# Opportunities with upgraded T2K near/intermediate detectors: cross sections and beyond



### **Neutrino cross sections** Bologna 9-10 Novembre 2015

### A. Longhin (INFN-LNF) for T2K Italia

A. Longhin (LNF)

# The upgrade

- JPARC Main Ring upgrade approved:  $7.8 \times 10^{21}$  POT (=T2K design), 0.9 MW by 2020
- "T2K×3" (2020-25) phase (2×10<sup>22</sup> POT). Before Hyper-Kamiokande (~2025).
- If sys. < 2-3 % "T2K×3" could give >  $3\sigma$  CPV for any value of  $\theta_{23}$
- Upgrade of near/intermediate detectors **necessary** already from 2020 !



# Importance of cross sections for oscillation physics

Ideally ... in a near-far double detector oscillation experiment neutrino cross sections are **NOT** important:

$$N_{events}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})$$

$$N_{events}^{far}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})P_{osc}(E_{\nu})$$

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = P_{osc}(E_{\nu})$$

A. Longhin (LNF)

# Importance of cross sections

But beams are not monochromatic  $\rightarrow$  we need to determine E<sub>1</sub> event by event

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = \frac{\int \sigma(E_{\nu}')\Phi(E_{\nu}')P(E_{\nu}|E_{\nu}')P_{osc}(E_{\nu}')dE_{\nu}'}{\int \sigma(E_{\nu}')\Phi(E_{\nu}')P(E_{\nu}|E_{\nu}')dE_{\nu}'}$$

Oscillations introduce differences in the flux spectrum: the ratio does not cancel out cross-sections



# Current issues and possible mitigations for T2K $\phi(E_v) \times \sigma(E_v)$

- Different target at N&F (C,H vs O,H)  $\rightarrow$  ("well-defined") H<sub>2</sub>O target @ NEAR
- Different acceptance at N&F
  - model dependency in the not common p- $\theta$  phase space  $\rightarrow 4\pi$  also @ NEAR
- Different flux at N&F due to 1) oscillations (dominant) and 2) finite-distance effects
   → 1) a tunable shape beam at NEAR ! 2) a "not too near" NEAR
- Differences in  $\sigma(v_e) \leftrightarrow \sigma(v_{\mu})$ :  $v_e$  at near is subdominant  $\rightarrow$  not easy just with detector upgrades (but ... refer to the talk by Ludovici)

### Energy reconstruction P(E, |E', )

- Bias, broadening when the reconstruction formula is applied to CC-QE like (non genuine CCQE) events due to π absorption in nuclei (FSI), multi-nucleon interactions → 1) high granularity, low threshold detector 2) neutron tagging (for multi-nucleon processes)
- Different detector technique at N&F: → water Cherenkov (WC) also @ NEAR

A. Longhin (LNF)

### Where we stand: systematics and cross sections

Events prediction at Super-K with ~ 7% accuracy for neutrinos (10% in anti-v mode). Large contribution from difference in nuclear targets between far and near + the effect of the poorly known multi-nucleon cross section

|                                                                          |                    | $\nu_{\mu}\text{sample}$ | $v_{\rm e}$ sample | $\overline{ u}_{\mu}$ sample | $\overline{ u}_e$ sample |
|--------------------------------------------------------------------------|--------------------|--------------------------|--------------------|------------------------------|--------------------------|
| ν flux                                                                   |                    | 16%                      | 11%                | 7.1%                         | 8%                       |
| $\boldsymbol{\nu}$ flux and                                              | w/o ND measurement | 21.8%                    | 26.0%              | 9.2%                         | 9.4%                     |
| cross section                                                            | w/ ND measurement  | 2.7%                     | 3.1%               | 3.4%                         | 3.0%                     |
| v cross section due to difference of<br>nuclear target btw. near and far |                    | 5.0%                     | 4.7%               | 10%                          | 9.8%                     |
| Final or Secondary<br>Hadronic Interaction                               |                    | 3.0%                     | 2.4%               | 2.1%                         | 2.2%                     |
| Super-K detector                                                         |                    | 4.0%                     | 2.7%               | 3.8%                         | 3.0%                     |
| total                                                                    | w/o ND measurement | 23.5%                    | 26.8%              | 14.4%                        | 13.5%                    |
|                                                                          | w/ ND measurement  | 7.7%                     | 6.8%               | 11.6%                        | 11.0%                    |

 $2014 \rightarrow 2015$ 

Many improvements

\* 2014 error does not include the effect of multi-

nucleon at the neutrino-nucleus interaction.

