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● JPARC Main Ring upgrade approved: 7.81021 POT (=T2K design), 0.9 MW by 2020
● “T2K3” (2020-25) phase (21022 POT). Before Hyper-Kamiokande (~2025).
● If sys. < 2-3 % “T2K3” could give > 3 CPV for any value of 

23

● Upgrade of near/intermediate detectors necessary already from 2020 !

The upgrade

T2K3
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Importance of cross sections for 
oscillation physics

Ideally ... in a near-far double detector oscillation experiment 
neutrino cross sections are NOT important:
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But beams are not monochromatic →  we need to determine E

 event by event

Oscillations introduce differences in the flux spectrum: 
the ratio does not cancel out cross-sections

We need: (E
ν
 ), (E

ν
 ), P(E

ν
 |E' 

ν
)

Importance of cross sections

“Cross section”
      related
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Current issues and possible mitigations for T2K
E


E




● Different target at N&F (C,H vs O,H) →  (“well-defined”) H
2
O target @ NEAR

● Different acceptance at N&F
● model dependency in the not common p-θ phase space  →  4 also @ NEAR

● Different flux at N&F due to 1) oscillations (dominant) and 2) finite-distance effects
→ 1) a tunable shape beam at NEAR ! 2) a “not too near” NEAR

● Differences in 
e
 ↔ 




e 
at near is subdominant → not easy just with 

detector upgrades (but … refer to the talk by Ludovici)

Energy reconstruction P(E

 |E'


 )

● Bias, broadening when the reconstruction formula is applied to CC-QE like 
(non genuine CCQE) events due to  absorption in nuclei (FSI), multi-nucleon 
interactions→ 1) high granularity, low threshold detector 2) neutron tagging (for 
multi-nucleon processes)

● Different detector technique at N&F: → water Cherenkov (WC) also @ NEAR
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Where we stand: systematics and cross sections
Events prediction at Super-K with ~ 7% accuracy for neutrinos (10% in anti- mode). 
Large contribution from difference in nuclear targets between far and near 
+ the effect of the poorly known multi-nucleon cross section
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The T2K near detector

ND280
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Limitations of ND280
● Different target

– large migrations between scintillator 
and water layers. Ambiguity on the 
target nucleus

● Different Acceptance

● External backgrounds (especially for e!)


e
 signal

background
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Specific proposals synopsis

Improvements/
name

High 
granularity, 
final state 
precision

Water 
target

Acceptance, 
purity 

same flux 
shape at   

N&F 

Same 
detector 
at NEAR 
and FAR

Status, 
notes

WAGASCI N Y Y N N In 
construction

High pressure 
TPC

Y N Y N N discussion

TITUS N Y Y/N Y Y proposal

PRISM N Y Y/N
Y the 

oscillated 
one (!)

Y LoI
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WAGASCI
Addresses the issues of: acceptance, target 
definition, external backgrounds. 

Goal: 3 % error on cross section ratio (water/CH)

Plastic scintillators + WLS fibers in arrays 
(water/plastic) filled. Hamamatsu MPPC (SiPM) 
readout.

Being constructed close to ND280, INGRID

Water of CH filling

Grooves to mechanically connect orthogonal 
scintillator bars. Shallow enough to allow fiber housing.
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WAGASCI

1.6 degrees off-axis

External background: neutrino interactions in the MRD and building walls → 
Time-Of-Flight system (3 1cm thick scintillator layers). Profits of 50 cm gaps surrounding the 
central detector
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WAGASCI
acceptance,

purity

Very good acceptance 
also at high angles 
thanks to 3D structure.

Muon efficiency
> 5 planes

Decrease of efficiency at large angles due to 
minimal plane cut (backward tracks are “soft”!), 
not geometry.
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High pressure TPC
● No passive material (interactions in the gas)
● Low thresholds (5-10 bar pressure)

disentangle multi-nucleon processes from CCQE
● Realistic gases: 

He, Ne, Ar, CF
4  

● H and D would  “by-pass” nuclear physics … not realistic

● In principle more appealing for the US program 
(Argon). Difficult to use CO

2
, H

2
O (for water) Taken from 

F. Sanchez
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High pressure TPC
2 proton final states: observables can discriminate CCQE + Final 
State Interactions from multi-nucleon interactions (“MEC” or “2p-2h”)

