

e cross-section in a tagged beam

L. Ludovici What Next: sezioni d'urto di neutrini Bologna, 9-10 novembre 2015

A.Berra, S.Cecchini, F.Cindolo, C.Jollet, A.Longhin, G.Mandrioli, A.Meregaglia, A.Paoloni, L.Pasqualini, L.Patrizii, M.Pozzato, M.Prest, F.Pupilli, G.Sirri, F.Terranova, E.Vallazza, L.Votano

A.Longhin, L.L, F.Terranova EPJC 75 (2015) 155

Una slide d'annata (2006)

Analysis Strategy

Measure $\#v$, kinematics

Near Detector

Experimental Data

Far Detector

Measure $\#v$, kinematics

v interaction MC hadro-production data beam MC near detector simulation

Measure $\Phi_{ND}(Ev)$, v interact. properties

Beam simulation v interaction properties far detector simulation

Oscillation Fit

 $\#v$, kinematics w/o oscillation

Detects simultaneously the neutrino interaction at the neutrino detector and the associated lepton at the neutrino source

Detects simultaneously the neutrino interaction at the neutrino detector and the associated lepton at the neutrino source

Detects simultaneously the neutrino interaction at the neutrino detector and the associated lepton at the neutrino source

L.N. Hand (1969) B. Pontecorvo (1979) G.Vesztergombi, D.Kiss (1981) I.P. Nedyalkov (1981) L. Nodulman (1982) V.V. Ammonosov et al (1984) R.H. Bernstein et al (1989) L. Ludovici, P. Zucchelli (1997) L. Ludovici, F. Terranova (2010)

L.N. Hand (1969) B. Pontecorvo (1979) G.Vesztergombi, D.Kiss (1981) I.P. Nedyalkov (1981) L. Nodulman (1982) V.V. Ammonosov et al (1984) R.H. Bernstein et al (1989) L. Ludovici, P. Zucchelli (1997) L. Ludovici, F. Terranova (2010)

Broad energy range

from ~GeV to ~TeV

L.N. Hand (1969) B. Pontecorvo (1979) G.Vesztergombi, D.Kiss (1981) I.P. Nedyalkov (1981) L. Nodulman (1982) V.V. Ammonosov et al (1984) R.H. Bernstein et al (1989) L. Ludovici, P. Zucchelli (1997) L. Ludovici, F. Terranova (2010)

Broad energy range

from ~GeV to ~TeV

11

Different reactions

muons from charm muons from $\pi_{\mu 2}$ / K_{μ 2} electrons from K_{e3}

L.N. Hand (1969) B. Pontecorvo (1979) G.Vesztergombi, D.Kiss (1981) I.P. Nedyalkov (1981) L. Nodulman (1982) V.V. Ammonosov et al (1984) R.H. Bernstein et al (1989) L. Ludovici, P. Zucchelli (1997) L. Ludovici, F. Terranova (2010)

Different reactions

muons from charm muons from $\pi_{\mu 2}$ / K_{μ 2} electrons from K_{e3}

Broad energy range

from ~GeV to ~TeV

Many layouts

conventional neutrino beams beam dumps neutral channels (K°) anti-tag (veto)

The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \rightarrow \mu \nu, K \rightarrow \mu \nu,$ $K \rightarrow ev\pi$, ...). Of course, in tagged-neutrino experiments the properties of neutrino beams (type, direction and energy) will be much better known than in the experiments performed so far. The main difficulty in designing such a facility is that the effective neutrino source (which is also the source of the charged particles to be detected in coincidence with the neutrino event) has a length equal to the decay length (of the order of hundreds of metres). In spite of the difficulties it seems that sooner or later such facilities will be available at various high-energy accelerators. Naturally such a « maximum » programme would provide an extremely useful facility.

B. Pontecorvo, Lett. Nuovo Cimento 25 (1979) 257

Why v_e cross-section ?

cross-sections are the limiting systematic source already for the present generation of LBL

next generation of experiments searching tiny effects bearing CP, hierarchy, unexpected.., in particular in the golden $vu \rightarrow ve$ channel

Despite impressive improvements in the cross-section measurements, difficult to get below O(10%) due to the flux uncertainty

ve cross-section data sparse (sub-dominant component of conventional beams), extrapolation from vu introduces additional uncertainties due to nuclear effects [Phys. Rev. D86 (2012) 052003]

Tagged electron neutrinos

EPJC 75 (2015) 155

A beam layout optimized for electron neutrinos from $K^+ \rightarrow e^+ p^{\circ} v_{\rm e}$

