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We propose that both anomalies in B meson decays, RD(⇤) and RK might be explained by only
one vector leptoquark weak triplet state. The constraints on the parameter space are obtained by
considering t ! b⌧⌫⌧ data, lepton flavor universality tests in the kaon sector, bounds on the lepton
flavor violating decay B ! Kµ⌧ , and b ! cµ⌫µ decays. The presence of such vector leptoquark
could be exposed in precise measurements of top semitauonic decays to b quark. The model predicts
that LFU ratio RK⇤ in B ! K⇤`+`� decays is larger than RK .

I. INTRODUCTION

Although LHC has not found yet any particles not present in the Standard Model (SM), low-energy precision
experiments in B physics pointed out a few puzzling results. Namely, we are witnessing persistent indications of
disagreement with the SM prediction of lepton flavor universality (LFU) ratio in the ⌧/µ and ⌧/e sector. In the case

of ratio RD(⇤) = �(B!D(⇤)⌧⌫)
�(B!D(⇤)`⌫)

[1–6], the deviation from the SM is at 3.5� level [7] and has attracted a lot of attention

recently [8, 9]. Since the denominator of these ratios are the well measured decay rates with light leptons in the final
states, ` = e, µ, the most obvious interpretation of RD(⇤) results are in terms of new physics a↵ecting semileptonic
b ! c⌧⌫ processes [10].

The second group of observables, testing rare neutral current processes with flavor structure (s̄b)(µ+µ�) also indicate
anomalous behaviour [11–21]. Decay B ! K⇤µ+µ� deviates from the SM in the by-now-famous P 0

5

angular observable
at the confidence level of above 3� [22]. If interpreted in terms of new physics, all analyses point to modifications of
the leptonic vector current, which is also subject to large uncertainties due to nonlocal QCD e↵ects. However, several
studies have shown that even with generous errors assigned to QCD systematic e↵ects, the anomaly is not washed
away [23]. Furthermore, the sizable violation of LFU in the ratio RK = �(B!Kµµ)

�(B!Kee) in the dilepton invariant mass

bin 1 GeV2  q2  6 GeV2, has been established at 2.6�. This ratio is largely free of theoretical uncertainties and
experimental systematics, deviates in the muon channel consistently with the deviation in B ! Kµ+µ�. Strikingly
enough all these disagreements were observed in the B meson decays to the leptons of the second and third generation.
As pointed out in [10] lepton flavour universality has been tested at percent level and are in the case of pion and kaon
in excellent agreement with the SM predictions. It has been already suggested that scalar leptoquark might account
for this anomalous behaviour in many works [7, 12, 14, 24–27].

Many models of New Physics (NP) [1–6, 8, 9, 11–21, 27] have been employed to explain either RK and P 0
5

anomalies
or RD(⇤) . Reference [15] suggested that RK and P 0

5

can be explained if NP couples only to the third generations of
quarks and leptons. Similarly, the authors of [9] suggested that both RD(⇤) and RK anomalies can be correlated if the
e↵ective four-fermion semileptonic operators consist of left-handed doublets. The model of [28] proposed existence
of an additional weak bosonic triplet and falls in the category of weak doublet fermions coupling to the weak triplet
bosons, which then can explain all three B meson anomalies. Among the NP proposals a number of them suggest

that one scalar leptoquark accounts for either R(⇤)
D or RK anomalies. Howerer, in the recent paper [7] both deviations

were addressed by a single scalar leptoquark with quantum numbers (3, 1,�1/3) in such a way that RD(⇤) anomalies
is explained at the tree level, while RK only at loop level. This leptoquark scalar, unfortunately can couple to diquark
state too and therefore it potentially leads to proton decay. One may impose that this dangerous coupling vanishes,
but such a scenario is not easily realised within any GUT approach.

In this paper, we extend the SM by a vector SU(2) triplet leptoquark, which accomplishes both of the above
requirements by generating purely left handed currents with quarks and leptons. Furthermore, the triplet nature
of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with
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3.9σ	

3σ	

2.6σ	

charged		current	SM	tree	level	

FCNC	-	SM	loop	process		

B	physics	anomalies	



Expected	sensiLvity!		

