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Cross-sections are important 
in LBL oscillation experiments



Una slide d'annata (2006)
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Tagged neutrino beams 
principle

Detects simultaneously the neutrino interaction at the neutrino 
detector and the associated lepton at the neutrino source

NEUTRINO
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Different reactions

muons from charm
muons from / K2

electrons from Ke3
 

Broad energy range

from ~GeV to ~TeV
 

Many  layouts

conventional neutrino beams
beam dumps
neutral channels (K°)
anti-tag (veto)
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Tagged neutrino beams
(partial) literature 
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Why e cross-section ?
cross-sections are the limiting systematic source already for the present generation of LBL

next generation of experiments searching tiny effects bearing CP, hierarchy, unexpected..,
in particular in the golden  → e channel

Despite impressive improvements in the cross-section measurements, difficult to get below 
O(10%) due to the flux uncertainty

e cross-section data sparse (sub-dominant component of conventional beams), extrapolation 
from  introduces additional uncertainties due to nuclear effects [Phys. Rev. D86 (2012) 052003]
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Tagged electron neutrinos
EPJC 75 (2015) 155

A beam layout optimized for electron neutrinos from  K+ → e+ p° e

Detect positrons as a direct measurement of the e flux  

Take advantage of LHC development of fast, radiation hard detectors

Goal

e cross-section measurement down to O(1%) precision using 
available today technology for beam and detectors
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Conceptual Layout

TARGET

FOCUSING

SIGN&MOMENTUM 
SELECTION

INSTRUMENTED
DECAY TUNNEL

BEAM DUMP

Let's assume the secondary beam is sign and momentum selected with P = 8.5 GeV/c ± 20%
and focused with max = 3mrad in a 10x10cm window at the entrance of the instrumented 
decay tunnel
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Tagger Concept

K+

e+

0


e

tagger

Channel  at detector Angular RMS Notes

  +  Bulk of  ~ 4 mrad for  2-body decay

+  e+ e   (muon DIF) e + ~28 mrad for e+ 3-body decay (low parent mass)

K+  0 e+ e (i.e. Ke3) e from Ke3
~ 88 mrad for e+ 3-body decay (high parent mass)

Undecayed K+, and protons none < 3 mrad

Other K+ decays  or none no prompt positrons

Wrong sign and off-
momentum /K, neutrals

negligible if particles are sign 
selected after the horn

_ _

Undecayed beam particles, including muons from 2, are almost contained 
within a hollow cylindrical tagger 50m long and of 40 cm inner radius
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Beamline design for Ke3 e

e from + DIF

L = 100 m
L = 50 m

Chosen trade-off:    p(K+/) ~ 8.5 GeV/c ± 20%         L = 50 m

e from K+ decay

Shorter decay tunnel
+

Higher energy secondaries 

Increase the fraction of e from Ke3
+

Reduce the fraction of e  from  DIF

With increasing energy

PRO
Higher kaon/pion ratio
Better e/ separation
<loss in focus/transport

CONS
Longer decay tunnel
e energy higher than ~GeV

                                      Parent momentum (GeV/c)

e/



 19

Beamline simulation

FLUKA2011 cross-checked 
with hadro-production data

No design and full simulation, yet.
Assume 85% efficiency for secondaries
inside the ellipse xx‘=yy‘=0.15 mm rad
in the transverse phase space No design and full simulation, yet.

Assume 20% momentum bite at 
P=8.5GeV/c and a 10m length to 
evaluate the flux reduction due to 
early decays

GEANT4 simulation at hit level
of a preliminary design. Further 
simulation in progress.
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Focusing options
No detailed optimization/simulation. Two focusing schemes considered,
based on realistic figures and educated guesses

p 

Magnetic 
horn

p 

Lithium lens
(optional) K+

K+

Large aperture
quadrupoles + 
dipoles + 
collimators

+ Large acceptance

- Need pulsing (<10ms)

- Only forward acceptance

+ Allow long beam
   extractions (~seconds)
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Rates from beamline simulation

all particles





Z position along the tunnel 0 m

~ 500 kHz/cm2

~ 15 kHz/cm2 e+

Particle Max. rate 
(kHz/cm2)

