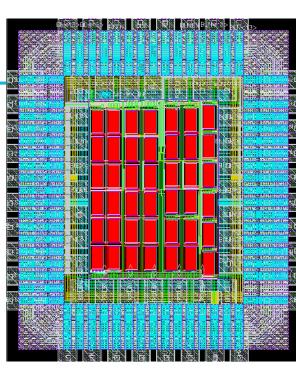


INNOVATIVE MULTI-CHIP SYSTEM FOR MULTI-PURPOSE PATTERN RECOGNITION TASKS (IMPART)

Alberto Stabile Oct. review

AM CHIP DEMONSTRATOR

A new little **AM07a already** designed in June 2015


- Silicon area: 0.6 mm²
- Memory depth: ~50 kbit (336 patterns)
- Main aim: characterize performance technology at 28 nm
- Characterization in Milano in Nov 2015

Next chip: AM07b will be submitted in Feb 2016

- Memory depth: ~5.5 Mbit (38 kpatterns)
- Mixed approach: full-custom + standard cells
- Improve power save: New cell tech

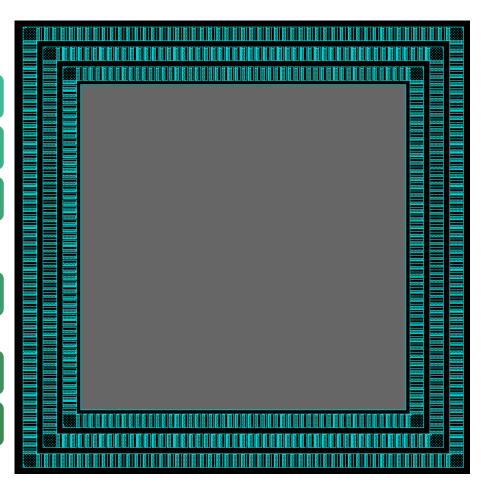
After 2017-2018: new larger chip AMCHIP2020

(i.e., 0.5 Mpatterns of 8×16 bits)

AM07B WIRE BOND

Memory depth: 5.48 Mbit (38 kpatterns)

Architecture: two independent AMCORE


- First core for XORAM
- Second core for new low power cells

598 pads (PAD50GU)

• 347 signals – 251 power

Ext. cost 97 k€

Core area 2600 um x 2600 um

AM07B FLIP CHIP

Area: 10 mm²

Memory depth: 5.48 Mbit (38 kpatterns)

Architecture: two independent AMCORE

- First core for XORAM
- Second core for new low power cells

400 bumps

• 347 signals bumps – 53 power bumps

Ext. cost 97 k \in + 10 k \in for the bumps

Max current density at 125 degrees: 4.19 A

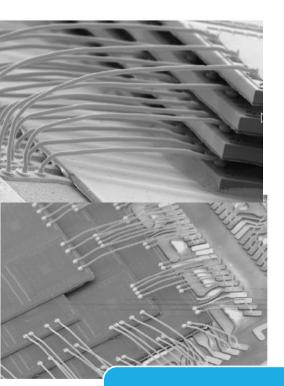
X \sim - 7 m $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

AM07B OPEN QUESTIONS

More signals IO cells? Not compatible with Zynq 100

How many cells?

- AM07a XORAM design by Alberto & Federico
- XORAM optimized by Alberto & Luca
- NOR cells studied by Marcello & Federico


Package & bonding method:

- Flip chip?
- Wire bonding?

