B decays : Anomalies and Challenges

Javier Virto

Universität Bern

FP Capri 2016 - June 12, 2016

b UNIVERSITÄT BERN

:: Reminder

Radiative and Dileptonic $b \rightarrow s$ Operators

Hadronic $b \rightarrow s$ Operators

$$\begin{array}{lll} \mathcal{O}_1 &=& [\bar{s}\gamma^{\mu}P_Lc][\bar{c}\gamma_{\mu}P_Lb] \\ \mathcal{O}_{3(5)} &=& [\bar{s}\gamma^{\mu}P_Lb]\sum_q [\bar{q}\gamma_{\mu}P_{L(R)}q] \\ \mathcal{O}_{8g} &=& [\bar{s}\sigma^{\mu\nu}P_{R(L)}T^ab]G^a_{\mu\nu} \end{array}$$

$$b \xrightarrow{\overline{q}} s \quad b \xrightarrow{\overline{q}} s$$

 $(\mathcal{O}_{2,4,6} \sim \mathcal{O}_{1,3,5} \text{ with mixed color indices})$

Effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{7,7',9,9',10,10'} C_i \mathcal{O}_i + \sum_{1,\dots,6,8g} C_i \mathcal{O}_i \right]$$

$$\mathcal{C}_{7\mathrm{eff}}^{\mathrm{SM}} = -0.3, \ \mathcal{C}_{_9}^{\mathrm{SM}} = 4.1, \ \mathcal{C}_{_{10}}^{\mathrm{SM}} = -4.3, \ \mathcal{C}_{_1}^{\mathrm{SM}} = 1.1, \ \mathcal{C}_{_2}^{\mathrm{SM}} = -0.4, \ \mathcal{C}_{\mathrm{rest}}^{\mathrm{SM}} \lesssim 10^{-2}$$

"Towards a Model-Independent Analysis of Rare B Decays" A. Ali, G. Giudice, T. Mannel, hep-ph/9408213

Javier Virto (Uni Bern)

"Understanding the $B \rightarrow K^* \mu \mu$ Anomaly" S. Descotes-Genon, J. Matias, J.V., arXiv:1307.5683

Indication for $\mathcal{C}_9^{\mathsf{NP}}\sim-1$

We have combined the recent LHCb measurements of $B \to K^* \mu^+ \mu^-$ observables [19, [20] with other radiative modes in a fit to Wilson coefficients, using the framework of our previous works [15, [21]. We have found a strong indication for a negative NP contribution to the coefficient C_9 , at 4.5 σ using large-recoil data (3.9 σ using both large- and low-recoil data). Our results correspond to C_9 inside a 68 % C.L. range 2.2 $\leq C_9 \leq 2.8$ to be compared with $C_9^{\rm SM} = 4.07$ at the scale $\mu_b = 4.8$ GeV. This is the main conclusion of our analysis of LHCb $B \to K^* \mu^+ \mu^-$ measurements.

We also absorve a alight proforman for nogative values

"Understanding the $B \to K^* \mu \mu$ Anomaly" S. Descotes-Genon, J. Matias, J.V., arXiv:1307.5683

Charm-loop effect

the correlations among the various measurements. On the theoretical side, since C_9 seems to be the main Wilson coefficient affected by NP, charm-loop effects become a very important issue, with several questions left open. the scheme and the scale of the perturbative charm-quark contribution, as well as to provide alternative and/or improved estimates of the long-distance contribution obtained in Ref. [37], in particular above the charm threshold. Another significant source of uncertainties comes

Ref.[37] : Khodjamirian, Mannel, Pivovarov, Wang

"Understanding the $B \to K^* \mu \mu$ Anomaly" S. Descotes-Genon, J. Matias, J.V., arXiv:1307.5683

Wishes:

Measurements:

potential pollution of C_9 from charm-loop effects, it is essential that the LHCb experiment provides future results for $B \to K^* \mu^+ \mu^-$ with a finer q^2 binning, with several narrow bins between 1 and 6 GeV², and a summary of the correlations among the various measurements. On

Form Factors:

tamed in ref. [<u>01]</u>, in particular above the charm threshold. Another significant source of uncertainties comes from the form factors, for which new lattice results should bring more control on the low recoil region [<u>42</u>, [<u>43</u>]. In order to decrease the uncertainty attached to the form factors, it will also become essential that their estimates are provided including correlations, or in the basis of helicity form factors discussed in Refs. [<u>36</u>] [<u>44</u>].

"Understanding the $B \to K^* \mu \mu$ Anomaly" S. Descotes-Genon, J. Matias, J.V., arXiv:1307.5683

Wishes:

Other modes:

An essential aspect consists in cross-checking and confirming the results from $B \to K^* \mu^+ \mu^-$ on $C_9^{\rm NP}$ through other channels accessible to LHCb and with good prospects of improving on our knowledge of the form factors. The $B \to K \mu^+ \mu^-$ decay [45] gives a linear constraint between C_7 and C_9 involving pseudoscalar-topseudoscalar form factors well suited for lattice simulations [42] [46] [47]. The $B_s \to \phi \mu^+ \mu^-$ [48] has the same potential as $B \to K^* \mu^+ \mu^-$ in terms of angular observables, with the added interest of a very narrow ϕ final state, avoiding the difficult simulation of wide resonances on the lattice. Finally, the $\Lambda_b \to \Lambda \mu^+ \mu^-$ decay [49] [50] is also a useful cross-check, with a different angular struc-

From 2013 to 2016

Many improvements from experiment and theory, but ...

Descotes-Genon, Hofer, Matias, JV 2015

P_5' is a statistical fluctuation / experimental issue

First: The fit is not driven by P'_5. Talk by Nazila (slide 15). But guess which three people insisted on that in 2013...

Second: The experimental results of LHCb are nicely confirmed by Belle. \Rightarrow now less likely that this is an experimental issue

LHCb: two bins with 2.9σ each; **Belle:** 2.1σ in one bin.

igwedge M Belle results are combination of $B^0 o {\cal K}^{0\star} \mu\mu$ and $B^0 o {\cal K}^{0\star} ee$ modes

 $P_{\rm s}^{\prime}$: Descotes-Genon, Matias, Ramon, JV 2012; DHMV = Descotes-Genon, Hofer, Matias, JV 2014

Javier Virto (Uni Bern)

Explanation: Capdevila, Descotes-Genon, Matias, J.V. 2016

For $m_{\ell}^2/q^2 \rightarrow 0 \Rightarrow J_{1s} = 3J_{2s}$ and $J_{1c} = -J_{2c}$.

This simplifies the angular distribution, and it is used by LHCb in its analysis:

$$P_5^{\prime \text{TH}} = \frac{J_5}{2\sqrt{-J_{2s}J_{2c}}} \quad \text{vs.} \quad P_5^{\prime \text{LHCb}} = \frac{2J_5}{\sqrt{J_{1c}(6J_{1s} - J_{1c} - 2J_{2s} - J_{2c})}}$$

So for $m_\ell^2/q^2 \rightarrow 0 \Rightarrow P_5^{\prime LHCb} \rightarrow P_5^{\prime TH}$, which is only a bad approximation in the first bin.

For the next worries we need a little of preparation

 $:: B \to V_{\lambda} \ell^{+} \ell^{-}: \text{Anatomy}$

$$H_{\lambda} = \frac{G_{F}\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^{*} \left[(\mathcal{A}_{\lambda}^{\mu} + \mathcal{T}_{\lambda}^{\mu}) \ \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{B}_{\lambda}^{\mu} \ \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} \right]$$

Local:

$$\mathcal{A}^{\mu}_{\lambda} = -\frac{2m_{b}q_{\nu}}{q^{2}} \mathcal{C}_{7} \langle M_{\lambda} | \bar{s} \sigma^{\mu\nu} P_{R} b | B \rangle + \mathcal{C}_{9} \langle M_{\lambda} | \bar{s} \gamma^{\mu} P_{L} b | B \rangle$$
$$\mathcal{B}^{\mu}_{\lambda} = \mathcal{C}_{10} \langle M_{\lambda} | \bar{s} \gamma^{\mu} P_{L} b | B \rangle$$

Non-Local:
$$\mathcal{T}^{\mu}_{\lambda} = -\frac{16i\pi^2}{q^2} \sum_{i=1..6,8} \mathcal{C}_i \int dx^4 e^{iq \cdot x} \langle M_{\lambda} | T \{ \mathcal{J}^{\mu}_{\mathsf{em}}(x) \mathcal{O}_i(0) \} | B \rangle$$

2 main issues:

1. Determination of (7) Form Factors [V, A_{0,1,2}, T_{1,2,3}] (LCSRs, LQCD, ...)

2. Computation of the hadronic contribution (SCET/QCDF, OPE, \dots)

Javier Virto (Uni Bern)

:: Form Factors : Clean Observables

 \Rightarrow But Power Corrections spoil these correlations...

Power Corrections in Form Factors might be underestimated?

As a worst case, remove observables sensitive to PCs from the fit.

Descotes-Genon, Hofer, Matias, JV 2015 (1510.042239)

Javier Virto (Uni Bern)

We got the wrong charm-loop contribution? We use Khodjamirian, Mannel, Pivovarov, Wang

$$\rightarrow \mathcal{T}_{\mu} = -\frac{16i\pi^2}{q^2} \sum_{i=1..6,8} \mathcal{C}_i \int d\mathsf{x}^4 e^{iq\cdot\mathsf{x}} \langle M_\lambda | \mathcal{T} \{ \mathcal{J}^{\mathsf{em}}_{\mu}(\mathsf{x}) \mathcal{O}_i(0) \} | B \rangle \text{ is } q^2 \text{-dependent}$$

 \Rightarrow No evidence for q^2 -dependence \rightarrow Good crosscheck of hadronic contribution!

