\eta \mathrm{Y}(1 \mathrm{~S})$ with respect to $\mathrm{Y}(1 \mathrm{D})^{\wedge} \pi \pi \mathrm{Y}(1 \mathrm{~S})$: no quantitative estimates available.
$-\mathrm{B}\left(\chi_{\mathrm{bo}}(2 \mathrm{P}) \rightarrow \eta \eta_{\mathrm{b}}\right) \sim$ few 10^{-3} (S-wave)
Voloshin: Mod.Phys.Lett. A19, 2895(2004)
$\frac{\Gamma\left(\chi_{b 0}(2 P) \rightarrow \eta \eta_{b}\right)}{\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon\right)} \approx \frac{\pi^{3}}{3 \alpha} \frac{p_{\eta} f_{\eta}^{2} m_{\eta}^{4}}{\omega_{\gamma}^{3} m_{b}^{2} \Delta^{2}} \approx 0.2\left(\frac{f_{\eta}}{0.16 \mathrm{GeV}}\right)^{2}\left(\frac{1 \mathrm{GeV}}{\Delta}\right)^{2}$

From Ali's talk at Krakow

		charmonium-like		bottomonium-like	
Label	$J^{P C}$	State	Mass [MeV]	State	Mass [MeV]
X_{0}	0^{++}	-	3756	-	10562.2
X_{0}^{\prime}	0^{++}	-	4024	-	10652.2
X_{1}	1^{++}	$X(3872)$	3890	-	10607.2
Z	1^{+-}	$Z_{c}^{+}(3900)$	3890	$Z_{b}^{+, 0}(10610)$	10607.2
Z^{\prime}	1^{+-}	$Z_{c}^{+}(4020)$	4024	$Z_{b}^{+}(10650)$	10652.2
X_{2}	2^{++}	-	4024	-	10652.2
Y_{1}	1^{--}	$Y(4008)$	4024	$Y_{b}(10891)$	10891.1
Y_{2}	1^{--}	$Y(4260)$	4263	$Y_{b}(10987)$	$\mathbf{1 0 9 8 7 . 5}$
Y_{3}	1^{--}	$Y(4290)($ or $Y(4220))$	4292	-	$\mathbf{1 0 9 8 1 . 1}$
Y_{4}	1^{--}	$Y(4630)$	4607	-	11135.3
Y_{5}	1^{--}	-	6472	-	13036.8

Phase-2 sensors in VXD volume

sensor	contact person	number	location	DAQ	note
PXD + SVD	C. Marinas K. Nakamura	2 PXD ladders 4 SVD ladders	decided +X	Belle II DAQ	
diamond w/ PIN diode (beam BG, abort)	L. Vitale	4 diamonds 64 PIN diodes	diamond: decided	Belle II monitor DB (EPICS)	PIN diode location: around diamond and beam pipe
FE-14 pixels (Synchrotron rad. and track multiplicity)	C. Marinas	3 arms	$\begin{gathered} \text { decided } \\ (90,180,270) \end{gathered}$?	arm design has to be fixed
CLAWS (beam BG)	C. Marinas	2 ladders	decided (135 and 225)	?	
Scintillator PIN diode (beam BG)	H. Nakayama K. Nakamura	~60 (scintillator) ? (PIN diode)	not decided	?	Basically put them around QCS
BGO (Bhabha events)	J. Liau	(if space allows)	under discussion	BEAST DAQ	Acceptance is overlapped with PXD cooling block.
temperature (NTC), humidity (DMT242B)	L. Vitale	not decided	not decided	Belle II monitor DB	sensor on outer cover?
(crosscheck for FOS)	See backup slides for more on these systems.				
FOS + L-shape (temp. and humidity)	$\begin{aligned} & \text { I. Vila } \\ & \text { D. Moya } \end{aligned}$?	?	?	
PLUME (beam BG)	I. Ripp-Baudot	1 ladder	not decided	EPICS DB BEAST DAQ?	baseline: PLUME-2 (hopefully PLUME-3)

4th Belle-II Italian Meeting
R.Mussa, First Year Physics at Belle-II

Phase 2 Detectors

- VXD BEAST assembly
- SVD, PXD ladders
- Dedicated background and environment sensors (see next page)
- Scintillators and PIN diodes around QCS
- Neutron detector in dock space

- Beam Exorcism for A STable Belle II
- Collection of radiation monitoring detectors used during beam commissioning stages (Phase 1 and Phase 2)
- Inner detector

■ One octant of PXD + SVD (integrated into Belle 2 DAQ)
FANGS, CLAWS, PLUME: 5 out of 8 remaining octants

- Designed to minimize amount of additional material
- Outer detector

- Nominal Belle II configuration
- Drift chamber (CDC), PID (TOP/ARICH), calorimeter (ECL), muons (KLM)
- Other
- "Dock space" has He-3 and TPCs for neutron detection
- Beampipe has $\sim 6 \mu \mathrm{~m}$ gold plating (compared to $10 \mu \mathrm{~m}$ for nominal)

- VerteX Detector configuration

■ 2 PiXel Detector / 4 Silicon Vertex Detector ladders

- Similar to final Belle II vertex detector components
- Located at $\phi=0^{\circ}$
- Integrated into Belle II DAQ system

- FE-I4 ATLAS Near Gamma Sensors

- Radiation-hard Si pixel detectors
- Located at $\phi=90^{\circ}, 180^{\circ}, 270^{\circ}$

- sCintillation Light And Waveform Sensors

■ Plastic scintillator with Si photomultipler readout

- Located at $\phi=135^{\circ}$ and 225°

- Pixelated Ladder with Ultra-low Material Embedding
- CMOS pixels on light support structure
- Complementary to CLAWS, same location
- Final orientation under study

Neutron Detectors

- He-3 tubes and microTPCs in dock space
- TPCs image direction of incoming fast neutrons, but detected rate is low
- He-3 measure rate of thermal neutrons, which is high