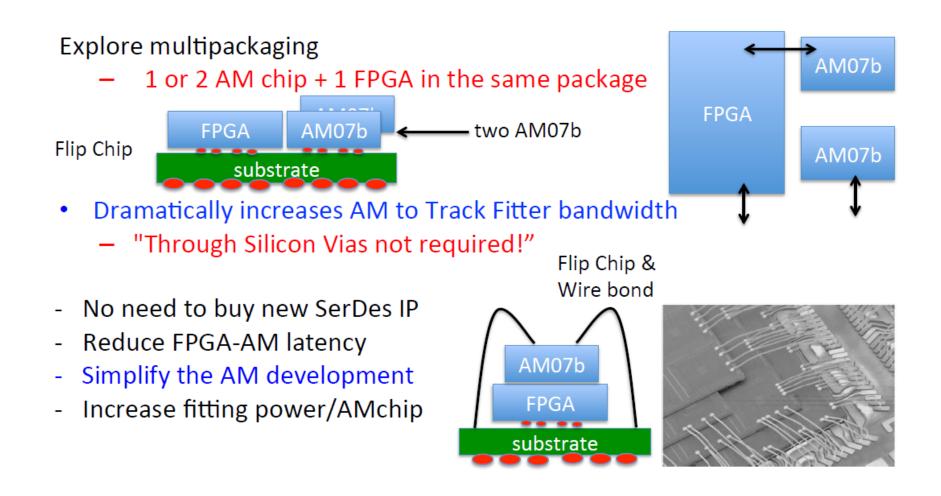
FPGA choice:

- Kintex 325T
- Zynq 100
- Ultrascale?

MULTI PACKAGE AND POWER CONSIDERATIONS

3D assembly technology studies:

- Choose technology which optimize power consumption
- Electrical and thermal 3D simulations needed
- Design and test of the package
- Milestone & deliverable in Work Package 2 (WP2)


Support by **IMEC** (a micro- and nanoelectronics research center with headquarters in Leuven, Belgium)

broad expertise in multi-chip package technologies

Demonstrate potentiality: AM chip v.7 consuming less than 0.3 W

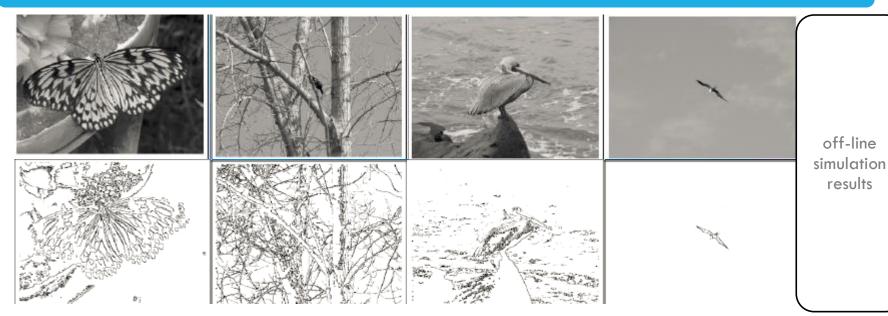
In the future, larger area AM chip will have a still manageable consumption of a few watts (less than FPGA power consumption)