Descotes-Genon, Hofer, Matias, JV 2015 (1510.042239)

Javier Virto (Uni Bern)

:: More consistency cross-checks

1510.042239

 \triangleright 3 σ constraints, always including $b \rightarrow s \gamma$ and inclusive.

- ▷ Good consistency between BRs and Angular observables (AOs dominate).
- ▷ Good consistency between different modes ($B \rightarrow K^*$ dominates).
- \triangleright Good consistency between different q^2 regions (Large-R dominates, [1,6] bulk).
- ▷ Remember: Quite different theory issues in each case!

:: Compendium of fits for the $C_{9\mu}$ 1D hypothesis

Fit	$\mathcal{C}_{9 \; \mathrm{Bestfit}}^{\mathrm{NP}}$	1σ	$Pull_{\mathrm{SM}}$	$N_{ m dof}$	p-value (%)
All $b \rightarrow s \mu \mu$ in SM	-	-	-	96	16.0
All $b \rightarrow s \mu \mu$	-1.09	[-1.3, -0.9]	4.5	95	63.0
All $b \rightarrow s\ell\ell, \ell = e, \mu$	-1.11	[-1.3, -0.9]	4.9	101	74.0
All $b \rightarrow s \mu \mu$ excluding [5,8]	-0.99	[-1.2, -0.8]	3.8	77	37.0
Only $b \rightarrow s \mu \mu$ BRs	-1.58	[-2.2, -1.1]	3.7	31	43.0
Only $b \rightarrow s \mu \mu P_i$'s	-1.01	[-1.3, -0.7]	3.1	68	75.0
Only $b \rightarrow s \mu \mu S_i$'s	-0.95	[-1.2, -0.7]	2.9	68	96.0
Only $B \to K \mu \mu$	-0.85	[-1.7, -0.2]	1.4	18	20.0
Only $B \to K^* \mu \mu$	-1.05	[-1.3, -0.8]	3.7	61	74.0
Only $B_s \rightarrow \phi \mu \mu$	-1.98	[-2.8, -1.3]	3.5	24	94.0
Only $b \rightarrow s \mu \mu$ at large recoil	-1.30	[-1.6, -1.0]	4.0	78	61.0
Only $b \rightarrow s \mu \mu$ at low recoil	-0.93	[-1.2, -0.6]	2.8	21	75.0
Only $b \rightarrow s \mu \mu$ within [1,6]	-1.30	[-1.7, -0.9]	3.4	43	73.0
Only $BR(B \to K\ell\ell)_{[1,6]}, \ell = e, \mu$	-1.55	[-2.7, -0.8]	2.4	10	76.0
All $b \rightarrow s \mu \mu$, 20% PCs	-1.10	[-1.3, -0.9]	4.3	95	69.0
All $b ightarrow s \mu \mu$, 40% PCs	-1.08	[-1.3, -0.8]	3.8	95	73.0
All $b \rightarrow s \mu \mu$, charm $\times 2$	-1.12	[-1.3, -0.9]	4.4	95	73.0
All $b \rightarrow s \mu \mu$, charm $\times 4$	-1.06	[-1.3, -0.8]	4.0	95	81.0
Only $b \rightarrow s \mu \mu$ within [0.1,6]	-1.21	[-1.6, -0.8]	3.1	60	30.0
Only $b \rightarrow s \mu \mu$ within [0.1,0.98]	+0.08	[-0.9, 1.0]	0.1	13	33.0
Only $b \rightarrow s \mu \mu$ within [0.1,2]	-1.03	[-1.9, -0.2]	1.3	22	4.6
Only $b \rightarrow s \mu \mu$ within [1.1,2.5]	-0.74	[-1.6, 0.1]	0.9	13	85.0
Only $b \rightarrow s \mu \mu$ within [2,5]	-1.56	[-2.3, -0.9]	2.5	23	95.0
Only $b \rightarrow s \mu \mu$ within [4,6]	-1.34	[-1.7, -0.9]	3.1	16	93.0
Only $b \rightarrow s \mu \mu$ within [5,8]	-1.30	[-1.6, -1.0]	3.5	22	96.0
All $b \rightarrow s \mu \mu$ excluding large-recoil $B_s \rightarrow \phi \mu \mu$	-1.04	[-1.3, -0.8]	4.0	80	55.0
All $b ightarrow s\ell\ell$, $\ell = e, \mu$ excl. large-recoil $B_s ightarrow \phi\mu\mu$	-1.06	[-1.3, -0.8]	4.5	86	35.0

Implications for NP

$$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{\alpha}{4\pi}\mathcal{C}_9=\frac{c}{\Lambda^2}$$

For $C_9 \sim 1$ the NP scale Λ would be:

Type of NP	coupling	С	NP scale
Tree-level flavor-generic	$g \sim 1$	~ 1	$\Lambda\sim 38{\rm TeV}$
Tree-level flavor-CKMish	$g\sim 1$	$\sim V_{tb}V_{ts}^*$	$\Lambda\sim 8{\rm TeV}$
Tree-level flavor-generic	$g\sim 0.1$	~ 0.01	$\Lambda\sim 3.8{\rm TeV}$
Loop-level flavor-generic	$g\sim 1$	$\sim rac{1}{(4\pi)^2}$	$\Lambda \sim 3{\rm TeV}$
Loop-level flavor-CKMish	$g \sim 1$	$\sim rac{V_{tb}V_{ts}^*}{(4\pi)^2}$	$\Lambda\sim 600{\rm GeV}$

Implications for NP

Two obvious candidates: (but much more extensive literature)

 \triangleright Massive U(1) gauge boson: Z'

- VL coupling to μ and FC couplings to LH quarks.
- Satisfies $\mathcal{C}_9 \cdot \mathcal{C}_{10}' = \mathcal{C}_9' \cdot \mathcal{C}_{10}$
- Anomalies
- Strong correlation with B_s mixing
- Popular model: Gauged $(L_{\mu} L_{\tau})$ + VL quarks Altmannshofer, Gori, Pospelov, Yavin 2014
- Required gauge rep: $(\mathbf{\bar{3}}, \mathbf{3}, 1/3)$ Hiller, Schmaltz 2014
- Satisfies C₉ = −C₁₀
- No obvious correlations, more freedom
- Can be related to the breaking of a GUT
- Can be a composite Gripaios, Nardecchia, Renner 2015

Lepton non-universality

Flavour Non-Universality : R_K

• What is R_K ?

[Hiller, Kruger, 2004]

$$R_{K}\equiv rac{\mathcal{B}(B^+
ightarrow K^+\mu\mu)_{[1,6]\mathrm{GeV}^2}}{\mathcal{B}(B^+
ightarrow K^+ee)_{[1,6]\mathrm{GeV}^2}}$$

• Very clean Standard Model prediction: [Bobeth, Hiller, Piranishvili, 2007]

 $R_{K}^{\rm SM} = 1.0003 \pm 0.0001$

[Log-enhanced EM corrections under control Bordone, Isidori, Pattori, 2016]

Measured by LHCb

[LHCb, 1406.6482[hep-ex]]

$$R_{\rm K}^{\rm LHCb}=0.745^{+0.090}_{-0.074}\pm0.036$$

• Tension at $2.6\sigma \longrightarrow$ Flavor Non-Universal New Physics??

Flavour Non-Universality : R_K

 $R_{
m K}$ is consistent with $C_{9\mu}^{
m NP}\sim -1$ needed in $b
ightarrow s\mu\mu.$

The correct credit goes to Alonso, Grinstein, Camalich 2014:

not very well bound, especially for the electronic case, so different scenarios of NP could currently explain (15). For example one could entertain the possibility of a sizable and negative effect in C_9 affecting only the muonic mode, $\delta C_9^{\mu} = -1$. In this scenario one obtains $R_K \simeq 0.79$. As a side remark, it is worth emphasizing that such a negative NP contribution to $\mathcal{O}_9^{(\prime)}$ has been argued to be necessary to understand the current $b \rightarrow s\mu\mu$ data set [27-30].

See also Hiller, Smaltz 2014, Ghosh, Nardecchia, Renner 2014

Fits including $b \rightarrow see$ modes

 \triangleright Include LHCb $BR(B \rightarrow Kee)$ and $B \rightarrow K^*ee$ at very low q^2 .

 \triangleright Fit favors violation of LFU, compatible with no NP in $(\bar{s}b)(\bar{e}e)$ operators.

