

Coherent Neutrino-Nucleus Scattering with the CRESST experiment

Lucia Canonica INFN - LNGS

Bologna, 9-10 November 2015

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

Coherent Neutrino-Nucleus Scattering

• Neutrino interacts with nucleus through neutral current

- CNNS has never been observed.
 - Largest σ in Supernovae dynamics.
 - Ideal for studying active sterile transformation.
 - Irreducible background for WIMP searches.

CNNS detection

- Neutrino (E<50 MeV) scatters coherently off all nucleons —> cross section enhancement.
- Signature: low-energy nuclear recoil (sub-keV to keV)

- Detector requirements are extremely challenging:
 - Low backgrounds: <10⁻² c/(keV kg d)
 - Large mass: 1kg 1ton
 - Extremely low threshold

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2}\right) F(q^2)^2$$

- σ: Cross Section
- T: Recoil Energy
- E_v: Neutrino Energy

- G_F: Fermi Constant
- Qw: Weak Charge
- M_A: Atomic Mass

Similar signature as nuclear recoil from WIMP interaction

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

- Underground installation
- Ultra-low background environment
- Cryogenic detectors (10-15mK)

7

CRESST detectors

• When a bolometer is an efficient scintillator at low temperature, part of the energy deposited in the absorber is converted into light, the remaining in phonons.

100

150

200

) 250 Time [ms]

50

Event type discriminated by different light yield.

$$LY = \frac{Light\,Signal}{Heat\,Signal}$$

Lucia Canonica - INFN LNGS

-50

0

0.4

0.2

CRESST module

Lucia Canonica - INFN LNGS

CNNS @ CRESST

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

CRESST-II results

- Data taking from July 2013 to August 2015 with 18 modules
- 2015 result: "Lise"
- 2014 result: "TUM40"

Lise result

Module with **lowest threshold**:

- radiopurity: ~ 8.5 c/(keV kg day)
- excellent resolution ($\sigma \sim 60eV$)
- threshold: 307 eV
- 52 kg days of exposure

G. Angloher et al. arXiv:1509.01515

Currently best limit for low mass WIMPs

TUM 40 result

Fully scintillating housing. Module with best overall performance:

- excellent radiopurity ~ 3.5 c/
(keV kg day)

- excellent resolution (σ ~100 eV)
- Threshold: 600 eV
- 29 kg days of exposure

Explored new parameter space for WIMP masses < 3 GeV/c² with single detector module.

Angloher et al., EPJ C 74:3184 (2014)

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

CRESST: What's next?

CRESST: What's next?

CRESST: What's next?

CRESST-III

CRESST-III

- Threshold achieved: E_{th}= 45-60 eV
- Improvement by factor ~ 6 compared to best CRESST-II detector (E_{th} ~ 300 eV).

Threshold design goal (<100eV) reached with prototype detector

CRESST-III (Phase 1)

ASSUMPTIONS:

- 10 modules of 25g CaWO₄
- E_{th} = 100eV
- Light detector improved by factor 2 (due to smaller volume)
- 2x more detected light: due to thin crystal
- TUM40 radiopurity

CRESST-III (Phase 2)

ASSUMPTIONS:

100

- 10 modules of 25g CaWO₄
- E_{th} = 100eV
- Light detector improved by factor 2 (due to smaller volume)
- 2x more detected light: due to thin crystal
- TUM40 radiopurity
 factor of 100 in β/γ background

Approaching the neutrino floor in the next ~5y

- Coherent Neutrino Nucleus Scattering (CNNS)
- The CRESST experiment
- CRESST-II results
- Perspective for CRESST-III
- In reach of CNNS with CRESST

In reach of neutrino floor

Relevant neutrino fluxes which are backgrounds to direct DM detection experiments are mainly solar and atmospheric

CNNS as background for DM searches

Exclusion limits

Detection of CNNS from atmospheric and solar neutrinos

- Realistic and reasonably improved detector performance w.r.t. TUM40:
 - factor of 2 in energy resolution and threshold
 - factor of 3 in light output
 - factor of 100 in β/γ background

 50 kg-years: high performance detectors, 2 years of running with ~1000 modules

Exclusion limits

Detection of CNNS from atmospheric and solar neutrinos

- Realistic and reasonably improved detector performance w.r.t. TUM40:
 - factor of 2 in energy resolution and threshold
 - factor of 3 in light output
 - factor of 100 in β/γ background

50 kg-years: high performance detectors, 2-years of running with ~1000 modules
 500

A. Gütlein et al, Astr. Phys. 69 (2015) 44-49

CNNS @ CRESST

Conclusions

- CRESST has a leading role in the field of dark matter searches.
- The excellent detector performance (energy threshold and energy resolution) are giving the opportunity to study the solar neutrino coherent scattering.
- Reasonable improved CRESST-II like detectors can approach the neutrino floor (100 modules x 25g, 2 years of data taking).
- Detection of CNNS is in reach for a setup with ~500 modules x 25g.

TUM 40 radiopurity

- CaWO₄-crystal **production at TU Munich**
- Unprecedented radiopurity (by factor 2-10)
- Room for further improvements

Average rate: ~3.5 counts / [kg keV day]

Gamma-lines from **cosmogenic** activation

Excellent resolution: $\sigma \approx 100 \text{eV}$

SOX-like source