MULTI PACKAGE STUDIES

FPGA COSTS

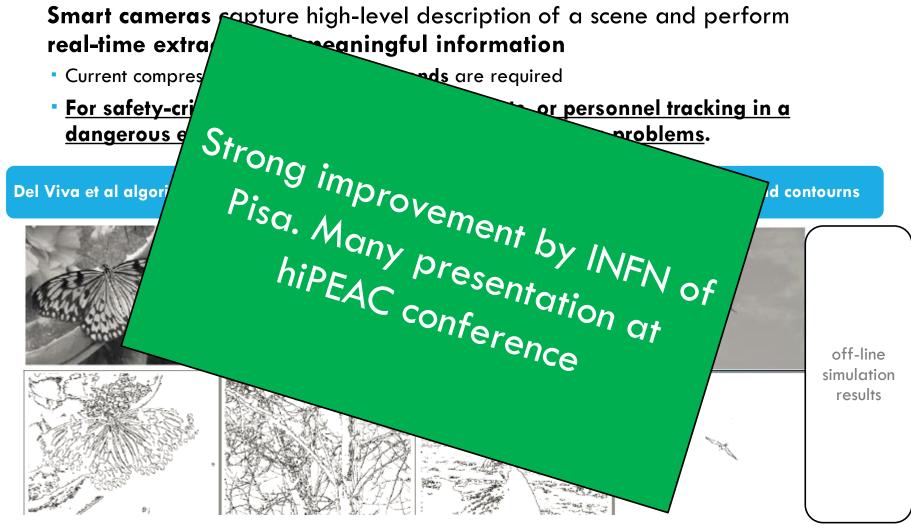
	Maximum Price	Minimum Price	Difference	Die Price	Ext die price (with the avg of package prices: 28% of minimum price)	
XC7A100T-DIE0628	\$242.00	\$183.00	76%		\$51.24	\$53.24
XC7K160T-DIE4058	\$409.00	\$198.00	48%		\$55.44	\$89.98
XC7K325T-DIE4058	\$1,843.78	\$854.00	46%	\$211.20		
XC7K70T-DIE4058	\$225.00	\$113.00	50%		\$31.64	\$49.50
XC7V585T-DIE4058	6,038.60	4,830.41	80%		\$1,352.51	\$1,328.49
XC7VX690T-DIE4058	\$11,151.00	\$7,757.00	70%		\$2,171.96	\$2,453.22
XC7Z010-DIE0628	\$72.00	\$53.00	74%		\$14.84	\$15.84
XC7Z020-DIE0628	\$154.00	\$98.00	64%		\$27.44	\$33.88
XC7Z030-DIE4058	\$456.00	\$219.00	48%		\$61.32	\$100.32
XC7Z030-DIE4378	\$456.00	\$219.00	48%		\$61.32	\$100.32
XC7Z045-DIE4058	\$2,512.00	\$1,060.00	42%		\$296.80	\$552.64
XC7Z100-DIE4058	\$4,727.00	\$3,635.00	77%	\$326.00	\$1,017.80	\$1,039.94

DEVICES RESOURCES

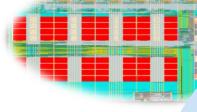

	ХС7К70Т	XC7K160T	XC7K325T	Z-7010	Z-7020	Z-7030	Z-7045	Z-7100
Logic Cells	65,600	126,240	326,080	28K	85k	125k	350k	444k
BlockRAM (Kb)	4,860	11,700	16,020	240	560	1060	2180	3020
DSP Slices	240	600	840	80	220	400	900	2020
PCIe® Gen2 Blocks	1	1	1					
GTX Transceivers	8	8	16	0	0	4	16	16
I/O Pins	300	400	500					
Max Power Consumption			12 W	1.5 W		3 W		

COMPUTER VISION FOR SMART CAMERAS AND MEDICAL IMAGING APPLICATIONS

Smart cameras capture high-level description of a scene and perform real-time extraction of meaningful information


- Current compression algorithms: few seconds are required
- For safety-critical applications (e.g., transports, or personnel tracking in a dangerous environment), latency could lead to serious problems.

Del Viva et al algorithm¹ studied how to reproduce initial stage of the brain visual processing: find contourns


¹M. Del Viva, G. Punzi, and D. Benedetti. Information and Perception of Meaningful Patterns. PloS one 8.7 (2013): e69154.

COMPUTER VISION FOR SMART CAMERAS AND MEDICAL IMAGING APPLICATIONS

¹M. Del Viva, G. Punzi, and D. Benedetti. Information and Perception of Meaningful Patterns. PloS one 8.7 (2013): e69154.

RESEARCH UNITS DESCRIPTION AND DUTIES

INFN (Sezione di Milano) **Principal Investigator: Alberto Stabile (100%)** Age 31

• WP1: AM chip design and simulation

The 3 laboratories are funded by the FTK project and will provide their facilities for these new developments. The costs for the IMPART project will be used to fabricate the new IMPART system. External collaborations

IAPP EU projectLPNHE (Paris)

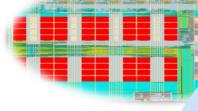
• EMC S.r.l.