Detect positrons as a direct measurement of the $v_{\rm e}$ flux

Take advantage of LHC development of fast, radiation hard detectors

Goal

 v_e cross-section measurement down to $O(1\%)$ precision using available today technology for beam and detectors

Conceptual Layout

Let's assume the secondary beam is sign and momentum selected with $P = 8.5$ GeV/c \pm 20% and focused with Θ_{max} = 3mrad in a 10x10cm window at the entrance of the instrumented decay tunnel

Tagger Concept

Undecayed beam particles, including muons from π_{μ^2} , are almost contained within a hollow cylindrical tagger 50m long and of 40 cm inner radius

Beamline design for Ke3 ve

Chosen trade-off: /) ~ 8.5 GeV/c ± 20% L = 50 m

Beamline simulation

Focusing options

No detailed optimization/simulation. Two focusing schemes considered, based on realistic figures and educated guesses

Rates from beamline simulation

For a spill duration of 2ms and 10¹⁰ π ⁺ at the entrance of the decay tunnel, the total rate is 500 kHz/cm² \rightarrow manageable with a proper choice of detector technology

Tagger Technology

Shashlik calorimeter

~3x3 cm2 tiles, 1.5 cm thick Cu absorber, 0.5cm thick plastic scintillator tiles, read by 9 WLS fibers directly coupled to 9 SiPM, digitized by a single waveform digitizer

Tagger Technology

Shashlik calorimeter ~3x3 cm2 tiles, 1.5 cm thick Cu absorber, 0.5cm thick plastic scintillator tiles, read by 9 WLS fibers directly coupled to 9 SiPM, digitized by a single waveform digitizer

The direct, bundle-free matching of the fibers to the SiPM is an elegant solution to the problem of longitudinally segmenting the shashlik calorimeters

Original application of a shashlik calorimeter to a diffuse, non-projective particle source

SCENTT (Shashlik Calorimeter for Electron Neutrino Tagging and Tracing) approved R&D in gruppo V (2016-17) to test on prototypes the solutions for the tagging detector and prove their scalability

Pile-Up and Radiation dose

PILE-UP

mostly overlap of a muon from $K^+ \rightarrow \mu^+ \nu_\mu$ with a candidate positron

Recovery time, Δt_{cal} = 10 ns Rate, $R = 0.5$ MHz/cm² Tile surface, $S \sim 10$ cm²

 \rightarrow 5% pile-up probability (= RS Δt_{cal})

RADIATION DOSE

For the full statistic (10⁴ v_e CC events), 150 MJ are deposited into the tagger (64% into muons)

→ Integrated dose < 1.3 kGy(cfr. CMS forward ECAL ~100 kGy)

Tagger e/π separation

 $E_1(E_2)$ defined as the energy deposited in a cylinder of 2RMolière and $5(10)$ X_o length

Requires

 $E_{TOT} > 300$ MeV $R_1 = E_1 / E_{TOT} > 0.2$ $R_2 = E_2 / E_{TOT} > 0.7$

Backgrounds

 π /e mis-identification is the dominant background: 18% for 59% efficiency (down to 7% for tighter R2>0.8 cut, with 36% efficiency)

 μ /e mis-identification accounts for ~0.1% adding all sources together

 γ /e mis-identification : the largest contribution comes from $K^+ \to \pi^+\pi^-$ Photon conversion rate ~3 10⁻³ in a 1mm Be pipe \rightarrow 2% background (6% for an Al pipe) Negligible if the tagger is inside the evacuated (<~1mbar) pipe.

NB. fake e⁺ from K⁺ $\rightarrow \pi^+\pi^+\pi^-$ (5%) and π° in K⁺ $\rightarrow \pi^+\pi^{\circ}$ (2-6%) could be removed vetoing additional π^* from the same decay vertex. Requires tagger tracking capability and good timing from a $\mathrm{t_{o}}$ -layer detector in front. $\,$ To be studied, not used for now.

 $h=3$ cm

3x3 cm² scintillator tiles read by WLS fibers 0.5 cm $(0.012X_0)$ thick

one doublet every 7cm in Z

Time resolution requirements: ~10 ns (matching tagger recovery time for cross-section) $~1$ ns (for event by event tagging) ~100 ps (further background rejection)

Alternative technologies

 0.5 cm

(i.e. $0.012 X_0$)

γ

 e^+

Si counters: less material, less channels, better 1 vs 2 mips separations (time resolution ?) Low-Gain Avalanche detectors \rightarrow very good timing, (large surface ?)