 190

 190

 100

e+ 20

all 500

50 m

H
z/

cm
2

For a spill duration of 2ms and 1010 + at the entrance of the decay 
tunnel, the total rate is 500 kHz/cm2 → manageable with a proper 
choice of detector technology
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Tagger Technology
Shashlik calorimeter
~3x3 cm2 tiles, 1.5 cm thick Cu absorber, 0.5cm thick plastic scintillator tiles, read 
by 9 WLS fibers directly coupled to 9 SiPM, digitized by a single waveform digitizer 

Photon veto
( from 0 decay)

Shashlik 
calorimeter 

(e/ separation)

K+
88 mrad

5Xo

5Xo
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Tagger Technology
Shashlik calorimeter
~3x3 cm2 tiles, 1.5 cm thick Cu absorber, 0.5cm thick plastic scintillator tiles, read 
by 9 WLS fibers directly coupled to 9 SiPM, digitized by a single waveform digitizer 

The direct, bundle-free matching of the
fibers to the SiPM is an elegant solution
to the problem of longitudinally segmenting
the shashlik calorimeters

Original application of a shashlik calorimeter
to a diffuse, non-projective particle source

SCENTT (Shashlik Calorimeter for Electron Neutrino Tagging and Tracing)
approved R&D in gruppo V (2016-17) to test on prototypes the solutions 
for the tagging detector and prove their scalability



 24

Pile-Up and Radiation dose

RADIATION DOSE
For the full statistic (104 e CC events), 150 MJ are deposited into the 
tagger (64% into muons)

→ Integrated dose < 1.3 kGy    (cfr. CMS forward ECAL ~100 kGy )

PILE-UP
mostly overlap of a muon from K+→  +  with a candidate positron

Recovery time, tcal = 10 ns
Rate, R = 0.5 MHz/cm2

Tile surface, S ~ 10 cm2

→ 5% pile-up probability (= RStcal)
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Tagger e/ separation

 +

e+

E1(E2) defined as the energy
deposited in a cylinder of 2RMolière
and 5(10) Xo length

Requires

ETOT > 300 MeV
R1 = E1 / ETOT > 0.2
R2 = E2 / ETOT > 0.7

e+ from Ke3

+ from K+→
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Backgrounds

/e mis-identification is the dominant background: 18% for 59% efficiency 
(down to 7% for  tighter R2>0.8 cut, with 36% efficiency) 

/e mis-identification accounts for ~0.1% adding all sources together

/e mis-identification : the  largest contribution comes from  K+ → °
Photon conversion rate ~3 10-3 in a 1mm Be pipe → 2% background (6% for an Al pipe)
Negligible if the tagger is inside the evacuated (<~1mbar) pipe.

NB. fake e+ from K+ →  (5%) and ° in K+ → ° (2-6%) could be removed vetoing 
additional  from the same decay vertex. Requires tagger tracking capability and good timing 
from a t

0
-layer detector in front.   To be studied, not used for now.

e
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to-layer

3x3 cm2 scintillator tiles read by WLS fibers
0.5 cm (0.012Xo) thick

 one doublet every 7cm in Z

e+ from Ke3

1 doublet hit

5 doublets hit

Time resolution requirements: ~10 ns (matching tagger recovery time for cross-section)
~1 ns   (for event by event tagging)
~100 ps (further background rejection)

Alternative technologies
Si counters: less material, less channels, better 1 vs 2 mips separations (time resolution ?)
Low-Gain Avalanche detectors → very good timing, (large surface ?)
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Beam requirements

JPARC/PS

Protvino/U70

Fermilab/MR
CERN/SPS

The integrated PoTs are well within reach of existing facilities (except Protvino, 
currently a 10kW accelerator)

The number of protons per extraction is quite small

A large number of extractions of protons to target (~2 108 spills) is needed, 
challenging for higher energy/low-rep accelerators

PoT/spill required to have 1010 p+ /spill  (2ms spill length)
Integrated PoT required for 104 e (in a 500t detector, 100m from decay tunnel entrance)
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The integrated PoTs are well within reach of existing facilities (except Protvino, 
currently a 10kW accelerator)

The number of protons per extraction is quite small

A large number of extractions of protons to target (~2 108 spills) is needed, 
challenging for higher energy/low-rep accelerators