 \triangleright Taking $C_{ie}^{NP} = 0$: Favored scenarios for $C_{i\mu}$ have SM pull increased by $\sim 0.5 \sigma$ (not $C_{9}^{NP} = -C_{9'}^{NP}$, which does not explain R_{κ})

Predictions for Flavour Non-Universality

Assume there is no NP coupling to electrons.			(*) potential Z' scenario		
		$R_{K}[1,6]$	$R_{K^*}[1.1, 6]$	$R_{\phi}[1.1,6]$	
SM		1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.01	
$\mathcal{C}_{_9}^{\rm NP}=-1.11$	*	0.79 ± 0.01	0.87 ± 0.08	0.84 ± 0.02	
$\mathcal{C}_{_9}^{\rm NP}=-\mathcal{C}_{_{9'}}^{\rm NP}=-1.09$	*	1.00 ± 0.01	0.79 ± 0.14	0.74 ± 0.03	
${\cal C}_9^{\rm NP}=-{\cal C}_{10}^{\rm NP}=-0.69$	*	0.67 ± 0.01	0.71 ± 0.03	0.69 ± 0.01	
${\cal C}_{_9}^{\rm NP}=-1.15, {\cal C}_{_{g'}}^{\rm NP}=0.77$	*	0.91 ± 0.01	0.80 ± 0.12	0.76 ± 0.03	
$\mathcal{C}_{_{9}}^{\rm NP}=-1.16, \mathcal{C}_{_{10}}^{\rm NP}=0.35$	*	0.71 ± 0.01	0.78 ± 0.07	0.76 ± 0.01	
$\mathcal{C}_{_{9}}^{_{\rm NP}}=-1.23, \mathcal{C}_{_{10'}}^{_{\rm NP}}=-0.38$		0.87 ± 0.01	0.79 ± 0.11	0.76 ± 0.02	
$\begin{array}{l} \mathcal{C}_{_{9}}^{_{\rm NP}}=-\mathcal{C}_{_{9'}}^{_{\rm NP}}=-1.14 \\ \mathcal{C}_{_{10}}^{^{_{\rm NP}}}=-\mathcal{C}_{_{10'}}^{^{_{\rm NP}}}=0.04 \end{array}$	*	1.00 ± 0.01	$\textbf{0.78} \pm \textbf{0.13}$	0.74 ± 0.03	
$\mathcal{C}_{_{9}}^{_{\mathrm{NP}}} = -\mathcal{C}_{_{9'}}^{_{\mathrm{NP}}} = -1.17$ $\mathcal{C}_{_{10}}^{_{\mathrm{NP}}} = \mathcal{C}_{_{10'}}^{^{\mathrm{NP}}} = 0.26$		0.88 ± 0.01	0.76 ± 0.12	0.71 ± 0.03	

In red: scenarios that explain R_K

Reminder: $R_{K}^{LHCb} = 0.745^{+0.090}_{-0.074} \pm 0.036 \simeq 0.75 \pm 0.09$

See also Nazila, Hurth, Neshatpour and Capdevila, Descotes-Genon, Matias, J.V. 2016

Javier Virto (Uni Bern)

Anomaly Patterns

		R_{K}	$\langle P_5' angle_{[4,6],[6,8]}$	$BR(B_s o \phi \mu \mu)$	low recoil BR	Best fit now
CNP	+					
C9	—	\checkmark	\checkmark	\checkmark	\checkmark	X
\mathcal{C}_{10}^{NP}	+	\checkmark		\checkmark	\checkmark	X
	_		\checkmark			
CNP	+			\checkmark	\checkmark	X
C ₉ ,	_	\checkmark	\checkmark			
$\mathcal{C}^{\text{NP}}_{10'}$	+	\checkmark	\checkmark			
	—			\checkmark	\checkmark	X

 $\triangleright \, \mathcal{C}_{9\mu}^{\mathrm{NP}} \sim -1$ consistent with all anomalies

- \triangleright No consistent and global alternative from long-distance dynamics:
 - $R_{\rm K}$ stat. fluctuation, exp. issues with e vs. μ
 - P'_5 power corrections, $c\bar{c}$ contributions
 - $BR(B_s \rightarrow \phi \mu \mu)$ form factors, $c\bar{c}$ contributions
 - Low recoil lattice, duality violations

R_{K} : Lepton Flavor Violation?

Lepton Non-Universality "necessarily associated" with Lepton Flavor Violation [Glashow, Guadagnoli, Lane, 2014]

Example: Consider a New Physics operator

$${\cal H}_{
m NP}= {\it G} ~ ar b_L' \gamma^lpha b_L' ~ar au_L' \gamma_lpha au_L'$$

In terms of the mass eigenstates:

$$b_L' = U_{L3i}^d d_{Li} \qquad \tau_L' = U_{L3i}^\ell \ell_{Li}$$

We obtain contributions to $b \rightarrow s\mu\mu$ and also to $b \rightarrow s\mu\tau$ and $d \rightarrow d\mu e$, etc:

- $G \ U_{L33}^{d*} U_{L32}^d | U_{L32}^\ell |^2 [\bar{b}_L \gamma_\alpha s_L \bar{\mu}_L \gamma^\alpha \mu_L] \longrightarrow R_K, \ B \to K^* \mu \mu$
- $G \ U_{L33}^{d*} U_{L32}^{d} U_{L32}^{\ell} U_{L32}^{\ell} [\bar{b}_L \gamma_\alpha s_L \bar{\tau}_L \gamma^\alpha \mu_L] \longrightarrow B \to K \tau \mu$
- $G |U_{L31}^d|^2 U_{L31}^{\ell*} U_{L32}^\ell [\bar{d}_L \gamma_\alpha d_L \bar{e}_L \gamma^\alpha \mu_L] \longrightarrow \mu \to e \text{ conversion}$

▷ Look for LFV processes!!

More Lepton Non-Universality: $\mathcal{R}(D^{(*)})$

• What is $\mathcal{R}(D^{(*)})$?

$$\mathcal{R}(D^{(*)})\equiv rac{\mathcal{B}(ar{B}
ightarrow D^{(*)+} au^-ar{
u}_ au)}{\mathcal{B}(ar{B}
ightarrow D^{(*)+}\ell^-ar{
u}_\ell)}$$

• Rather clean Standard Model predictions:

[Fajfer, Kamenik, Nisandzic, 2012]

 $\mathcal{R}(D)^{\mathsf{SM}} = 0.297 \pm 0.017$;

$$\mathcal{R}(D^*)^{SM} = 0.252 \pm 0.003$$

Measurements by BaBar, Belle and LHCb

$${\cal R}(D^*)^{ ext{exp}} ~=~ 0.316 \pm 0.019$$

• Tensions at 2σ and 2.7σ respectively. Combined= 3.4σ

Javier Virto (Uni Bern)

Inclusive vs. exclusive $b \rightarrow c \ell \nu$

 \triangleright Inclusive decay rate $B \rightarrow X_c \tau \bar{\nu}$ from OPE Ligeti, Tackmann

 $BR^{\rm th}(B \to X_c \tau \bar{\nu}) = (2.42 \pm 0.06)\%$

▷ There is a measurement by LEP (B-hadron admixture)

$$BR^{\exp}(B \to X_c \tau \bar{\nu}) = (2.41 \pm 0.23)\%$$

▷ Theory predictions for the exclusive channels Fajfer, Kamenik

$${\it BR}^{
m th}(B
ightarrow D auar
u)+{\it BR}^{
m th}(B
ightarrow D^{\star} auar
u)=(2.01\pm 0.07)\%$$

▷ On the other hand Babar 2012, compatible with LHCb 2015

$$BR^{
m exp}(B
ightarrow D auar
u)+BR^{
m exp}(B
ightarrow D^{\star} auar
u)=(2.78\pm0.25)\%$$

▷ and more recently Belle 2015

$$BR^{
m exp}(B
ightarrow D auar
u)+BR^{
m exp}(B
ightarrow D^{\star} auar
u)=(2.39\pm 0.32)\%$$

Javier Virto (Uni Bern)

 R_K vs. $\mathcal{R}(D^{(*)})$

How is $\mathcal{R}(D^{(*)})$ related to $R_{\mathcal{K}}$?? (is it??)

[Bhattacharya, Datta, London, Shivashankara, 2014]

Consider the same New Physics operator as before:

$$\mathcal{H}_{\rm NP} = G \ \bar{b}_L^\prime \gamma^\mu b_L^\prime \ \bar{\tau}_L^\prime \gamma_\mu \tau_L^\prime$$

If generated above the EW scale, it should be made $SU(2)_L$ invariant:

$$G_{1} [\bar{Q}'_{3L}\gamma_{\mu}Q'_{3L}][\bar{L}'_{3L}\gamma^{\mu}L'_{3L}] + G_{2} [\bar{Q}'_{3L}\gamma_{\mu}\sigma^{a}Q'_{3L}][\bar{L}'_{3L}\gamma^{\mu}\sigma^{a}L'_{3L}]$$

Expanding we obtain the following operators:

$$\begin{array}{c} G_2(\vec{t}'_L\gamma_\mu t'_L)(\vec{\nu}'_{\tau_L}\gamma^\mu \nu'_{\tau_L}) \ , \\ \hline G_2(\vec{b}'_L\gamma_\mu b'_L)(\vec{\tau}'_L\gamma^\mu \tau'_L) \ , \\ -G_2(\vec{t}'_L\gamma_\mu t'_L)(\vec{\tau}'_L\gamma^\mu \tau'_L) \ , \\ -G_2(\vec{b}'_L\gamma_\mu b'_L)(\vec{\nu}'_{\tau L}\gamma^\mu \nu'_{\tau L}) \ , \\ \hline 2G_2(\vec{t}'_L\gamma_\mu b'_L)(\vec{\tau}'_L\gamma^\mu \nu'_{\tau L}) + h.c. \longrightarrow \mathcal{R}(D^{(*)}) \end{array}$$

 \triangleright Plenty of opportunities to look for correlated effects elsewhere.

Javier Virto (Uni Bern)

Gauge extensions for R_K and $R_{D^{(\star)}}$

 \triangleright Massive vector boson triplets ($W_a')$ are natural candidates to UV-complete this effective picture

Greljo, Isidori, Marzocca 2015

▶ But have to face stringent constraints from LEP, LHC, and LFU in leptonic and meson decays. Correlated effects pile-up.

▷ SU(2) gauge extensions provide massive vector boson triplets. Boucenna, Celis, Fuentes, Vicente, JV 1604.03088

But the symmetry-breaking pattern and the source of non-universality must be chosen carefully (non-trivial).

Gauge extensions for R_K and $R_{D^{(\star)}}$

Boucenna, Celis, Fuentes, Vicente, JV 1604.03088

▷ Gauge Model based on $SU(2)_1 \otimes SU(2)_2 \otimes U(1)_Y \xrightarrow{u} SU(2)_L \otimes U(1)_Y \xrightarrow{v} U(1)_{em}$ with 2 generations of VL fermions sourcing non-universality.

