Charm Activities

Giulia Casarosa - INFN Pisa

outline:

- charm golden channels
- status of the ongoing work
- new ideas & projects

Giulia Casarosa

4th Belle II Italia ~ Roma December, 21st 2015

Are there Golden Channels in Charm?

- The Standard Model predictions on mixing and CP Violation parameters are affected by large uncertainties due to the difficulties in the computation of the dominant long-distance contributions:
 - computation of D-mixing diagrams is non perturbative
 - the available computational power is not enough for lattice QCD

Standard Model mixing predictions

- Theory needs experimental inputs not only to check the final predictions but also to test the model hypotheses
 - employ a parameterisation that is appropriate for the level of precision expected in the BelleII/LHCb-upgrade era
 - infer the presence of NP in direct CPV measurements using SM SU(3) relations (+ evaluate SU(3) breaking)
- ➡ Golden Channel does not only mean "sensitive to NP" charm.
 - e.g. $D+ \rightarrow \pi + \pi^0$ is golden since SM contribution to A_{CP} is small and there are no QCD penguins to estimate

The (many) Charm Golden Channels

2. Hadronic Modes

time-dependent CPV & mixing, (a) $\mathcal{O} \to K^+\pi^-, K^+K^-, \pi^+\pi^$ time-integrated analyses, $A_{CP} \leftarrow (b) \quad D^0 \to K^0_S K^0_S, \pi^0\pi^0, D^+ \to \pi^+\pi^0, \mathcal{O} \to \mathcal{K}_S \pi^0, \text{ more FCNC}$ Dalitz Plot Analyses (c) $D^0 \to K^0_S K^+K^-, K^0_S K^+\pi^-, K^+\pi^-\pi^0, K^0_S \pi^+\pi^-, \pi^+\pi^-\pi^0$ time-dependent CPV & mixing

- 3. Semileptonic Modes + *T* violation with $D^0 \rightarrow K_S \pi^0 \pi^+ \pi^-$
- 4. Leptonic and Radiative Decays

important for lattice QCD
$$\leftarrow$$
 (a) $D^+_{(s)} \rightarrow e^+ \nu, \ \mu^+ \nu, \ \tau^+ \nu$
NP searches \leftarrow (b) $D^0 \rightarrow \rho^0 \gamma, \ \mathcal{D}^0 \rightarrow \psi \gamma, \ \mathcal{D}^0 \rightarrow \gamma \gamma$

5. Other (more exotic stuff)

e.g. light dark matter searches \leftarrow (a) missing energy modes

(b) glueballs

(c)
$$D_s^+ \rightarrow p \bar{n}$$

basf2 Simulation Studies

$\frac{2}{B_{BELE}}$ Proper Time Resolution for $e^+e^- \rightarrow D X$

- ➡ We can measure the proper time of D⁰ coming directly from the hadronization of the charm quark with comparable precision.
- ➡ This measurement was not possible at B-Factories
- → The flavour of the D⁰ at production cannot be tagged in the standard way (D*→D⁰ π)

Prompt D⁰ Flavour Tagging

Giacomo De Pietro

- → Only I/4 of the D⁰ produced in the e⁺e⁻ → c \overline{c} events are flavour tagged with D^{*+}→D⁰ π^+ and used for CP violation measurements
- Implement a reconstruction technique that allows to tag the flavour the rest 75% of produced D⁰ looking at the rest of the event
 - select events with one single charged K in the rest of the event

➡ First Results are encouraging 20% reconstruction efficiency

Giulia Casarosa

Charm from B Decays

$$B^{0} \rightarrow D^{*+} \ell^{-} \nu,$$
$$\downarrow D^{0} \pi^{+}$$

Partial Reconstruction of the B assuming...

- ➡ B⁰ is at rest in the center-of-mass of the Y(4S) (p=380MeV/c)
- D⁰ produced at rest in the center-of-mass of the D*+, therefore:
 - $p(D^{*+}) = \alpha + \beta p(\pi_s)$
 - D^{*+} and π_s have the same direction
- ...allows to compute the $M_{\nu}{}^2$ peaking at 0 for signal.

Estimate from BABAR (200fb⁻¹onPeak + 22 fb⁻¹ offPeak):

[M.Rotondo, F.Simonetto]

tag	# signal	purity	
е	2150	52%	
μ	1740	55%	

Giulia Casarosa

Dark Matter Searches in Charm?