PoT/spill required to have 1010 p+ /spill  (2ms spill length)
Integrated PoT required for 104 e (in a 500t detector, 100m from decay tunnel entrance)

1.5 1011 PoT/ms
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Extraction scheme(s) (the CERN/SPS case)

1. Multiple Slow Resonant Extraction

10ms 3rd integer SR extractions, 
repeated 20 times on the 2s flat top of 
the 15s super-cycle

1.2 ·1012 protons extracted per spill
Extracted for each super-cycle ~half of the protons available (4.5 1013)

MSRE never tried before. To be tested

2. Conventional slow resonant extraction

A single SE, 2s long 
(scheme proposed for SHiP)

Requires static focusing
large aperture, rad-hard quadrupoles, reduced rate (~10%) w.r.t. horn
4.5 ·1013 protons extracted per super-cycle
 
Allow event-by-event time coincidence tagging for spill lengths O(1s)

2s flat top
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e CC Spectrum

 e
C

C
 e

ve
nt

s

Ee (GeV)

1.95 1013 K+/eCC

96.7% e from Ke3 ( DIF contamination) 

500 t detector 100m from tunnel entrance

Good rejection of NC ° needed

Covers energy range of future experiments

 flux → directly proportional to the positrons detected by the tagger
→ independent from PoTs, hadro-production, collection and focusing efficiency
→ only depend on tagger efficiency and background subtraction

High intensity mode (x10) for exclusive and differential cross-section (additional systematic for
flux extrapolation from low intensity

Anti-neutrino runs

large angle  come from kaon decays →  cross section measurement
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Error budget evaluation

Source of uncertainties Size and mitigation

statistical error <1%

kaon production and collection efficiency irrelevant (positron tag)

uncertainty on integrated pot irrelevant (positron tag)

geometrical efficiency and fiducial mass <0.5% PRL 108 (2012) 171803 [Daya Bay]

uncertainty on 3-body kinematics and mass <0.1% Chin. Phys. C38 (2014) 090001 [PDG]

uncertainty on phase space at entrance can be checked directly with low intensity 
pion runs

uncertainty on Branching Ratios irrelevant  (positron tag) except for 
background estimation (<0.1%)

tagger e/ separation can be checked directly at test-beams

detector background from NC 0 events <1% uncertainty EPJ C73 (2013) 2345 [ICARUS]

detector efficiency large cancellations if the target/technology 
is the same as for the CPV experiment

Is 1% really feasible?   
Not demonstrated yet, but from a preliminary discussion:
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Tagged neutrino beams 
principle

Detects simultaneously the neutrino interaction at the neutrino 
detector and the associated lepton at the neutrino source

NEUTRINO
SOURCE

NEUTRINO 
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Event-by-event tagging



Decay tunnel

e+

Neutrino
detector

Simultaneous observation of the positron and the neutrino interaction

Direct tag of the neutrino flavor, veto beam e, reconstruct e energy

Delayed time coincidence:   |t – /c| < 

The double tag mode can work if we can beat the number of accidentals:

positron rate per extraction fake e+ per extraction extraction time

For  ~ 1ns, requires Textr ~1s 
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Close, but still not ready to fly 

The proton extraction time must be ~1s
Must rely on static focusing (Li 
lenses?)
Reduction of flux (by a factor of ~10)

The tagger and neutrino detector time
resolution must be ~1ns

At the limit of current technologies for 
neutrino detectors (sync OK: direct 
optical link at ~100m baseline)

Cosmic background at the neutrino 
detector increases

Can be a problem at small overburden 
(active veto ?)

Small kaon momentum bite to improve 
the neutrino energy reconstruction Can imply further reduction of the flux
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Conclusions
The next generation of CPV experiments will have to deal with a level 
of control of systematics O(1%), unprecedented for neutrino physics

Facing the cost of these facilities, new approaches to reduce the 
systematic budget are extremely cost effective to extend their physics 
reach

A “positron monitored” Ke3 source of e

- can be built using today detector technology and accelerators 
available at CERN, Fermilab and JPARC

- offers a O(1%) cross-section measurement with a neutrino detector of 
moderate mass (~500t)

- is a first step toward a flavor tagged beam 
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