 \triangleright Message to experimentalists: Always try to separate μ and e (do not give ℓ !!)

Javier Virto (Uni Bern)

Possibilities for Belle-II?

$$B^0_q \stackrel{\textit{mixing}}{\longleftrightarrow} \bar{B}^0_q \stackrel{\textit{decay}}{\longrightarrow} (V\ell\ell)_{\mathsf{CP}}$$

 \star For the rest think of the following examples:

$$egin{aligned} B_d &
ightarrow K^* \left(
ightarrow K_S \pi^0
ight) \ell^+ \ell^- \ B_s &
ightarrow \phi \left(
ightarrow K^+ K^-
ight) \ell^+ \ell^- \ B_s &
ightarrow \phi \left(
ightarrow K^+ K^-
ight) \ell^+ \ell^- \end{aligned}$$

* Time-dependent angular distributions

$$\frac{d\Gamma(B(t) \to (V\ell\ell)_{CP})}{ds \ d \cos \theta_{\ell} d \cos \theta_{M} d\phi} = \sum_{i} J_{i}(t,s) \Omega_{i}(\theta_{\ell},\theta_{M},\phi)$$
$$\frac{d\Gamma(\overline{B}(t) \to (V\ell\ell)_{CP})}{ds \ d \cos \theta_{\ell} d \cos \theta_{M} d\phi} = \sum_{i} \widetilde{J}_{i}(t,s) \Omega_{i}(\theta_{\ell},\theta_{M},\phi)$$

$$J_{i}(t) + \widetilde{J}_{i}(t) \equiv e^{-\Gamma t} \left[(J_{i} + \widetilde{J}_{i}) \cosh(y\Gamma t) - h_{i} \sinh(y\Gamma t) \right]$$
$$J_{i}(t) - \widetilde{J}_{i}(t) \equiv e^{-\Gamma t} \left[(J_{i} - \widetilde{J}_{i}) \cos(x\Gamma t) - s_{i} \sin(x\Gamma t) \right]$$

where $y \equiv \Delta \Gamma/(2\Gamma)$ and $x \equiv \Delta m/\Gamma$: $x_d \simeq 0.77$, $x_s \simeq 27$, $y_d \simeq 0$, $y_s \simeq 0.06$

Representative Example

$$\begin{aligned} J_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\mathrm{Im} (A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*}) \right] \\ \widetilde{J}_8 &= -\frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\mathrm{Im} (\bar{A}_0^L \bar{A}_{\perp}^{L*} + \bar{A}_0^R \bar{A}_{\perp}^{R*}) \right] \\ h_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \mathrm{Im} [e^{i\phi} \{ \bar{A}_0^L A_{\perp}^{L*} + \bar{A}_0^R A_{\perp}^{R*} \} - e^{-i\phi} \{ A_0^L \bar{A}_{\perp}^{L*} + A_0^R \bar{A}_{\perp}^{R*} \}] \\ s_8 &= -\frac{1}{\sqrt{2}} \beta_{\ell}^2 \mathrm{Re} [e^{i\phi} \{ \bar{A}_0^L A_{\perp}^{L*} + \bar{A}_0^R A_{\perp}^{R*} \} + e^{-i\phi} \{ A_0^L \bar{A}_{\perp}^{L*} + A_0^R \bar{A}_{\perp}^{R*} \}] \end{aligned}$$

$$J_{i}(t) + \widetilde{J}_{i}(t) \equiv e^{-\Gamma t} \Big[(J_{i} + \widetilde{J}_{i}) \cosh(y\Gamma t) - h_{i} \sinh(y\Gamma t) \Big]$$
$$J_{i}(t) - \widetilde{J}_{i}(t) \equiv e^{-\Gamma t} \Big[(J_{i} - \widetilde{J}_{i}) \cos(x\Gamma t) - s_{i} \sin(x\Gamma t) \Big]$$

where $y \equiv \Delta \Gamma / (2\Gamma)$ and $x \equiv \Delta m / \Gamma$: $x_d \simeq 0.77$, $x_s \simeq 27$, $y_d \simeq 0$, $y_s \simeq 0.06$

Comments

- h_i difficult to get $(y \ll 1) \rightarrow$ Time-dependence of untagged distribution provides essentially no new information
- For i = 1, ..., 6, $s_i \sim Im(e^{i\phi}\bar{A}_X A_Y^*) \rightarrow Limited$ interest for B_s .
- For \sim real amplitudes $s_7 \simeq 0$. Also, $J_7 \widetilde{J}_7$ is CP asymmetry.
- For \sim real amplitudes $J_{8,9} \widetilde{J}_{8,9} \simeq 0$, but $s_{8,9}$ can be large.

The most interesting coefficients are then s_8 , s_9 with

$$J_8(t) - \widetilde{J}_8(t) \simeq -s_8 e^{-\Gamma t} \sin(x\Gamma t) , \quad J_9(t) - \widetilde{J}_9(t) \simeq -s_9 e^{-\Gamma t} \sin(x\Gamma t)$$

Time-dependent "optimised" observables

General New Physics reach: Using 3σ ranges from [Descotes-Genon, Matias, JV 2013]

▷ Blue: Standard Model

Javier Virto (Uni Bern)
Time-dependent "optimised" observables

New Physics benchmarks:

▷ Blue: Standard Model

Javier Virto (Uni Bern)

B decays : Anomalies and Challenges

SUMMARY

- The SM must be complemented with New Physics at higher scales. Dedicated searches are ongoing in the context of the "Energy" and "Intensity" frontiers. Flavor Physics is a powerful door to the Intensity frontier.
- There are several tensions in *B* decays that conspire constructively:
 - ▶ Angular observables in $B \to K^* \mu \mu$
 - ▶ $B_{(s)} \rightarrow (K^{(*)}, \phi) \mu \mu$ branching ratios

They all point to a NP contribution to the operator $\mathcal{O}_{9}^{\mu} = [\bar{s}_L \gamma_{\alpha} b_L] [\bar{\mu} \gamma^{\alpha} \mu]$ such that $\mathcal{C}_{9}^{\text{NP}} \sim -1$ (remember that $\mathcal{C}_{9}^{\text{SM}} \sim 4$)

- 2013 Anomalies confirmed by LHCb(3/fb), and by Belle !
- Flavor non-universality opens the door to Lepton Flavor Violation. More dedicated analyses of $B \to K \tau \mu$, $B_s \to \tau \mu$, $\mu \to e$ conversion, etc, could confirm this!!
- Flavor non-universality in charged currents $-\mathcal{R}(D^{(*)})$ is related by $SU(2)_L$ to R_K , providing interesting correlations and future opportunities.
- Important to establish experimentally R_{κ} , measure other FLNU in $b \rightarrow s$, resolve tension between exclusive and inclusive in $b \rightarrow c \tau \bar{\nu}$, and always try to separate μ and e modes.

Backup Slides

 \lesssim 2012 WC fits use $B \to X_s \gamma$, $B \to X_s \mu \mu$, $B \to K^* \gamma$ and a few $B \to K^* \mu \mu$ observables (*BR*, *A*_{FB}, *F*_L). Very loose constraints on $C_{9,10}^{(\prime)}$. Ali, Giudice, Mannel, Lunghi, Greub, Hiller, Kruger, Altmannshofer, Paradisi, Straub, Bobeth, van Dyk, Wacker, Descotes-Genon, Matias, JV, ...

2012 \triangleright Complete basis of clean angular observables in $B \rightarrow K^* \ell \ell$ (including P'_5) Descotes-Genon, Matias, Mescia, Ramon, JV, 1202.4266 and 1207.2753

 \triangleright First evidence for $B_s \rightarrow \mu \mu$ LHCb 1211.2674

2013 \triangleright Complete angular analysis of $B \rightarrow K^* \mu \mu$ ($\Rightarrow P'_5$ Anomaly! 3.7 σ) 1304.6325, N. Serra talk at EPS 2013, LHCb 1308.1707

 \triangleright First pheno analysis of $b \rightarrow s$ transitions including LHCb results Descotes-Genon, Matias, JV 1307.5683, "Undestanding the $B \rightarrow K^* \mu \mu$ Anomaly"

 \rightarrow Propose $\mathcal{C}_9^{\rm NP}\sim-1$ as the favoured NP scenario. Pull_{\rm SM}\sim3 - 4 σ

 \triangleright Result is confirmed by other groups, including a large- q^2 -only analysis with Lattice form factors.

Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate

2013 ▷ Many theory papers...

Gauld, Goerz, Haisch, Buras, Girrbach, Datta, Duraisamy, Gosh, Fazio, Hurth, Mahmoudi

2014 \triangleright Precise measurements of $B \rightarrow K\mu\mu$ branching ratios with fine binnings LHCb-PAPER-2014-007

 $\rightarrow \sim 2\,\sigma$ tension w.r.t SM, consistent with the $\mathcal{C}_9^{\rm NP} \sim -1$ benchmark!!

▷ Many more theory papers... Mahmoudi, Neshatpour, Altmannshofer, Gori, Pospelov, Yavin, Biancofiore, Colangelo, De Fazio, Lyon, Zwicky, JV ...

- ▷ LHCb measurement of $R_{K} = BR(B \rightarrow K\mu\mu)/BR(B \rightarrow Kee) \sim 0.75$ LHCb, 1406.6482
- $\rightarrow \sim 2.6 \sigma$ tension w.r.t SM. Lepton Non-Universality??!
- \rightarrow Consistent with $C_{9\mu}^{\rm NP} \sim -1!!$ Alonso, Camalich, Grinstein, 1407.7044.