A. Longhin (LNF)

![](_page_6_Figure_0.jpeg)

# **Limitations of ND280**

- Different target
  - large migrations between scintillator and water layers. Ambiguity on the target nucleus
- Different Acceptance
- External backgrounds (especially for  $v_e$ !)

![](_page_7_Figure_5.jpeg)

0

A. Longhin (LNF)

# Specific proposals synopsis

| Improvements/<br>name | High<br>granularity,<br>final state<br>precision | Water<br>target | Acceptance,<br>purity | same flux<br>shape at<br>N&F   | Same<br>detector<br>at NEAR<br>and FAR | Status,<br>notes   |
|-----------------------|--------------------------------------------------|-----------------|-----------------------|--------------------------------|----------------------------------------|--------------------|
| WAGASCI               | Ν                                                | Y               | Y                     | N                              | N                                      | In<br>construction |
| High pressure<br>TPC  | Y                                                | Ν               | Y                     | Ν                              | Ν                                      | discussion         |
| TITUS                 | N                                                | Y               | Y/N                   | Y                              | Y                                      | proposal           |
| vPRISM                | Ν                                                | Y               | Y/N                   | Y the<br>oscillated<br>one (!) | Y                                      | Lol                |

# WAGASCI

Addresses the issues of: acceptance, target definition, external backgrounds.

Goal: 3 % error on cross section ratio (water/CH)

Plastic scintillators + WLS fibers in arrays (water/plastic) filled. Hamamatsu MPPC (SiPM) readout.

Being constructed close to ND280, INGRID

![](_page_9_Figure_5.jpeg)

Grooves to mechanically connect orthogonal scintillator bars. Shallow enough to allow fiber housing.

A. Longhin (LNF)

![](_page_9_Picture_9.jpeg)

![](_page_9_Figure_10.jpeg)

# WAGASCI

External background: neutrino interactions in the MRD and building walls  $\rightarrow$ Time-Of-Flight system (3 1cm thick scintillator layers). Profits of 50 cm gaps surrounding the central detector

![](_page_10_Picture_2.jpeg)

![](_page_11_Figure_0.jpeg)

A. Longhin (LNF)

# **High pressure TPC**

- No passive material (interactions in the gas)
- Low thresholds (5-10 bar pressure) disentangle multi-nucleon processes from CCQE
- Realistic gases: He, Ne, Ar, CF<sub>4</sub>
- H and D would "by-pass" nuclear physics ... not realistic
- In principle more appealing for the US program (Argon). Difficult to use CO<sub>2</sub>, H<sub>2</sub>O (for water)

![](_page_12_Picture_6.jpeg)

### Taken from F. Sanchez

![](_page_12_Figure_8.jpeg)

# **High pressure TPC**

2 proton final states: observables can discriminate CCQE + Final State Interactions from multi-nucleon interactions ("MEC" or "2p-2h")

![](_page_13_Figure_2.jpeg)

A. Longhin (LNF)

10 Nov. 2015. Bologna. What Next: neutrino cross sections

# **High pressure TPC**

Taken from F. Sanchez

| n <sup>3</sup> | 4                            | CC events a                   | CC events assuming a 8m <sup>3</sup> detector & full FV. |                                |  |  |  |
|----------------|------------------------------|-------------------------------|----------------------------------------------------------|--------------------------------|--|--|--|
| (2x2 r         | 2x2x2 m <sup>3</sup><br>20°C | 5 bars                        | 10 bars                                                  |                                |  |  |  |
| 5              |                              | Цa                            | 6.65 kg                                                  | 13.3 kg                        |  |  |  |
| r a            |                              | пе                            | 520 evt/10 <sup>21</sup> pot                             | 1040 evt/10 <sup>21</sup> pot  |  |  |  |
| 5% fo          | Ne                           | 32.5 kg                       | 67.1 kg                                                  |                                |  |  |  |
|                |                              | 2543 evt/10 <sup>21</sup> pot | 5086 evt/10 <sup>21</sup> pot                            |                                |  |  |  |
| ance ~4        | Ar                           | 66.5 kg                       | 133 kg                                                   |                                |  |  |  |
|                |                              | 5203 evt/10 <sup>21</sup> pot | 10406 evt/10 <sup>21</sup> pot                           |                                |  |  |  |
|                |                              | 146.3 kg                      | 293 kg                                                   |                                |  |  |  |
| ept            | V                            |                               | 11450 evt/10 <sup>21</sup> pot                           | 22893 evt/10 <sup>21</sup> pot |  |  |  |
| U<br>U         | 1                            |                               |                                                          |                                |  |  |  |
| ∢              | - /.                         | Expected                      | Expected ~1.6 10 <sup>21</sup> pot/year for ~4 years     |                                |  |  |  |