Experimental	results	on	RD	and	RD*	
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QCD	impact:	Knowledge	of	form-factors!	

How	well	do	we	know	all	new/old		form-factors?	Ladce	improvements?	

Standard	Model	or	New	Physics?	

		π	and	K	physics:		tests	of	LFU	conservaLon	holds	up	to	1	percent	level		for	all	
three	lepton	generaLons.			
Experiment	and	SM	expectaLons	–	excellent	agreement!	

	Can	flavor	physics	resolves		puzzles	relying	onthe	exisLng	SM	tools?	

	B	physics	puzzles	indicate	lepton	flavor	universality	violaLon	in	semileptonic	
decays	(?)!	

Are	SM	calculaLons	of	the	exisLng	observables	precise	enough?		



2

operators. We identify working models with leptoquark
mediators that are minimally flavor violating in the quark
sector, and we confirm their consistency with current ex-
perimental constraints. Finally, Sec. IV contains our con-
clusions and a discussion of possible future signals at the
LHC and Belle II. Appendix A contains a discussion of
U(2)3 models.

A. Standard Model considerations

The tension between the central values of the R(D(⇤))
data and the SM is independent of the theoretical pre-
dictions for R(D(⇤)) quoted in Table I. The measured
R(D(⇤)) values imply a significant enhancement of the
inclusive B ! Xc⌧ ⌫̄ rate, which can be calculated pre-
cisely in the SM using an operator product expansion,
with theoretical uncertainties that are small and essen-
tially independent from those of the exclusive rates.

To see this, note that the isospin-constrained fit for the
branching ratios is quoted as [1]

B(B̄ ! D

⇤
⌧ ⌫̄) + B(B̄ ! D⌧ ⌫̄) = (2.78± 0.25)% , (2)

which applies for B± decays (recall the lifetime di↵erence
of B± and B

0). The averages in Table I imply for the
same quantity the fully consistent result,

B(B̄ ! D

⇤
⌧ ⌫̄) + B(B̄ ! D⌧ ⌫̄) = (2.71± 0.18)% . (3)

The SM prediction for R(Xc), the ratio for inclusive
decay rates, can be computed in an operator product ex-
pansion. Updating results in Refs. [22, 23], and including
the two-loop QCD correction [24], we find

R(Xc) = 0.223± 0.004 . (4)

The uncertainty mainly comes from m

1S
b , the HQET ma-

trix element �1, and assigning an uncertainty equal to
half of the order ↵

2
s term in the perturbation series in

the 1S scheme [25]. The most recent world average,
B(B� ! Xce⌫̄) = (10.92 ± 0.16)% [26, 27], then yields
the SM prediction,

B(B� ! Xc⌧ ⌫̄) = (2.42± 0.05)% . (5)

In B

� ! Xce⌫̄ decay, hadronic final states other than
D and D

⇤ contribute about 3% to the 10.92% branching
ratio quoted above, and the four lightest orbitally excited
D meson states (often called collectivelyD

⇤⇤) account for
about 1.7%. Using Ref. [28] for the theoretical descrip-
tion of these decays, taking into account the phase space
di↵erences and varying the relevant Isgur-Wise functions,
suggests R(D⇤⇤) >⇠ 0.15 for the sum of these four states.
This in turn implies for the sum of the central values of
the rates to the six lightest charm meson states

B(B̄ ! D

(⇤)
⌧ ⌫̄) + B(B̄ ! D

⇤⇤
⌧ ⌫̄) ⇠ 3% , (6)

in nearly 3� tension with the inclusive calculation in
Eq. (5). Note that Eqs. (2), (3), and (6) are also in mild

tension with the LEP average of the rate of an admixture
of b-flavored hadrons to decay to ⌧ leptons [29],

B(b ! X⌧

+
⌫) = (2.41± 0.23)% . (7)

Since both the experimental and theoretical uncertainties
of B(B ! Xc⌧ ⌫̄) are di↵erent from the exclusive rates,
its direct measurement from Belle and BaBar data would
be interesting and timely [30].