Many many more theory papers... Descotes-Genon, Hofer, Matias, Hiller, Schmaltz, Ghosh, Nardecchia, Renner, Biswas, Chowdhury, Han, Lee, Crivellin, Hurth, Mahmoudi, Neshatpour, Glashow, Guadagnoli, Lane, Altmannshofer, Straub, Gripaios, Jäger, Camalich, Bhattacharya, Datta, London, Shivashankara, JV ...

2015 \triangleright LHCb update for $B \rightarrow K^* \mu \mu$ angular analysis with 3 fb⁻¹ (full run 1) C.Langenbruch, talk at Moriond 2013; 1512.04442.

ightarrow Confirmed P_5' anomaly in two bins (\sim 2.9 σ each)

▷ LHCb angular analysis of $B \rightarrow K^* ee$ at very low q^2 LHCb 1501.03038.

Updated global fits with new data and various theoretical improvements Altmannshofer, Straub 1411.3161, Descotes-Genon, Hofer, Matias, JV 1510.04239, Hurth, Mahmoudi, Neshatpour 1603.00865

ightarrow Confirmed ${\cal C}_{9\mu}^{
m NP}\sim -1$ scenario !

▷ Many many more theory papers... Crivellin, D'Ambrosio, Heeck, Hofer, Matias, Descotes-Genon, Niehoff, Stangl, Straub, Bharucha, Zwicky, Guevara, Lopez, Roig, Tostado, Boucenna, Valle, Vicente, Becirevic, Fajfer, Kosnik, Nierste, Pokorski, Rosiek, Celis, Fuentes-Martin, Jung, Serodio, Lee, Tandean, Alonso, Grinstein, Camalich, Greljo, Isidori, Marzzoca, Calibbi, Ota, Gratrex, Hopfer, Guadagnoli, Lane, Sahoo, Mohanta, Belanger, Delaunay, Westhoff, Beaujean, Bobeth, Jahn, Altmannshofer, Yavin, Falkowski, Nardecchia, Ziegler, Gripaios, Renner, Allanach, Queiroz, Strumia, Sun, Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli, JV ...

2016 \triangleright Belle angular analysis of $B^0 \rightarrow K^{0*}\ell\ell$ S. Wehle, talk at LHC Ski 2016; 1604.04042. \rightarrow Confirmed P'_5 anomaly in one bin ($\sim 2.1 \sigma$) !!! \triangleright ATLAS "measurement" of $B_s \rightarrow \mu\mu$ ATLAS 1604.04263.

▷ Many many more theory papers... ...

- Next \triangleright Belle angular analysis of $B^+ \to K^{\star+}\ell\ell$ (~ 40% more statistics) Separation of e/μ ?
 - \triangleright ATLAS angular analysis of $B \to K^* \ell \ell$

▷ LHCb: Flavour-Non-Universality ratios (R_K , R_{K^*} , R_{ϕ} , ...) What about other FNU observables??

Capdevila, Descotes-Genon, Matias, JV 1605.03156.

▷ Can BaBar measure P'_5 et al?

 \triangleright Time Dependence in $B \rightarrow V\ell\ell??$ Descotes-Genon, JV 1502.05509.

▷ ...

- :: Rare $b \rightarrow s$ processes
 - Inclusive
 - $B \to X_{s}\gamma \ (BR) \qquad \qquad C_{7}^{(\prime)}, \ C_{had}$ $B \to X_{s}\ell^{+}\ell^{-} \ (dBR/dq^{2}) \qquad \qquad C_{7}^{(\prime)}, \ C_{0}^{(\prime)}, \ C_{10}^{(\prime)}, \ C_{had}$
 - Exclusive leptonic
 - ► $B_s \rightarrow \ell^+ \ell^- (BR)$ $\mathcal{C}_{10}^{(\prime)}$
 - Exclusive radiative/semileptonic

 $B \rightarrow K^* \gamma \ (BR, S, A_I) \qquad \qquad C_7^{(\prime)}, C_{had}$ $B \rightarrow K \ell^+ \ell^- \ (dBR/dq^2) \qquad \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}, C_{had}$ $B \rightarrow K^* \ell^+ \ell^- \ (dBR/dq^2, \text{ Angular Observables}) \qquad \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}, C_{had}$ $B_s \rightarrow \phi \ell^+ \ell^- \ (dBR/dq^2, \text{ Angular Observables}) \qquad \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}, C_{had}$ $A_b \rightarrow \Lambda \ell^+ \ell^- \ (see e.g. Meinel, van Dyk 2016)$ etc.

:: $B \rightarrow V (\rightarrow M_1 M_2) \ell^+ \ell^-$ Angular Distribution

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_K d\cos\theta_I d\phi} = \frac{9}{32\pi} \times \left[\mathbf{J}_{15} \sin^2\theta_K + \mathbf{J}_{1c} \cos^2\theta_K + \mathbf{J}_{25} \sin^2\theta_K \cos 2\theta_I \right] + \mathbf{J}_{2c} \cos^2\theta_K \cos 2\theta_I + \mathbf{J}_3 \sin^2\theta_K \sin^2\theta_I \cos 2\phi + \mathbf{J}_4 \sin 2\theta_K \sin 2\theta_I \cos\phi + \mathbf{J}_5 \sin^2\theta_K \sin\theta_I \cos\phi + \mathbf{J}_{65} \sin^2\theta_K \cos\phi_I + \mathbf{J}_{6c} \cos^2\theta_K \cos\phi_I + \mathbf{J}_{7} \sin 2\theta_K \sin\theta_I \sin\phi + \mathbf{J}_8 \sin 2\theta_K \sin 2\theta_I \sin\phi + \mathbf{J}_9 \sin^2\theta_K \sin^2\theta_I \sin\phi_I \sin\phi_I \right]$$

• $J_i(q^2) \sim c_i^{\lambda\lambda'} H_\lambda H_{\lambda'}^{\star}$, where H_λ are helicity amplitudes.

- J_i have large uncertainties from FF normalisations $(H_\lambda \propto F_i)$.
- If FF correlations are known, suitable ratios ~ J_i/J_k can be predicted with good precision ⇒ Clean observables

- very low-q² (≤ 1 GeV²) dominated by O₇
- low- q^2 ([1,6] GeV²) dominated by $\mathcal{O}_{9,10}$
- 1) QCD factorization or SCET
 - 2) LCSR
 - 3) non-local OPE of cc-tails

(slide from C. Bobeth)

local OPE (+ HQET) \Rightarrow theory only for

sufficiently large a^2 -integrated obs's

Javier Virto (Uni Bern)

:: Clean Observables : $B \rightarrow V(\rightarrow M_1M_2)\ell^+\ell^-$

Optimized Observables

Several Form Factor ratios can be predicted:

- At large recoil \longrightarrow SCET [Charles et.al. 1998, Beneke, Feldmann, 2000]
- At low recoil \rightarrow HQET [Grinstein, Pirjol, 2004, Bobeth, Hiller, van Dyk, 2011]

Example

SCET relation at large recoil

$$\frac{\epsilon_{-}^{*\mu}q^{\nu}\langle K_{-}^{*}|\bar{s}\sigma_{\mu\nu}P_{R}b|B\rangle}{im_{B}\langle K_{-}^{*}|\bar{s}\epsilon_{-}^{*}P_{L}b|B\rangle} = 1 + \mathcal{O}(\alpha_{s}, \Lambda/m_{b})$$

This allows to build observables with reduced dependence on FFs.

Optimized observables at large recoil

[Matias, Mescia, Ramon, JV, 2012] [Descotes-G, Matias, Ramon, JV, 2013]

$$P_{1} = \frac{J_{3}}{2J_{2s}} \qquad P_{2} = \frac{J_{6s}}{8J_{2s}} \qquad P_{4}' = \frac{J_{4}}{\sqrt{-J_{2s}J_{2c}}}$$
$$P_{5}' = \frac{J_{5}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{6}' = \frac{-J_{7}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{8}' = \frac{-J_{8}}{\sqrt{-J_{2s}J_{2c}}}$$

:: Clean Observables : $B \rightarrow V(\rightarrow M_1M_2)\ell^+\ell^-$

Optimized Observables

Several Form Factor ratios can be predicted:

- At large recoil \longrightarrow SCET [Charles et.al. 1998, Beneke, Feldmann, 2000]
- At low recoil \longrightarrow CURRENTLY WE USE LATTICE FULL FORM FACTORS

Example

SCET relation at large recoil

$$\frac{\epsilon_{-}^{*\mu}q^{\nu}\langle K_{-}^{*}|\bar{s}\sigma_{\mu\nu}P_{R}b|B\rangle}{im_{B}\langle K_{-}^{*}|\bar{s}\epsilon_{-}^{*}P_{L}b|B\rangle} = 1 + \mathcal{O}(\alpha_{s}, \Lambda/m_{b})$$

This allows to build observables with reduced dependence on FFs.