INFN (LNF)

Group team leader: Matteo Beretta (30%)

Age 45

• WP2: System in Package (SiP) design, simulation, and tests


INFN (Sezione di Pisa)

Group team leader: Calliope L. Sotiropoulou (50%) Age 33

• WP3: Smart Cameras and DNA sequencing

RESEARCH UNITS DESCRIPTION AND DUTIES

INFN (Sezione di Milano) **Principal Investigator: Alberto Stabile (100%)** Age 31

• WP1: AM chip design and simulation

The 3 laboratories are funded by the FTK project and will provide their facilities for these new developments. The costs for the IMPART project will be used to fabricate the new IMPART system. External collaborations

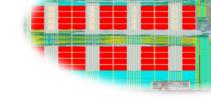
• IAPP EU project

• LPNHE (Paris)

• EMC S.r.l.

Group team, ader: Matteo Beretta De

Age 45


INFN

INFN (Sezione di Pisa) Group team leader:

- P. Luciano (80%) Age 27
- WP3: Smart Cameras and DNA sequencing

RESEARCH UNITS DESCRIPTION AND DUTIES

INFN (Sezione di Milano) Principal Investigator: Alberto Stabile (100%) Age 31

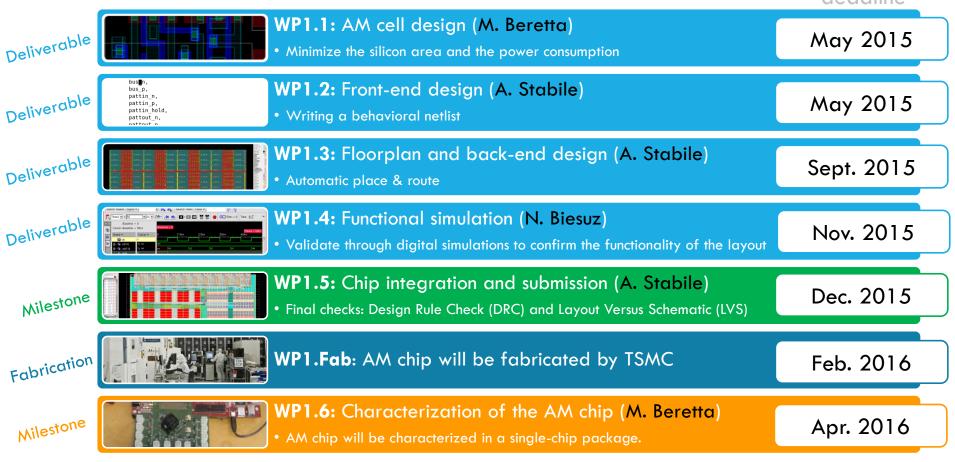
- WP1: AM chip design and simulation
- WP2: System in Package (SiP) design,

The 3 laboratories are funded by the FTK project and will provide their facilities for these new developments. The costs for the IMPART project will be used to fabricate the new IMPART system.

INFN (Sezione di Pisa)