II. B̄ ! D(⇤)⌧ ⌫̄ OPERATOR ANALYSIS

In this section we study operators mediating b ! c⌧ ⌫̄

transitions. In contrast to prior operator fits [31–34],
we adopt an overcomplete set of operators corresponding
to all possible contractions of spinor indices and Lorentz
structures to help with the classification of viable models.
(We also take into account the constraints from q

2 spec-
tra, which were unavailable at the time of the first oper-
ator analyses.) Although Fierz identities allow di↵erent
spinor contractions to be written as linear combinations
of operators with one preferred spinor ordering, the set
of possible currents that can generate the operators is
manifest in the overcomplete basis.

We parametrize the NP contributions by

H =
4GFp

2
Vcb OVL +

1

⇤2

X

i

C

(0,00)
i O(0,00)

i . (8)

(Throughout this paper we do not display Hermitian
conjugates added to interaction terms as appropriate.)
Here the primes denote di↵erent ways of contracting the
spinors, as shown in Table II, which also presents their
Fierz transformed equivalents in terms of the “canoni-
cally” ordered fields (unprimed operators). In the SM,
only the OVL operator is present. (For illustration,
the type-II 2HDM generates the operator OSR with
CSR/⇤

2 = �2
p
2GFVcb mb m⌧ tan2 �/m2

H± .)
We do not consider the possibility of the neutrino be-

ing replaced by another neutral particle, such as a sterile
neutrino, which yields additional operators. The large
enhancement of an unsuppressed SM rate favors NP that
can interfere with the SM. A non-SM field in the fi-
nal state would preclude the possibility of interference,
leading to larger Wilson coe�cients and/or lower mass
scales for the NP, making the interpretation in terms of
concrete models more challenging.
We assume that the e↵ects of NP can be described

by higher dimension operators respecting the SM gauge
symmetries. This is only evaded if the NP mediating
these transitions is light or if it is strongly coupled at
the electroweak scale; in either case there are severe con-
straints. We classify operators by the representations
under SU(3)C ⇥ SU(2)L ⇥ U(1)Y of the mediators that
are integrated out to generate them, as shown in the last
column of Table II. Some mediators uniquely specify a

EffecLve	Hamiltonian	approach	in																							transiLon	b ! cl⌫l

SM	 NP	higher	dimensional	
operators,	regarding	the	SM	
gauge	symmetries		

Outline(

•  Motivation; 

•  Exclusive decay modes                      and                        

•  Hadronic matrix elements (symmetries); 

•  Form factors and  heavy-quark symmetry (Isgur-Wise 
function) 

• Helicity amplitudes; 

• Branching ratios in SM. 

B̄ ! Dl⌫l B̄ ! D⇤l⌫l

>	



Recently:	two	studies	of	observables	in	:	
	
1.	D.	Becirevic,	S.F.	I.	Nisandzic,	A.	Tayduganov,	1602.03030		(SM	neutrino)			
	
2.	R.Alonso,	A.	Kobach	and	J.M.	Camalich	,	1602.0767	
		

Possibility	to	test		NP	in																												and																														decays																																	B ! D⌧⌫ B ! D⇤⌧⌫

2 Full distributions of B ! D`⌫` and B ! D⇤`⌫̄` decays

In this section we sketch the derivation of expressions for the full two-fold and five-fold

distribution of the B ! D`⌫` and B ! D⇤`⌫`, respectively. We will keep the non-zero

mass of the lepton in all our formulas. The SM expressions that we derive coincide with

those presented in Ref. [10]. Since our aim is to study the possible NP e↵ects, we will go a

step beyond Ref. [10] and include the terms that are absent in the SM but can be non-zero

in a generic NP scenario. We then consider an e↵ective Hamiltonian in which the NP

e↵ects could a↵ect only the quark sector, while leaving the lepton sector universal, in its

SM form. Other possibilities for the NP e↵ective Hamiltonian can, of course, be envisaged.