Taken from 
F. Sanchez
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High pressure TPC Taken from 
F. Sanchez
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Hybrid schemes:
 WAGASCI + TPC rearrangement + HP-TPC
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TITUS
● 2kt Gd doped (0.1%) water Cherenkov
• ∼2 km from  J-PARC, 2.5° off-axis
•  Magnetized downstream Muon Range Detector (MRD)
•  Small side MRD

0.1% Gd doping: 
● 49000 b vs 0.3 b (H)
● 8 MeV  (4-5 MeV visible)
● 90% capture efficiency

NB. > 2018 also SuperKamiokande planned 
to become Gd-doped (EGADS demonstrator)

Same target, similar acceptance, same flux, 
sensitivity to multi-nucleon with n-tagging

Tokai Intermediate Tank with 
Unoscillated Spectrum
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<neutrons>
0
1

0.2
1.8

TITUS: MEC with 
neutron tagging

Clear n signals can be modified by 
nuclear effects: re-scattering, charge 
exchange and absorption in the 
nuclear medium

Neutron tagging offers a powerful extra-handle for discrimination



cont.



cont.
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TITUS
1 ring  selection: neutrino contamination 23 → 8% with neutron tagging

anti-nu mode

Improvement of CCQE 
purity with n-tagging 
→ better energy 
reconstruction

nu mode
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TITUS + HyperK: impact on 
CP
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R&D for innovative photosensors (LAPPD) 
within ANNIE at FNAL Accelerator Neutrino Neutron 

Interaction Experiment (1504.01480)

http://psec.uchicago.edu
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PRISM

Detector moved up and down a shaft
~ 1 km baseline: span: 1-4 degrees

WC detector: 6 m diameter x 10 m height
40 % photo-coverage: 3120 8” PMT or 7385 5” PMT

Extract the energy dependence by measuring the 
rates and final state kinematics over a range of 
off-axis angles
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PRISM
Derive linear combinations of the fluxes at different off-axis angles to produce a flux 
that closely matches the predicted oscillated flux at Super-K



24A. Longhin (LNF)                          10 Nov. 2015. Bologna. What Next: neutrino cross sections

MEC uncertainty with PRISM

Flux combination to reproduce 
the oscillated spectrum → 
reduced impact of multi-
nucleon events on 

23
 (“dip-

filling” can be measured)

ND280

nuPRISM
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PRISM
Appropriate linear combinations of the measurements in each slice:
→”Gaussian” beams at energies between 0.4 and 1.2 GeV

Predict the effect of non-quasi-elastic scatters in oscillation measurements 
Provide a constraint on nuclear models of these processes
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Remarks on PRISM method

Uncertainties in  cross section modeling 
effectively shifted into flux prediction 
systematic uncertainties 

Advantages: 
● many flux systematic uncertainties cancel
● Hadro-production uncertainties can be 

measured (to a certain extent) by 
dedicated experiments (f.e. NA61)

More problematic uncertainties exist.
Those affecting the off-axis angle: 

● horn current 
● proton beam positioning 

Impact Super-K and the nuPRISM linear 
combinations differently.

Largely correlated

Largely uncorrelated
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Conclusions
● Main goal is reducing systematics for CP violation in the 2020-25 phase
● Big impact on understanding of GeV neutrino cross-sections thanks to 

– improved acceptance, purity, sensitivity to multi-nucleon effects/FSI.

● Several interesting proposals:

– WAGASCI: already on its way. (H2O/CH) at 3%.

– TITUS: probably the most “straightforward”. R&D on neutron tagging with LAPPD 
detectors within ANNiE at FNAL.

– High Pressure-TPC: precise measurement of nuclear effects down to very low 
thresholds. Not ideal for water (better for Ar). Quite challenging, not cheap.

– PRISM: interesting idea. Implementation is demanding (excavation, logistics).

● Final note: all these projects subdominant e component → low purity. They 
miss a real breakthrough for e/ cross section issue. Alternative 

solutions (tagged e beams, see talk by Ludovici).
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Near/Far ratio (TITUS)
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WAGASCI

Better Hamamatsu MPPC 
(Silicon PhotoMultipliers) 
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● An intermediate phase: “T2K x 3”
– 3x T2K statistics (20 1021 POT)
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PRISM 
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ND280 target
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ND280 P0D target
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Interactions in the ND280 TPC gas

Ar : CF
4
 : iC

4
H

10
 (95:3:2)
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Impact on 
CP

(%)
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