### Hybrid schemes: WAGASCI + TPC rearrangement + HP-TPC

![](_page_15_Figure_1.jpeg)

# TITUS

Tokai Intermediate Tank with Unoscillated Spectrum

- 2kt Gd doped (0.1%) water Cherenkov
- $\sim$  2 km from J-PARC, 2.5° off-axis
- Magnetized downstream Muon Range Detector (MRD)
- Small side MRD

![](_page_16_Figure_6.jpeg)

0.1% Gd doping:

- 49000 b vs 0.3 b (H)
- 8 MeV  $\gamma$  (4-5 MeV visible)
- 90% capture efficiency

### NB. > 2018 also SuperKamiokande planned to become Gd-doped (EGADS demonstrator)

Same target, similar acceptance, same flux, sensitivity to multi-nucleon with n-tagging

A. Longhin (LNF)

# TITUS: MEC with neutron tagging

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

#### <neutrons>

| $v_{\mu}$ CCQE:            | $v_{\mu} + n \rightarrow \mu^{-} + p$                            | 0   |
|----------------------------|------------------------------------------------------------------|-----|
| $\overline{v}_{\mu}$ CCQE: | $\overline{\nu}_{\mu}$ + p $\rightarrow \mu^{+}$ + n             | 1   |
| $v_{\mu}$ MEC:             | ν <sub>μ</sub> + (n+n) → μ⁻ + p + n                              | 0.2 |
| Vu MEC:                    | $\overline{\nu}_{\mu}$ + (p + p/n) $\rightarrow \mu^+$ + n + p/n | 1.8 |

Clear n signals can be modified by nuclear effects: re-scattering, charge exchange and absorption in the nuclear medium

![](_page_17_Figure_6.jpeg)

A. Longhin (LNF)

# TITUS

### anti-nu mode

![](_page_18_Figure_2.jpeg)

A. Longhin (LNF)

# TITUS + HyperK: impact on $\delta_{CP}$

![](_page_19_Figure_1.jpeg)

A. Longhin (LNF)

### R&D for innovative photosensors (LAPPD) within ANNIE at FNAL Accelerator

LAPPDs

Accelerator Neutrino Neutron Interaction Experiment (1504.01480)

### http://psec.uchicago.edu

# The Large Area Picosecond Photodetectors (LAPPD):

Large, flat panel, (multi-channel plate) MCP-based photosensors. Use Atomic Layer Deposition.

<50 psec time resolutions and < 1cm spatial resolutions

Based on new, potentially economical industrial processes

LAPPD design includes a working readout system

Phase II request for \$3M for commercialization by Incom, Inc approved

![](_page_20_Picture_9.jpeg)

QMUL, 18-19 Dec 2014

![](_page_20_Picture_11.jpeg)

![](_page_20_Picture_12.jpeg)

Francesca Di Lodovico (QMUL)

5

A. Longhin (LNF)

# vPRISM

Extract the energy dependence by measuring the rates and final state kinematics over a range of off-axis angles

![](_page_21_Figure_2.jpeg)

Detector moved up and down a shaft ~ 1 km baseline: span: 1-4 degrees

WC detector: 6 m diameter x 10 m height 40 % photo-coverage: 3120 8" PMT or 7385 5" PMT

![](_page_21_Figure_5.jpeg)

A. Longhin (LNF)

### vPRISM

Derive linear combinations of the fluxes at different off-axis angles to produce a flux that closely matches the predicted oscillated flux at Super-K

$$\Phi^{SK}\left(E_{\nu};\theta_{23},\Delta m_{32}^{2}\right)E_{\nu} = \sum_{i=1}^{30}c_{i}\left(\theta_{23},\Delta m_{32}^{2}\right)E_{\nu}\Phi_{i}^{\nu P}(E_{\nu})$$

$$C_{1}^{\frac{1}{9}} + C_{0}^{\frac{1}{9}} + C_{0}^{\frac{$$

A. Longhin (LNF)

+

10 Nov. 2015. Bologna. What Next: neutrino cross sections

# MEC uncertainty with vPRISM

Flux combination to reproduce the oscillated spectrum  $\rightarrow$ reduced impact of multinucleon events on  $\theta_{23}$  ("dipfilling" can be measured)

Multinucleon Feed-down on Oscillated Flux

SK Oscillated Flux

 $E_v \rightarrow E_{rec}$  Smearing

v=0.8 GeV)

1.5

E<sub>v</sub> (GeV)

![](_page_23_Figure_2.jpeg)