Beam requirements

PoT/spill required to have 1010 p+ /spill (2ms spill length) Integrated PoT required for $10⁴$ ve (in a 500t detector, 100m from decay tunnel entrance)

The integrated PoTs are well within reach of existing facilities (except Protvino, currently a 10kW accelerator)

The number of protons per extraction is quite small

A large number of extractions of protons to target $(\sim 2 \; 10^8 \; \text{spills})$ is needed, challenging for higher energy/low-rep accelerators

Beam requirements

PoT/spill required to have 1010 p+ /spill (2ms spill length) Integrated PoT required for $10⁴$ ve (in a 500t detector, 100m from decay tunnel entrance)

The integrated PoTs are well within reach of existing facilities (except Protvino, currently a 10kW accelerator)

The number of protons per extraction is quite small

A large number of extractions of protons to target $(\sim 2 \; 10^8 \; \text{spills})$ is needed, challenging for higher energy/low-rep accelerators

Extraction scheme(s) (the CERN/SPS case)

1. Multiple Slow Resonant Extraction

10ms 3rd integer SR extractions, repeated 20 times on the 2s flat top of the 15s super-cycle

1.2 ·1012 protons extracted per spill Extracted for each super-cycle ~half of the protons available $(4.5 10^{13})$

MSRE never tried before. To be tested

2. Conventional slow resonant extraction

A single SE, 2s long (scheme proposed for SHiP)

Requires static focusing large aperture, rad-hard quadrupoles, reduced rate $($ ~10%) w.r.t. horn 4.5 ·1013 protons extracted per super-cycle

Allow event-by-event time coincidence tagging for spill lengths O(1s)

v_e CC Spectrum

1.95 1013 K+/ $v_{\rm e}^{\rm CC}$

96.7% v_e from Ke3 (μ DIF contamination)

500 t detector 100m from tunnel entrance

Good rejection of NC π ° needed

Covers energy range of future experiments

 v flux \rightarrow directly proportional to the positrons detected by the tagger \rightarrow independent from PoTs, hadro-production, collection and focusing efficiency \rightarrow only depend on tagger efficiency and background subtraction

High intensity mode (x10) for exclusive and differential cross-section (additional systematic for flux extrapolation from low intensity

Anti-neutrino runs

large angle $v\mu$ come from kaon decays $\rightarrow v\mu$ cross section measurement

Error budget evaluation

Is 1% really feasible? Not demonstrated yet, but from a preliminary discussion:

Detects **simultaneously** the neutrino interaction at the neutrino detector and the associated lepton at the neutrino source

Event-by-event tagging

Simultaneous observation of the positron and the neutrino interaction

Direct tag of the neutrino flavor, veto beam v_{e} , reconstruct v_{e} energy

Delayed time coincidence: $|\delta t - \Delta/c| < \delta$

The double tag mode can work if we **can beat the number of accidentals**:

$$
\mathcal{A} = \boxed{N_K \cdot \text{BR}(K_{e3})(1 - e^{-\frac{\gamma_K c \tau_K}{L}}) \epsilon \left\{\text{bkg}\right\} \cdot \delta \simeq 2 \times 10^7 \frac{\delta}{T_{extr}}
$$
\n\nposition rate per extraction\n\n
$$
\text{fake } e^+ \text{ per extraction} \quad \text{ extraction time}
$$

For δ ~ 1ns, requires T_{extr} ~1s

Close, but still not ready to fly

The proton extraction time must be \sim 1s Must rely on static focusing (Li lenses?) Reduction of flux (by a factor of \sim 10)

The tagger and neutrino detector time resolution must be ~1ns

At the limit of current technologies for neutrino detectors (sync OK: direct optical link at ~100m baseline)

Cosmic background at the neutrino detector increases

Can be a problem at small overburden (active veto ?)

Small kaon momentum bite to improve the neutrino energy reconstruction **Can imply further reduction of the flux**

Conclusions

The next generation of CPV experiments will have to deal with a level of control of systematics O(1%), unprecedented for neutrino physics

Facing the cost of these facilities, new approaches to reduce the systematic budget are extremely cost effective to extend their physics reach

A "positron monitored" Ke3 source of $v_{\rm e}$

- can be built using today detector technology and accelerators available at CERN, Fermilab and JPARC

- offers a O(1%) cross-section measurement with a neutrino detector of moderate mass (~500t)

- is a first step toward a flavor tagged beam