- \rightarrow D \rightarrow vv decay is helicity suppressed in the SM resulting in a tiny branching ratio:
 - BR(D $\rightarrow vv$) \approx 1.1 10⁻³⁰, adding a photon in the final state BR(D $\rightarrow vv\gamma$) \approx 4 10⁻¹⁴
- → New Physics may enhance the branching ratio:
 - add a particle in the final state
 - introduce other ways of flipping helicity
- Missing Energy does not always mean neutrinos!
 - can be light dark matter candidates: D → invisible puts nice constraints on light dark matter properties!
- Extremely challenging from the experimental side
 - can use D from B decays and fully reconstruct the other B...
 - expected dominant background from K_{L}

Conclusions

- → Bellell can do better in charm w.r.t. B-Factories than just luminosity scaling!
- basf2 simulations are needed in order to better estimate the improvements of channels already done at B-Factories and to have the first estimations on new channels/analyses
- ➡ The simulation activity has started!
 - mostly Belle students extrapolating to Bellell
 - Giacomo De Pietro on prompt D⁰ tagging
 - Jake Bennet (on leptonic/semileptonic reconstruction)
 - more people needed...
- ➡ There are interesting things to do: new/better detector = new things we can do
- ➡ Let's grow the Italian contribution to charm...

General Comments from the Experimental Side

"Golden mode" definition:

a mode in which Belle II will be competitive (with LHCb) and, if NP is present at a sufficiently large level, its signature will be measured/identified

> good criteria to select among the many channels and observables

Future work to complete our report:

A. Schwartz

- <u>Belle II decay time resolution:</u> improvement over Belle due to pixel layers
- Systematic error budget: which errors are scalable with luminosity, which are not (and how to treat them)
- <u>BASFII simulation:</u> more realistic MC study with proper Belle II detector acceptance/response (esp: pixels, SVD, CDC tracking, iTOP)
- Need basf2 simulation studies in order to have a better estimate of the expected precision that takes into account improvements in the detector & reconstruction techniques for the other channels
 - the impact of the better time resolution on the mixing parameters has been evaluated with basf2 simulation + ToyMC

CP Asymmetries

Time-Dependence on A_{CP}

NP Searches in Radiative Decays

Modes with K_S in the Final State

Other Scattered Comments on Hadronic Modes

2. Hadronic Modes

time-dependent CPV & mixing, $\leftarrow (a) \quad D^{O} \to K^{+}\pi^{-}, K^{+}K^{-}, \pi^{+}\pi^{-}$ time-integrated analyses, $A_{CP} \leftarrow (b) \quad D^{0} \to K_{S}^{0} K_{S}^{0}, \pi^{0}\pi^{0}, D^{+} \to \pi^{+}\pi^{0}, D^{O} \to K_{S} \pi^{O}, \text{ more FCNC}$ Dalitz Plot Analyses $\leftarrow (c) \quad D^{0} \to K_{S}^{0} K^{+}K^{-}, K_{S}^{0} K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{0}$ ime-dependent CPV & mixing $\leftarrow (c) \quad D^{0} \to K_{S}^{0} K^{+}K^{-}, K_{S}^{0} K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{0}$ 3. Semileptonic Modes + T violation with $D^{0} \to K_{S} \pi^{0}\pi^{+}\pi^{-}$ [t] look for CP asymmetries in localised regions of the Dalitz Plots impo. [e] Yes we can do it, done already with $D^{0} \to K^{+}\pi^{-}\pi^{0}$ at B_{ABAR} [t] D \to VV modes can help constrain LD contributions to the mixing parameters

e.g. light dark matter searches \leftarrow (a) missing energy modes

(b) glueballs

(c)
$$D_s^+ \to p\bar{n}$$

Leptonic Decays

2. Hadronic Modes

4. Leptonic and Radiative Decays

important for lattice QCD
$$\leftarrow (a)$$
 $D^+_{(s)} \to e^+ \nu, \ \mu^+ \nu, \ \tau^+ \nu$
NP searches $\leftarrow (b) \ D^0 \to \rho^0 \gamma, \ D^0 \to w\gamma, \ D^0 \to \gamma\gamma$

5. Other (more exotic stuff)

e.g. light dark matter searches \leftarrow (a) missing energy modes

(b) glueballs

(c)
$$D_s^+ \to p\bar{n}$$

Dark Matter Searches

Theory Motivational Speech

What did we learn from Δa_{CP} saga?

★ Is it Standard Model or New Physics? Theorists used to say...

Naively, any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

...what do you say now?

★ assuming SU(3) symmetry, $a_{CP}(\pi\pi) \sim a_{CP}(KK) \sim 0.15\%$. Looks more or less 0.1%... **★** let us try Standard Model

need to estimate size of penguin/penguin contractions vs. tree

Find new observables!

★ Find processes where the Standard Model contribution to Acp is small

★ Look at non-leptonic decays $D \rightarrow \pi\pi$ ★ Look at non-leptonic decays $D \rightarrow KsKs$

no contributions from QCD penguins

A. Petrov

Rare and radiative decays

★ Can New Physics be "hiding" in the up-type quark transitions

- explicit models can be constructed where it can be done
- long-distance effects complicate interpretation
- must use exp and theo tricks to sort out

Maybe correlations between different measurements can help sorting out NP in charm?

* Standard Model contribution to $\left(D \rightarrow \gamma \gamma \right)$ - SM contribution is dominated by LD effects

Try to find combinations of decays where LD contributions cancel

★ Radiative decays $D \rightarrow \gamma X$, $\gamma \gamma$: FCNC transition $c \rightarrow u \gamma$

- SM contribution is dominated by LD effects
- dominated by SM anyway: useless for NP studies?