Optimized observables at large recoil [Matias, Mescia, Ramon, JV, 2012] Descotes-G, Matias, Ramon, JV, 2013]

$$P_{1} = \frac{J_{3}}{2J_{2s}} \qquad P_{2} = \frac{J_{6s}}{8J_{2s}} \qquad P_{4}' = \frac{J_{4}}{\sqrt{-J_{2s}J_{2c}}}$$
$$P_{5}' = \frac{J_{5}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{6}' = \frac{-J_{7}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{8}' = \frac{-J_{8}}{\sqrt{-J_{2s}J_{2c}}}$$

Updates for 2015 Fits

• $BR(B \rightarrow X_s \gamma)$

New theory update: $\mathcal{B}_{s\gamma}^{SM} = (3.36 \pm 0.23) \cdot 10^{-4}$ (Misiak et al 2015)

 $\blacktriangleright~+6.4\%$ shift in central value w.r.t 2006 \rightarrow excellent agreement with WA

Quick merchardising:

Four-body contributions to $B \rightarrow X_s \gamma$ at NLO, T.Huber, M.Poradzinski and JV arXiv:1411.7677 [hep-ph] – JHEP

Updated NNLO QCD predictions for the Weak Radiative B-meson decays,

M. Misiak, H. M. Asatrian, R. Boughezal, M. Czakon, T. Ewerth, A. Ferroglia, P. Fiedler, P. Gambino, C. Greub, U. Haisch, T. Huber, M. Kamiński, G. Ossola, M. Poradziński, A. Rehman, T. Schutzmeier, M. Steinhauser, and JV arXiv:1503.03328 [hep-ph] – PRL

Updates for 2015 Fits

- $BR(B \rightarrow X_s \gamma)$
 - ▶ New theory update: $\mathcal{B}_{s\gamma}^{SM} = (3.36 \pm 0.23) \cdot 10^{-4}$ (Misiak et al 2015)
 - $\blacktriangleright~+6.4\%$ shift in central value w.r.t 2006 \rightarrow excellent agreement with WA
- $BR(B_s \rightarrow \mu^+ \mu^-)$
 - ▶ New theory update (Bobeth et al 2013), New LHCb+CMS average (2014)
- $BR(B \rightarrow X_s \mu^+ \mu^-)$
 - ▶ New theory update (Huber et al 2015)
- $BR(B \rightarrow K\mu^+\mu^-)$:
 - ▶ LHCb 2014 + Lattice form factors at large q^2 (Bouchard et al 2013, 2015)
- $B_{(s)}
 ightarrow (K^*, \phi) \mu^+ \mu^-$: BRs & Angular Observables
 - ▶ LHCb 2015 + Lattice form factors at large q^2 (Horgan et al 2013)
- $BR(B \rightarrow Ke^+e^-)_{[1,6]}$ (or R_K) and $B \rightarrow K^*e^+e^-$ at very low q^2 • LHCb 2014, 2015

:: SM predictions and Pulls : $B \rightarrow K \mu \mu$

$BR(B^+ o K^+ \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[0.1, 0.98]	0.314 ± 0.092	0.292 ± 0.022	+0.2
[1.1, 2]	0.321 ± 0.100	$\textbf{0.210} \pm \textbf{0.017}$	+1.1
[2, 3]	$\textbf{0.354} \pm \textbf{0.113}$	0.282 ± 0.021	+0.6
[3, 4]	0.351 ± 0.115	0.254 ± 0.020	+0.8
[4, 5]	$\textbf{0.348} \pm \textbf{0.117}$	0.221 ± 0.018	+1.1
[5,6]	$\textbf{0.345} \pm \textbf{0.120}$	0.231 ± 0.018	+0.9
[6,7]	$\textbf{0.343} \pm \textbf{0.125}$	$\textbf{0.245} \pm \textbf{0.018}$	+0.8
[7,8]	$\textbf{0.343} \pm \textbf{0.131}$	0.231 ± 0.018	+0.8
[15, 22]	$\textbf{0.975} \pm \textbf{0.133}$	$\textbf{0.847} \pm \textbf{0.049}$	+0.9
$BR(B^0 o K^0 \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[0.1, 2]	$\textbf{0.629} \pm \textbf{0.191}$	0.232 ± 0.105	+1.8
[2, 4]	$\textbf{0.654} \pm \textbf{0.211}$	0.374 ± 0.106	+1.2
[4, 6]	$\textbf{0.643} \pm \textbf{0.221}$	$\textbf{0.346} \pm \textbf{0.103}$	+ 1 .2
[6,8]	$\textbf{0.636} \pm \textbf{0.237}$	$\textbf{0.540} \pm \textbf{0.115}$	+0.4
[15, 19]	$\textbf{0.904} \pm \textbf{0.124}$	$\textbf{0.665} \pm \textbf{0.116}$	+1.4

:: SM predictions and Pulls : $BR(B \rightarrow V \mu \mu)$

$BR(B^0 o K^{*0} \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[0.1, 2]	1.359 ± 1.075	1.140 ± 0.181	+0.2
[2, 4.3]	$\textbf{0.768} \pm \textbf{0.523}$	0.690 ± 0.115	+0.1
[4.3, 8.68]	2.278 ± 1.776	2.146 ± 0.307	+0.1
[16, 19]	1.652 ± 0.152	1.230 ± 0.195	+1.7
$\overline{{\it BR}({\it B}^+ o {\it K}^{*+} \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[0.1, 2]	1.405 ± 1.123	1.121 ± 0.266	+0.2
[2, 4]	$\textbf{0.723} \pm \textbf{0.487}$	1.120 ± 0.320	-0.7
[4, 6]	0.856 ± 0.625	0.500 ± 0.200	+0.5
[6,8]	1.054 ± 0.831	$\textbf{0.660} \pm \textbf{0.220}$	+0.5
[15, 19]	2.586 ± 0.247	1.600 ± 0.320	+2.4
$BR(B_s o \phi \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[0.1, 2.]	1.880 ± 0.372	1.112 ± 0.161	+1.9
[2., 5.]	1.702 ± 0.281	$\textbf{0.768} \pm \textbf{0.135}$	+3.0
[5., 8.]	2.024 ± 0.357	$\textbf{0.963} \pm \textbf{0.150}$	+2.7
[15, 18.8]	$\textbf{2.198} \pm \textbf{0.167}$	1.616 ± 0.202	+ 2 . 2

:: SM predictions and Pulls : $P_i(B \rightarrow K^* \mu \mu)$

$P_1(B ightarrow K^* \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[15, 19]	-0.643 ± 0.055	-0.497 ± 0.109	-1.2
$\overline{P_2(B ightarrow K^* \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[0.1, 0.98]	0.117 ± 0.016	0.003 ± 0.054	+ 2 .0
[6,8]	-0.371 ± 0.071	-0.241 ± 0.072	-1.3
$\overline{P_5'(B ightarrow K^* \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[0.1, 0.98]	0.676 ± 0.139	0.386 ± 0.144	+1.4
[2.5, 4]	-0.468 ± 0.122	-0.067 ± 0.338	-1.1
[4, 6]	-0.808 ± 0.082	-0.299 ± 0.160	-2.8
[6,8]	-0.935 ± 0.078	-0.504 ± 0.128	-2.9
[15, 19]	-0.574 ± 0.047	-0.684 ± 0.083	+1.2
$\overline{P_6'(B ightarrow K^* \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[1.1, 2.5]	-0.073 ± 0.028	0.462 ± 0.225	-2.4
$P_8'(B ightarrow K^* \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[0.1, 0.98]	0.021 ± 0.025	0.359 ± 0.354	-1.0
[4, 6]	0.031 ± 0.019	0.685 ± 0.399	-1.6
[6,8]	0.018 ± 0.012	-0.344 ± 0.297	+ 1 .2

:: SM predictions and Pulls : $P_i(B_s \rightarrow \phi \mu \mu)$

$P_1(B_s o \phi \mu^+ \mu^-)$	Standard Model	Experiment	Pull
[15, 18.8]	-0.689 ± 0.033	-0.253 ± 0.341	-1.3
$\overline{P_4'(B_s o \phi \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[15, 18.8]	1.296 ± 0.014	0.617 ± 0.486	+1.4
$\overline{P_6'(B_s o \phi \mu^+ \mu^-)}$	Standard Model	Experiment	Pull
[15, 18.8]	-0.003 ± 0.072	-0.286 ± 0.243	+1.1
$\overline{F_L(B_s\to\phi\mu^+\mu^-)}$	Standard Model	Experiment	Pull
[0.1, 2.]	0.431 ± 0.081	0.200 ± 0.087	+ 2 .0
[5., 8.]	0.655 ± 0.048	0.540 ± 0.097	+ 1 .0
[15, 18.8]	$\textbf{0.356} \pm \textbf{0.023}$	$\textbf{0.290} \pm \textbf{0.068}$	+0.9

▷ $B_s \rightarrow \phi$ results rely on BSZ form factors – Bharucha, Straub, Zwicky 2015 ▷ All the others rely on KMPW – Khodjamirian, Mannel, Pivovarov, Wang 2010 ▷ Low recoil always relies on Lattice – Horgan, Liu, Meinel, Wingate 2013

Javier Virto (Uni Bern)

B decays : Anomalies and Challenges

:: Fit: 1D hypotheses

 $\label{eq:pullsm: solution} \begin{array}{l} \triangleright \mbox{ Pull}_{SM} \colon \sim \chi^2_{SM} - \chi^2_{min} \mbox{ (metrology: how less likely is SM vs. best fit?)} \\ \triangleright \mbox{ p-value: } p(\chi^2_{min}, N_{dof}) \mbox{ (goodness of fit: is the best fit a good fit?)} \\ \triangleright \mbox{ Contribution $\mathcal{C}_9^{NP} < 0$ always favoured.} \end{array}$

Coefficient	Best fit	3σ	$Pull_{\mathrm{SM}}$	p-value (%)
SM	-	-	_	16.0
$\mathcal{C}_7^{\mathrm{NP}}$	-0.02	[-0.07, 0.03]	1.2	17.0
$\mathcal{C}_{9}^{\mathrm{NP}}$	-1.09	[-1.67, -0.39]	4.5	63.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	[-0.12, 1.36]	2.5	25.0
$\mathcal{C}_{7'}^{\mathrm{NP}}$	0.02	[-0.06, 0.09]	0.6	15.0
$\mathcal{C}^{\mathrm{NP}}_{\mathfrak{q}'}$	0.46	[-0.36, 1.31]	1.7	19.0
$\mathcal{C}^{\mathrm{NP}}_{10'}$	-0.25	[-0.82, 0.31]	1.3	17.0
$C_9^{\rm NP} \stackrel{\rm lo}{=} C_{10}^{\rm NP}$	-0.22	[-0.74, 0.50]	1.1	16.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$	-0.68	[-1.22, -0.18]	4.2	56.0
$\mathcal{C}^{\mathrm{NP}}_{\mathrm{9'}} = \mathcal{C}^{\mathrm{NP}}_{\mathrm{10'}}$	-0.07	[-0.86, 0.68]	0.3	14.0
$\mathcal{C}_{\mathbf{q}\prime}^{\mathrm{NP}} = -\tilde{\mathcal{C}}_{10\prime}^{\mathrm{NP}}$	0.19	[-0.17, 0.55]	1.6	18.0
$\mathcal{C}_{9}^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP}$	-1.06	[-1.60, -0.40]	4.8	72.0

:: Fit: 2D hypotheses :: scenarios with $Pull_{\rm SM} > 4$

▷ Pull_{SM}: $\sim \chi^2_{SM} - \chi^2_{min}$ (metrology: how less likely is SM vs. best fit?) ▷ p-value: $p(\chi^2_{min}, N_{dof})$ (goodness of fit: is the best fit a good fit?) ▷ Several favoured scenarios, all with $C_9^{NP} < 0$, hard to distinguish.