Group team leader: P. Luciano (80%) Age 27

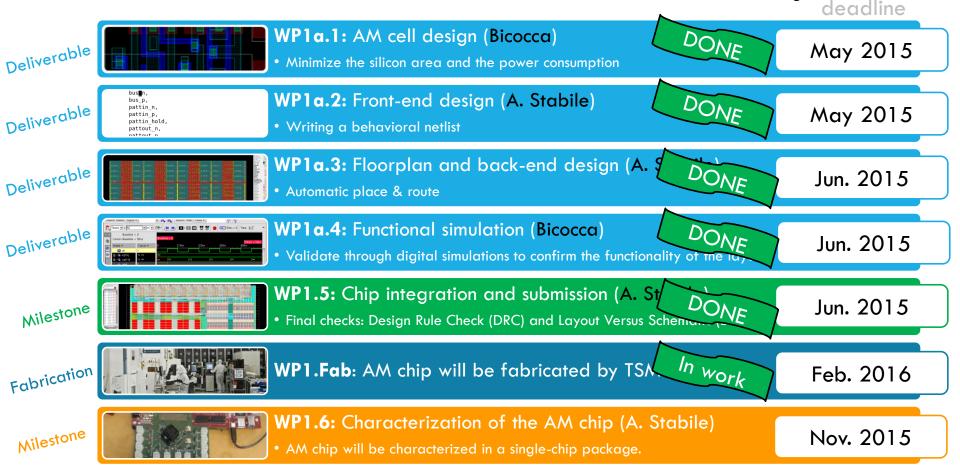
• WP3: Smart Cameras and DNA sequencing



WP1. AM CHIP DESIGN AND SIMULATION

Alberto Stabile (INFN – Milano)

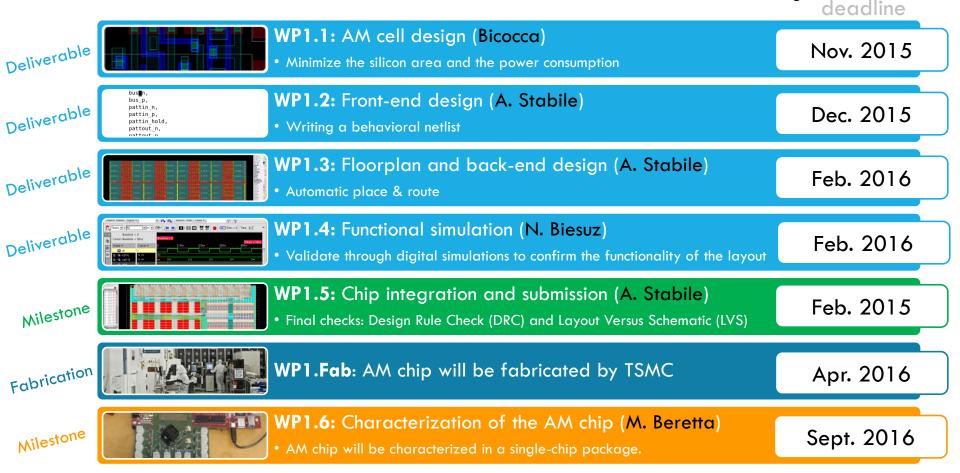
This work package consists in the **design of the Associative Memory ASIC** in a standard **28 nm CMOS** process. Starting time


Starting time: Jan. 2015 deadline

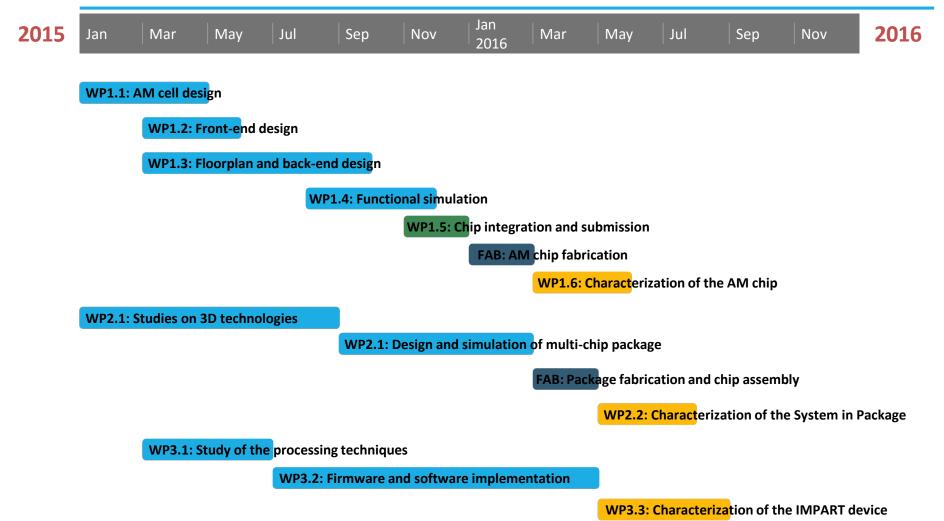
WP1A. AM CHIP DESIGN AND SIMULATION

Alberto Stabile (INFN – Milano)