★ Consider exclusive decays D → $\gamma \varrho$, $\gamma \omega$: $\omega^{(I=0)} = \frac{1}{\sqrt{2}} (\bar{u}u + \bar{d}d)$, $\rho^{(I=1)} = \frac{1}{\sqrt{2}} (\bar{u}u - \bar{d}d)$ - Extract c → uu γ : LD contribution cancels $R_{uu\gamma} = \frac{\Gamma(D^0 \to \omega \gamma) - \Gamma(D^0 \to \rho \gamma)}{\Gamma(D^0 \to \omega \gamma)}$

- Consider isospin asymmetries $R_I = \frac{2\Gamma(D^0 \to \rho^0 \gamma) - \Gamma(D^+ \to \rho^+ \gamma)}{2\Gamma(D^0 \to \rho^0 \gamma) + \Gamma(D^+ \to \rho^+ \gamma)}$

 isospin asymmetries are sensitive to 4-fermion operators with photon emissions from "spectators"

* Standard Model contribution to $D \rightarrow \mu \mu$

- could be used to study NP effects in correlation with D-mixing

Giulia Casarosa

4th B2ITA ~ Roma

Rare D(B)-decays with missing energy

D-decays with missing energy can probe both heavy and light (DM) NP

★ SM process: $D \rightarrow \nu\nu$ and $D \rightarrow \nu\nu\gamma$:

- for B-decays
$$J^{\mu}_{Qq} = \bar{q}_L \gamma^{\mu} b_R$$

- for D-decays
$$~J^{\mu}_{Oa}=ar{u}_L\gamma^{\mu}c_L$$

★ For B(D) $\rightarrow \nu\nu$ decays SM branching ratios are tiny

SM decay is helicity suppressed, e.g.

$$\mathcal{B}(B_s \to \nu \bar{\nu}) = \frac{G_F^2 \alpha^2 f_B^2 M_B^3}{16\pi^3 \sin^4 \theta_W \Gamma_{B_s}} |V_{tb} V_{ts}^*|^2 X(x_t)^2 x_{\nu}^2$$

- NP: other ways of flipping helicity?
- add a third particle to the final state?

What would happen if a photon is added to the final state?

★ For B(D) $\rightarrow \nu \nu \gamma$ decays SM branching ratios are still tiny

- need form-factors to describe the transition
- helicity suppression is lifted

★ BUT: missing energy does not always mean neutrinos

- nice constraints on light Dark Matter properties!!!

Decay	Branching ratio
$B_s ightarrow u ar{ u}$	$3.07 imes10^{-24}$
$B_d \to \nu \bar{\nu}$	1.24×10^{-25}
$D^0 \to \nu \bar{\nu}$	$1.1 imes 10^{-30}$

Decay	Branching ratio
$B_s ightarrow u ar{ u} \gamma$	$3.68 imes 10^{-8}$
$B_d ightarrow u ar{ u} \gamma$	$1.96 imes 10^{-9}$
$D^0 \to \nu \bar{\nu} \gamma$	3.96×10^{-14}

Badin, AAP (2010)

Extrapolations on Time-Integrated Measurements

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 o K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08
$D^0 o K^0_s \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	± 0.03
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 o K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ o K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D^+_s ightarrow K^0_s \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D^+_s o K^0_s K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

$$\sigma_{Bellell} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Extrapolations on Time-Dependent Measurements

$D^0 o K^{(*)-}\ell^+ u$	492 fb^{-1}	50 ab^{-1}
R _M	$(1.3\pm2.2\pm2.0) imes10^{-4}$	$\pm 0.3 imes 10^{-4}$
$D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$	976 fb $^{-1}$	50 ab^{-1}
УСР	$(1.11\pm 0.22\pm 0.11)\%$	$\pm 0.04\%$
Α_Γ	$(-0.03 \pm 0.20 \pm 0.08)\%$	±0.03%
$D^0 ightarrow K^+ \pi^-$	$400 { m ~fb^{-1}}$	50 ab^{-1}
x' ²	$(1.8\pm2.2\pm1.1) imes10^{-4}$	$\pm 0.22 imes 10^{-4}$
\mathbf{y}'	$(0.06\pm0.40\pm0.20)\%$	$\pm 0.04\%$
A_M	0.67 ± 1.20	± 0.11
$ \phi $	0.16 ± 0.44	±0.04
$D^0 ightarrow K^0_s \pi^+ \pi^-$	921 fb ⁻¹	50 ab^{-1}
X	$(0.56 \pm 0.19 \pm 0.06 \pm 0.08)\%$	$\pm 0.08\%$
У	$(0.30 \pm 0.15 \pm 0.06 \pm 0.04)\%$	$\pm 0.05\%$
q/p	$0.90 \pm 0.16 \pm 0.04 \pm 0.06$	± 0.06
ϕ	$-0.10 \pm 0.19 \pm 0.04 \pm 0.07$	± 0.07

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$