Coefficient	Best Fit Point	$Pull_{\mathrm{SM}}$	p-value (%)
SM	_	_	16.0
$(\mathcal{C}_7^{\mathrm{NP}},\mathcal{C}_9^{\mathrm{NP}})$	(-0.00, -1.07)	4.1	61.0
$(\mathcal{C}_9^{\rm NP},\mathcal{C}_{10}^{\rm NP})$	(-1.08, 0.33)	4.3	67.0
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{7'}^{\mathrm{NP}})$	(-1.09, 0.02)	4.2	63.0
$\left(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{9'}^{\mathrm{NP}} ight)$	(-1.12, 0.77)	4.5	72.0
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{10'}^{\mathrm{NP}})$	(-1.17, -0.35)	4.5	71.0
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9'}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}} = \mathcal{C}_{10'}^{\mathrm{NP}})$	(-1.15, 0.34)	4.7	75.0
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9'}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}})$	(-1.06, 0.06)	4.4	70.0

:: Fit: 6D hypotheses

 \triangleright All 6 WCs free (but real).

Coefficient	1σ	2σ	3σ
$\mathcal{C}_7^{\mathrm{NP}}$	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]
$\mathcal{C}_9^{\rm NP}$	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]
$\mathcal{C}_{10}^{\rm NP}$	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]
$\mathcal{C}^{\rm NP}_{7'}$	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]
$\mathcal{C}_{9'}^{\rm NP}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]
$\mathcal{C}^{\rm NP}_{10'}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]

 $\triangleright C_9$ consistent with SM only above 3σ .

 \triangleright All others consistent with the SM at 1σ , except for C'_9 at 2σ .

 \triangleright Pull_{SM} for the 6D fit is 3.6 $\sigma.$

Recent Analyses

	[SDG, Hofer	[Straub &	[Hurth, Mahmoudi,
	Matias, Virto]	Altmannshofer]	Neshatpour]
Statistical	Frequentist	Frequentist	Frequentist
approach	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta\chi^2$ & χ^2
Data	LHCb	Averages	LHCb
${m B} o {m K}^* \mu \mu$ data	P _i , Max likelihood	S _i , Max likelihood	S _i , Max I.& moments
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]
factors	[Khodjamirian et al.]	fit light-meson LCSR	
	+ lattice QCD	+ lattice QCD	
Theo approach	soft and full ff	full ff	soft and full ff
cc large recoil	magnitude from	polynomial param	polynomial param
	[Khodjamirian et al.]		
\mathcal{C}_9^μ 1D 1 σ	[-1.29,-0.87]	[-1.54,-0.53]	[-0.27,-0.13]
pull _{SM}	4.5 σ	3.7 σ	4.2σ
"good	see before	$\mathcal{C}_9^{NP}, \mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP}$	$(\mathcal{C}_9^{NP}, \mathcal{C}_{9'}^{NP}), (\mathcal{C}_9^{NP}, \mathcal{C}_{10}^{NP})$
scenarios"		$(\mathcal{C}_{9}^{NP}, \mathcal{C}_{9'}^{NP}), (\mathcal{C}_{9}, \mathcal{C}_{10}^{NP})$	

 \Longrightarrow Good overall agreement for the results of the three fits

Comparing different fits

Branching Ratios vs. Angular Observables

 $B \rightarrow K \mu \mu$ vs. $B \rightarrow K^* \mu \mu$ vs. $B_s \rightarrow \phi \mu \mu$

Different q^2 regions

Different q^2 regions

 $\rightarrow \mathcal{T}_{\mu} = -\frac{16i\pi^2}{q^2} \sum_{i=1..6,8} \mathcal{C}_i \int dx^4 e^{iq \cdot x} \langle M_{\lambda} | \mathcal{T} \{ \mathcal{J}_{\mu}^{\mathsf{em}}(x) \mathcal{O}_i(0) \} | B \rangle \text{ is } q^2 \text{-dependent}$

 \Rightarrow No evidence for q^2 -dependence \rightarrow Good crosscheck of hadronic contribution!

Different q^2 regions

 $ightarrow \mathcal{C}_{10}$ is never q^2 -dependent

 \Rightarrow No evidence for q^2 -dependence \rightarrow Good crosscheck: the fit is still good!

q^2 dependence

Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli 2015

Removing the constraint from KMPW at low q^2 :

- Improves the fit
- ▷ Compatible with KMPW + constant $\delta C_9 \sim -1$!!

DHMV vs. Full form factors

 P_i 's vs. S_i 's

Enhanced Power Corrections

Enhanced charm-loop effect

Conclusions of Fits

- Fits to $b \rightarrow s\gamma$, $s\ell\ell$ were a curiosity in 2012 By 2015 they are a serious industry.
- Around 100 observables, many $\sim 1\sigma$, several $> 2\sigma$ w.r.t SM.
- Global fits point to a $\gtrsim 4\sigma$ tension w.r.t the SM. ***
- Best-fit scenarios provide good fits to data, with
 - compatibility between BRs and AOs
 - compatibility between different modes
 - compatibility between different q² regions
 - agreement between different form-factor approaches
- Fit results seem robust under
 - power corrections
 - charm-loop effects

correlations must play an important role (not absolute freedom after all!).

• Important to establish to what extent these best fits scenarios can be realised in renormalizable models (many extremely interesting papers already).

Conclusions of Fits

*** Comment / footnote

We show that:

- 1. Assuming KMPW is the right ballpark for $c\bar{c}$.
- 2. Assuming Fact. PCs are $\sim 10-20\%$ (supported by LCSR calculations).
- 3. Assuming the OPE for the large- q^2 bin is correct up to $\sim 10\%$

then, a NP contribution $C_{9\mu}^{\rm NP} \sim -1$ gives a substantially improved fit for

- $B
 ightarrow K \mu \mu$, $B
 ightarrow K^* \mu \mu$ and $B_s
 ightarrow \Phi \mu \mu$
- BRs and angular observables (including P'_5)
- Low q^2 and large q^2
- *R*_{*K*}

All these receive, in general, quite different contributions from hadronic operators.

Charm loop at large q^2 : resonances

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - Model estimate yield a few % for $BR(B
 ightarrow K \mu \mu)$ [Beylich, Buchalla, Feldmann]

- Probably (?) effect of similar size for $B \rightarrow K^* \mu \mu$ (BR and angular obs.)
- OPE corrections + NLO QCD corrections + complex correction of 10% for each transversity amplitude
- Difficulties to explain $B \to K\ell\ell$ low-recoil spectrum using $\sigma(e^+e^- \to hadrons)$ and naive factorisation [Lyon, Zwicky]

- Large recoil
 - $q^2 \leq$ 7-8 GeV² to limit the impact of J/ψ tail
 - Still need to include the effect of cc loop

(tail of resonances + nonresonant)
General New Physics (for Slide 49)

We write

$$\mathcal{C}_i = \mathcal{C}_i^{\scriptscriptstyle\mathrm{SM}} + \mathcal{C}_i^{\scriptscriptstyle\mathrm{NP}} \ ,$$

and consider the 3 σ ranges for the NP contributions obtained in the global fit to $b\to s\gamma$ and $b\to s\ell\ell$ data of 1307.5683:

 $\begin{array}{ll} \mathcal{C}_7^{\rm NP} \in (-0.08, 0.03) \;, & \mathcal{C}_9^{\rm NP} \in (-2.1, -0.2) \;, & \mathcal{C}_{10}^{\rm NP} \in (-2.0, 3.0) \;, \\ \mathcal{C}_{7'}^{\rm NP} \in (-0.14, 0.10) \;, & \mathcal{C}_{9'}^{\rm NP} \in (-1.2, 1.8) \;, & \mathcal{C}_{10'}^{\rm NP} \in (-1.4, 1.2) \;. \end{array}$

The result of this scan is shown in Slide 42. We consider three scenarios:

- LHC (Left-Handed Currents) scenario: NP contributions to C_7, C_9, C_{10} only. This corresponds to the orange regions in the figs, delimited by dashed lines (along the line $Q_9 = -1$ on the right-hand plot).
- RHC (Right-Handed Currents) scenario: NP contributions to $C_{7'}, C_{9'}, C_{10'}$ only. This corresponds to the red regions in the figs, delimited by dotted lines.
- General NP scenario: NP contributions to all six coefficients $\mathcal{C}_{7^{(\prime)}}, \mathcal{C}_{9^{(\prime)}}, \mathcal{C}_{10^{(\prime)}}$. This corresponds to the regions in green in the figs, with solid borders.