 $140 \stackrel{\times 10}{\vdash}^3$ 

120

100

80

60

40

20

0,

0.5

Flux\*E<sub>v</sub>

# vPRISM

Appropriate linear combinations of the measurements in each slice:  $\rightarrow$  "Gaussian" beams at energies between 0.4 and 1.2 GeV

![](_page_24_Figure_2.jpeg)

Predict the effect of non-quasi-elastic scatters in oscillation measurements Provide a constraint on nuclear models of these processes

A. Longhin (LNF)

# Remarks on vPRISM method

Uncertainties in **v cross section modeling** effectively shifted into **flux prediction systematic** uncertainties

Advantages:

- many flux systematic uncertainties cancel
- Hadro-production uncertainties can be measured (to a certain extent) by dedicated experiments (f.e. NA61)

More problematic uncertainties exist. Those affecting the off-axis angle:

- horn current
- proton beam positioning

Impact Super-K and the nuPRISM linear combinations differently.

![](_page_25_Figure_9.jpeg)

A. Longhin (LNF)

# Conclusions

- Main goal is reducing systematics for CP violation in the 2020-25 phase
- Big impact on understanding of GeV neutrino cross-sections thanks to
  - improved acceptance, purity, sensitivity to multi-nucleon effects/FSI.
- Several interesting proposals:
  - **WAGASCI**: already on its way.  $\sigma(H_2O/CH)$  at 3%.
  - TITUS: probably the most "straightforward". R&D on neutron tagging with LAPPD detectors within ANNiE at FNAL.
  - **High Pressure-TPC**: precise measurement of nuclear effects down to very low thresholds. Not ideal for water (better for Ar). Quite challenging, not cheap.
  - vPRISM: interesting idea. Implementation is demanding (excavation, logistics).
- Final note: all these projects subdominant  $v_e$  component  $\rightarrow$  low purity. They miss a real breakthrough for  $v_e l v_\mu$  cross section issue. Alternative solutions (tagged  $v_e$  beams, see talk by Ludovici).

# **Near/Far ratio (TITUS)**

![](_page_27_Figure_1.jpeg)

A. Longhin (LNF)

10 Nov. 2015. Bologna. What Next: neutrino cross sections

# WAGASCI

|          |             | Size                                       | $100 \times 100 \times 200 \text{ cm}^3$ |  |  |
|----------|-------------|--------------------------------------------|------------------------------------------|--|--|
|          |             | Size of the each target part               | 100×100×50 cm <sup>3</sup>               |  |  |
| Central  |             | Target masses (H <sub>2</sub> O, CH)       | 1 ton each                               |  |  |
| detector |             | Size of scintillators in the target region | $100 \times 2.5 \times 0.3 \text{ cm}^3$ |  |  |
|          |             | Size of scintillators for TOF              | $120\times5\times1$ cm <sup>3</sup>      |  |  |
|          |             | Number of channels                         | 10,240                                   |  |  |
|          | Side        | Size                                       | 80×200×300 cm <sup>3</sup>               |  |  |
|          |             | Thickness of iron plates                   | 3 cm (10 planes)                         |  |  |
| MDD      | Downstream  | Size                                       | $400 \times 200 \times 230 \text{ cm}^3$ |  |  |
| MKD      | Downsuleani | Thickness of iron plates                   | 3 cm (10 planes) / 6 cm (10 planes)      |  |  |
|          | Total       | Size of scintillators                      | $200 \times 20 \times 0.7 \text{ cm}^3$  |  |  |
|          | 10141       | Number of channels                         | 1,460                                    |  |  |

noise rate - deltaV

Better Hamamatsu MPPC (Silicon PhotoMultipliers)

![](_page_28_Figure_4.jpeg)

A. Longhin (LNF)

![](_page_29_Figure_0.jpeg)

A. Longhin (LNF)

### Effect of Reduction of Systematic Errors

![](_page_30_Figure_1.jpeg)

50%  $\nu$ - + 50%  $\bar{\nu}$ -mode True  $\delta_{CP} = -90^{\circ}$ , true MH = NH

- Δχ<sup>2</sup> for resolving non-zero δ<sub>CP</sub> vs. POT
- Systematic error size matters!