This work package consists in the **design of the Associative Memory 07a** in a standard **28 nm CMOS** process. Starting time: Mar. 2015

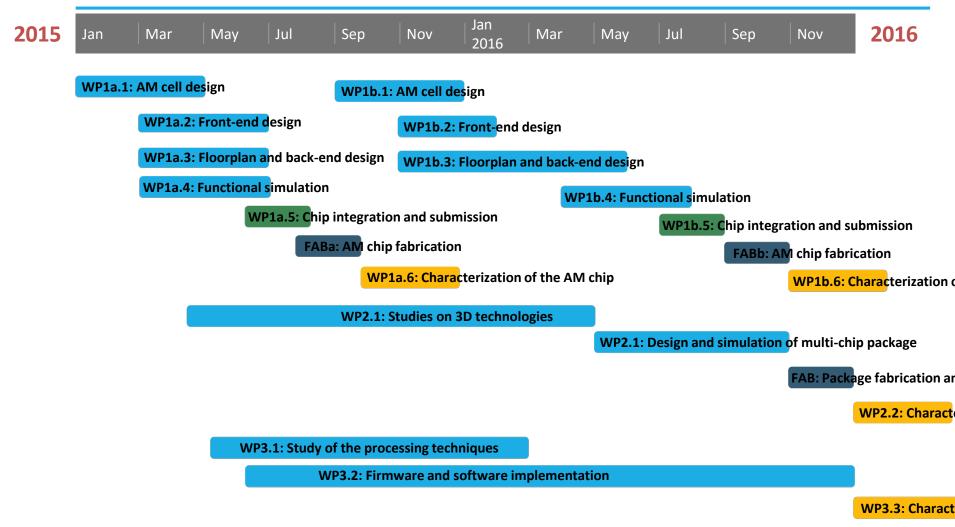


WP1B. AM CHIP DESIGN AND SIMULATION

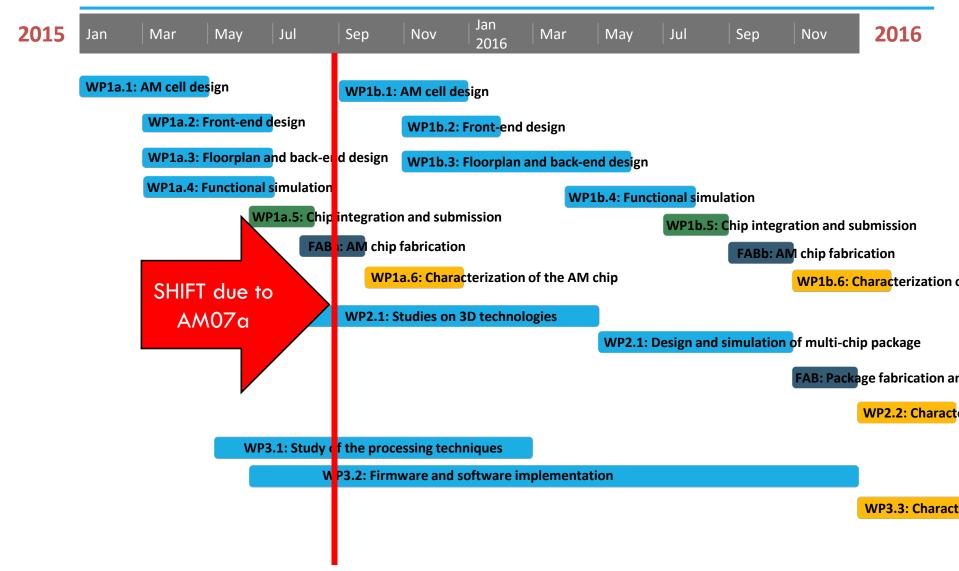

Alberto Stabile (INFN – Milano)