NP Benchmarks (for Slide 50)

A. Best fit point in the $C_7 - C_9$ scenario of 1307.5683:

$$\mathcal{C}_7^{
m NP} = -0.02, \quad \mathcal{C}_9^{
m NP} = -1.6$$
 .

B. Best fit point in the $C_9 - C_{9'}$ scenario of 1411.3161:

$${\cal C}_9^{
m NP} = -1.28, ~~ {\cal C}_{9'}^{
m NP} = 0.47$$
 .

C. Z'-motivated $C_{9(')}, C_{10(')}$ scenarios (see e.g. 1211.1896,1309.2466):

$$\begin{array}{l} \textbf{C1.} \quad \mathcal{C}_{9}^{\text{NP}} = -\mathcal{C}_{10}^{\text{NP}} = -1 \\ \textbf{C2.} \quad \mathcal{C}_{9}^{\text{NP}} = -\mathcal{C}_{10'}^{\text{NP}} = 1 \\ \textbf{C3.} \quad \mathcal{C}_{9}^{\text{NP}} = \mathcal{C}_{9'}^{\text{NP}} = -\mathcal{C}_{10}^{\text{NP}} = -\mathcal{C}_{10'}^{\text{NP}} = -1 \\ \textbf{C4.} \quad \mathcal{C}_{9}^{\text{NP}} = -\mathcal{C}_{9'}^{\text{NP}} = -\mathcal{C}_{10}^{\text{NP}} = \mathcal{C}_{10'}^{\text{NP}} = -1 \end{array}$$

D. Best fit point in the general fit of 1307.5683:

 $\mathcal{C}_7^{\rm NP} = -0.02 \ , \ \mathcal{C}_9^{\rm NP} = -1.3 \ , \ \mathcal{C}_{10}^{\rm NP} = 0.3 \ , \ \mathcal{C}_{7'}^{\rm NP} = -0.01 \ , \ \mathcal{C}_{9'}^{\rm NP} = 0.3 \ , \ \mathcal{C}_{10'}^{\rm NP} = 0 \ .$

Scenarios C.1 and C.2 arise also respectively in singlet/triplet and doublet leptoquark models motivated by recent data on R_K (see 1408.1627).

 $:: BR(B_s \to \ell^+ \ell^-)$

 $\mathcal{L} = \mathcal{L}_{QED+QCD} + \mathcal{C}_{9}^{(\prime)} \left[\bar{s} \gamma^{\mu} P_{L(R)} b \right] \left[\bar{\ell} \gamma_{\mu} \ell \right] + \mathcal{C}_{10}^{(\prime)} \left[\bar{s} \gamma^{\mu} P_{L(R)} b \right] \left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell \right] + \cdots$

$$\begin{split} & \int_{\partial B_{s}} \int_{\partial B_{s}}$$

Note: Contributions from (pseudo)SCALAR operators are not helicity suppressed.

$$\begin{split} \sigma(\vec{\mathcal{B}}_{s\mu}^{\rm th}) &= (3.65\pm0.23)\cdot10^{-9}~(6.4\%)~\text{vs.}~\sigma(\vec{\mathcal{B}}_{s\mu}^{\rm exp}) = (2.9\pm0.7)\cdot10^{-9}~(24\%)\\ \text{main th. uncertainties:}~f_B~\text{and CKM.}\\ \text{Bobeth, Gorbahn, Hermann, Misiak, Stamou, Steinhauser'2014; CMS+LHCb 1411.4413} \end{split}$$

Javier Virto (Uni Bern)

:: $BR(B_s
ightarrow \ell^+ \ell^-)$ CMS+LHCb 1411.4413 vs. ATLAS 1604.04263

ATLAS: Evidence for $B_s \rightarrow \mu\mu$ at 1.4 σ (3.1 σ expected). (p-value)_{SM}=0.048 (2.0 σ); $B_{s\mu} < 3.0 \cdot 10^{-9}$ and $B_{d\mu} < 4.2 \cdot 10^{-10}$ at 95% C.L

$B \to K^* \ell \bar{\ell}$: Form Factors

Low q^2 ::

• Altmannshofer, Bharucha, Straub, Zwicky:

LCSRs with K^* DAs + Correlations + EOM constraint q^2 dependence given by simplified *z*-expansion

• Descotes-Genon, Hofer, Matias, JV (DHMV):

LCSRs with *B* DAs (uncorrelated) + SCET relations + Power corrections q^2 dependence given by simplified *z*-expansion

```
• Jäger + Camalich:
```

Try to rely only on HQ/LE expansion, both for $q^2 = 0$ and q^2 -dependence Input: LCSRs, DSE, $B \to K^* \gamma$, + power corrections

Large q^2 ::

• Horgan et al: Lattice QCD

 $B \to K^* \ell \bar{\ell}$: Form Factors – DHMV

$$V(q^2) = rac{m_B + m_{K^*}}{m_B} \, \xi_\perp(q^2) \, + \, \Delta V^{lpha_s}(q^2) \, + \, \Delta V^\Lambda(q^2) \, ,$$

$$A_1(q^2) = rac{2E}{m_B+m_{K^*}} \xi_\perp(q^2) + \Delta A_1^{lpha}(q^2) + \Delta A_1^\Lambda(q^2) \,,$$

$$A_2(q^2) = rac{m_B}{m_B - m_{K^*}} \left[\xi_\perp(q^2) - \xi_\parallel(q^2)
ight] + \Delta A_2^{lpha_s}(q^2) + \Delta A_2^\Lambda(q^2) \,,$$

$$A_0(q^2) = rac{E}{m_{K^*}}\,\xi_{\parallel}(q^2) \,+\,\Delta A_0^{lpha_s}(q^2) \,+\,\Delta A_0^{\Lambda}(q^2)\,,$$

$$T_1(q^2) = \xi_\perp(q^2) \, + \, \Delta T_1^{lpha_s}(q^2) \, + \, \Delta T_1^\Lambda(q^2) \, ,$$

$$T_2(q^2) = rac{2E}{m_B} \xi_\perp(q^2) + \Delta T_2^{lpha_s}(q^2) + \Delta T_2^\Lambda(q^2) \,,$$

$$T_3(q^2) = \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2)\right] \, + \, \Delta T_3^{\alpha_s}(q^2) \, + \, \Delta T_3^{\Lambda}(q^2) \, ,$$

Fact. Power corrections: $\Delta F^{\Lambda}(q^2) = a_F + b_F \frac{q^2}{m_B^2} + c_F \frac{q^4}{m_B^4} + \dots,$

Javier Virto (Uni Bern)

B decays : Anomalies and Challenges

 $B \rightarrow K^* \ell \bar{\ell} : h_i :$ Corrections to QCDF at low- $q^2 -$ DHMV

$$\mathcal{T}_i^{\text{had}} \to \left(1 + r_i(q^2)\right) \mathcal{T}_i^{\text{had}},$$

$$r_i(s) = r_i^a e^{i\phi_i^a} + r_i^b e^{i\phi_i^b}(s/m_B^2) + r_i^c e^{i\phi_i^c}(s/m_B^2)^2.$$

With $r_i^{a,b,c} \in [0,0.1]$ and $\phi_i^{a,b,c} \in [-\pi,\pi]$

$B \rightarrow K^* \ell \bar{\ell} : h_i : \text{Charm} - \text{DHMV}$

Inspired by Khodjamirian et al (KMPW): $C_9 \rightarrow C_9 + s_i \ \delta C_9^{\text{LD}(i)}(q^2)$

$$\delta C_9^{ ext{LD},(\perp,\parallel)}(q^2) = rac{a^{(\perp,\parallel)}+b^{(\perp,\parallel)}q^2[c^{(\perp,\parallel)}-q^2]}{b^{(\perp,\parallel)}q^2[c^{(\perp,\parallel)}-q^2]} \ \delta C_9^{ ext{LD},0}(q^2) = rac{a^0+b^0[q^2+s_0][c^0-q^2]}{b^0[q^2+s_0][c^0-q^2]}$$

We vary s_i independently in the range [-1, 1] (only $s_i = 1$ in KMPW).

 $B \rightarrow K^* \ell \bar{\ell} : h_i : \text{large-}q^2 - \text{DHMV}$

- OPE up to dimension 3 ops (Buchalla et al)
- NLO QCD corrections to the OPE coeffs (Greub et al)
- Lattice QCD form factors with correlations (Horgan et al proceeding update)
- $\pm 10\%$ by hand to account for possible Duality Violations (Lyon + Zwicky 2014)

Fit 1: 1D \rightarrow 2D fits

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_9^{\rm NP}$	$\mathcal{C}_{10}^{\rm NP}$	$\mathcal{C}^{\rm NP}_{7'}$	$\mathcal{C}_{9'}^{\rm NP}$	$\mathcal{C}^{\rm NP}_{10'}$
	1.10	4.45	2.48	0.73	1.76	1.45
$\mathcal{C}_7^{\mathrm{NP}}$	*	0.06	0.80	1.09	1.14	1.10
$\mathcal{C}_9^{\rm NP}$	4.31	*	4.01	4.52	4.58	4.70
$\mathcal{C}_{10}^{\rm NP}$	2.36	1.56	*	2.39	2.01	2.02
$\mathcal{C}^{\rm NP}_{7'}$	0.71	1.07	0.30	*	0.39	0.39
$\mathcal{C}_{9'}^{\rm NP}$	1.79	2.06	1.00	1.65	*	1.04
$\mathcal{C}^{\rm NP}_{10'}$	1.44	2.10	0.04	1.31	0.25	*