 $\rightarrow$ T2K measurement of  $\delta_{CP}$  is systematics limited at high statistics

- Sensitivity depends on true value of  $\sin^2 \theta_{23}$  (and  $\delta_{CP}$ , of course)
  - If errors can be reduced to 2%, T2K can make a  $>3\sigma$  measurement of non-zero  $\delta_{CP}$  for any value of sin<sup>2</sup>  $\theta_{23}$  (at  $\delta_{CP} = -90^{\circ}$ , NH)

6/18

La riduzione degli errori sistematici e' fondamentale-> <u>Xsec errors (water, NC, v<sub>e</sub>)</u>

![](_page_30_Picture_10.jpeg)

![](_page_31_Figure_0.jpeg)

A. Longhin (LNF)

- An intermediate phase: "T2K x 3"
  - 3x T2K statistics ( $20 \times 10^{21}$  POT)

![](_page_32_Figure_2.jpeg)

A. Longhin (LNF)

### LOOKING FORWARD

- So far, accumulated ~14% of full T2K projected POT
  - · v-mode: 6.9x10<sup>20</sup> POT. v-mode: 4.0x10<sup>20</sup> POT
  - Short-term: ~1 year Expect ~9.5E20 POT: ~ $2\sigma$  level sensitivity for null  $\overline{v_e}$  app. hypothesis exclusion
    - ~60% chance for 99% CL observation
  - Long-term (full 12K data)
  - Expect ~10 times larger stat. in v-mode data
    - 50% v, 50% v-mode running
  - May exclude  $\delta_{CP}{=}0$  w/  $\gtrsim 90\%$  CL
  - Impact of θ<sub>23</sub> degeneracy
  - ν<sub>µ</sub> disappearance measurement is also important

| 9.5E20 POT        |                                                                 |            |            |  |  |  |  |
|-------------------|-----------------------------------------------------------------|------------|------------|--|--|--|--|
|                   | $\delta_{CP} = -\pi/2$ $\delta_{CP} = 0$ $\delta_{CP} = +\pi/2$ |            |            |  |  |  |  |
| NH [events (sig)] | 8.8 (4.6)                                                       | 10.2 (6.2) | 11.5 (7.8) |  |  |  |  |
| IH [events (sig)] | 9.9 (5.9)                                                       | 11.5 (7.7) | 12.9 (9.3) |  |  |  |  |

![](_page_33_Figure_12.jpeg)

### <u>Aspettando gli esperimenti della prossima</u> <u>generazione si puo' fare di piu ?</u>

A. Longhin (LNF)

# vPRISM

TABLE III. Expected number of events in the fiducial volume of nuPRISM for  $4.5\times10^{20}$  POT, separated by true interaction mode in NEUT.

| Int. mode    | $1-2^{\circ}$ | $2-3^{\circ}$ | $3-4^{\circ}$ |
|--------------|---------------|---------------|---------------|
| CC inclusive | 1105454       | 490035        | 210408        |
| CCQE         | 505275        | 271299        | 128198        |
| $CC1\pi^+$   | 312997        | 111410        | 39942         |
| $CC1\pi^0$   | 66344         | 23399         | 8495          |
| $\rm CC Coh$ | 29258         | 12027         | 4857          |
| NC $1\pi^0$  | 86741         | 32958         | 12304         |
| NC $1\pi^+$  | 31796         | 11938         | 4588          |
| NC Coh       | 18500         | 8353          | 3523          |

![](_page_35_Figure_0.jpeg)

A. Longhin (LNF)

# ND280 target

![](_page_36_Figure_1.jpeg)

A. Longhin (LNF)

10 Nov. 2015. Bologna. What Next: neutrino cross sections

# ND280 P0D target

![](_page_37_Figure_1.jpeg)

A. Longhin (LNF)

### Interactions in the ND280 TPC gas

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

Ar : CF<sub>4</sub> : iC<sub>4</sub>H<sub>10</sub> (95:3:2)

A. Longhin (LNF)

![](_page_39_Figure_0.jpeg)

# Impact on $\delta_{CP}$

(%)

| Systematic        | $N_{FHC}^{HK}$ | $N_{FHC}^{TITUS}$ | $N_{RHC}^{HK}$ | $N_{RHC}^{TITUS}$ | $R_{FHC}$ | $R_{RHC}$ | $\frac{(R_{RHC})}{(R_{FHC})}$ |
|-------------------|----------------|-------------------|----------------|-------------------|-----------|-----------|-------------------------------|
| Interaction Syst. | 24.1           | 24.4              | 11.4           | 12.0              | 4.2       | 4.5       | 1.9                           |
| Flux Syst.        | 6.5            | 6.6               | 6.0            | 6.3               | 0.9       | 1.0       | 1.3                           |
| Total Syst.       | 21.8           | 21.9              | 14.2           | 14.4              | 4.5       | 4.3       | 2.4                           |
| Statistical       | 2.5            | 0.1               | 3.2            | 0.2               | 2.5       | 3.1       | 4.3                           |
| Stat. + Syst.     | 21.4           | 21.4              | 11.8           | 11.2              | 5.1       | 5.6       | 4.9                           |

![](_page_40_Figure_2.jpeg)