This work package consists in the **design of the Associative Memory 07b** in a standard **28 nm CMOS** process. Starting tim

Starting time: Jun. 2015



OLD TIMETABLE OVERVIEW



WP3.4: Field tests (smart cameras)

OLD TIMETABLE OVERVIEW

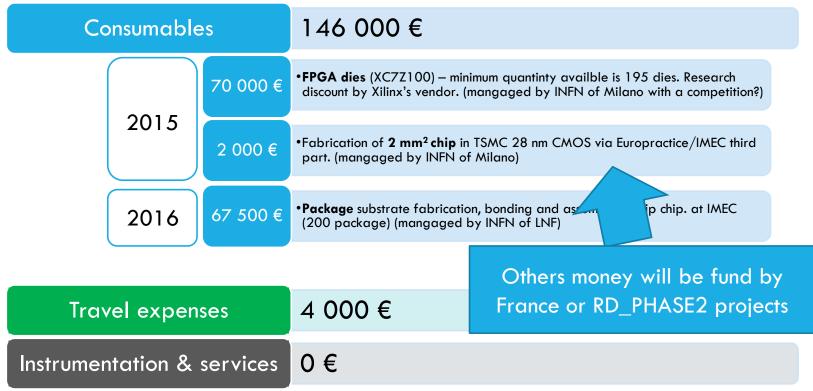
OLD TIMETABLE OVERVIEW

COSTS

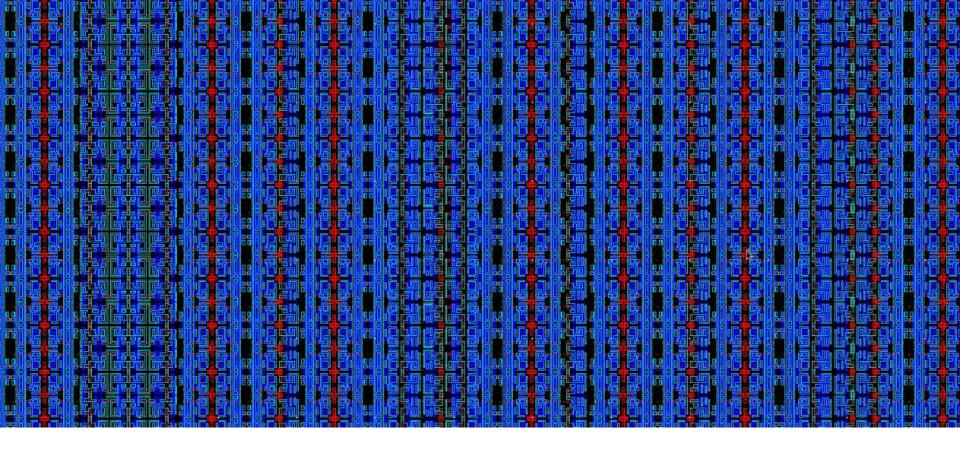
Project budget

150 000 € in 2 years (75 000 € per year)

Consumables		146 000 €		
	8 500 €	• FPGA dies (XC7K325T) – minimum quantinty availble is 195 dies. Research discount by Xilinx's vendor. (mangaged by INFN of Pisa)		
2015	0 000 €	 Fabrication of 2 mm² chip in TSMC 28 nm CMOS via Europractice/IMEC third part. (mangaged by INFN of Milano) 		
2016 6	7 500 €	• Package substrate fabrication, bonding and assembly of flip chip. at IMEC (200 package) (mangaged by INFN of LNF)		


Travel expenses	4 000 €
Instrumentation & services	0 €

The 3 laboratories provide their facilities for these new developments.


COSTS

Project budget

150 000 € in 2 years (75 000 € per year)

The 3 laboratories provide their facilities for these new developments.

BACKUP SLIDES Alberto Stabile