2.1 E↵ective Hamiltonian

At the level of an e↵ective theory we consider [13] 3

H
e↵

=
GFp
2
Vcb HµL

µ + h.c

=
GFp
2
Vcb


(1 + gV )c�µb+ (�1 + gA)c�µ�5b+ gS i@µ(cb) + gP i@µ(c�5b)

+gT i@⌫(ci�µ⌫b) + gT5

i@⌫(ci�µ⌫�5b)

�
`�µ(1� �

5

)⌫` + h.c ,

(1)

which is the most general if the coupling to leptons is of the V � A form, like in the SM.

While gV,A are dimensionless, the couplings gS,P,T,T5

are dimensionfull as to compensate for

the fact that that the corresponding quark operators have mass dimension equal to four.

Furthermore the couplings gS,P,T,T
5

⌘ gS,P,T,T
5

(µ) carry the QCD anomalous dimension

which is the inverse of the anomalous dimension of the bilinear quark operator they multiply

as to leave H
e↵

scale independent. 4 Finally, quite obviously, by setting gS,P,V,A,T,T5

= 0 in

eq. (1) one retrieves the usual SM e↵ective Hamiltonian.

2.2 B ! D`⌫` decay

We begin with the expression for the full spectrum of B ! D`⌫` decay which has a very

simple form,

d2�

dq2d cos ✓`
=

1

32(2⇡)3m2

B

|q|
✓
1� m2

`

q2

◆
|M(B ! D`⌫`)|2 , (2)

where q stands for the three-momentum of the `⌫` pair in the B-meson rest frame, and

✓` is the angle between the direction of flight of D and ` in the center of mass frame of

3We use the definition �µ⌫ = (i/2)[�µ, �⌫ ].
4 gT and gT5 are obviously not independent. We define them separately for computational commodity,

but when doing phenomenology we take into account the fact that �µ⌫�5 = (i/2)✏µ⌫↵��↵� .

3

`⌫` [10]. To write the amplitude M(B ! D`⌫`) explicitly we decompose the non-vanishing

hadronic matrix elements of the quark operators in eq. (1) in terms of the Lorentz invariant

hadronic form factors,

hD(k)|c�µb|B(p)i =


(p+ k)µ � m2

B �m2

D

q2
qµ

�
f
+

(q2) + qµ
m2

B �m2

D

q2
f
0

(q2) ,

hD(k)|[cb](µ)|B(p)i =
1

mb(µ)�mc(µ)
qµhD(k)|c�µb|B(p)i = m2

B �m2

D

mb(µ)�mc(µ)
f
0

(q2) ,

hD(k)|[c�µ⌫b](µ)|B(p)i = �i (pµk⌫ � kµp⌫)
2 fT (q2, µ)

mB +mD
, (3)

where the form factors f
+,0,T (q2) are functions of q2 = (p� k)2. As mentioned above, the

scalar and tensor densities in QCD, at short distances, each acquire anomalous dimension.

Their respective scale dependence is indicated in the argument of the operators on the left

hand side (l.h.s.). The µ-dependence of the form factor fT (q2, µ) and of the quark mass

di↵erence mb(µ)�mc(µ) cancel against the µ-dependence of gT (µ) and gS(µ), respectively.

In what follows the µ-dependence will be implicit and the value µ = mb will be assumed.

With the above definitions in hands and with e"µ
0,t, polarization vectors of the virtual

vector boson V ⇤ specified in Appendix A, we can now write the helicity amplitudes for

B ! V ⇤D decay as

h
0,t(q

2) = e"µ⇤
0,t hD|Hµ|Bi , (4)

or explicitly,

h
0

(q2) =


1 + gV � gT

q2

mB +mD

fT (q2)

f
+

(q2)

�p
�(m2

B,m
2

D, q
2)p

q2
f
+

(q2) ,

ht(q
2) =


1 + gV + gS

q2

mb �mc

�
m2

B �m2

Dp
q2

f
0

(q2) ,

(5)

where �(x2, y2, z2) = [x2 � (y� z)2][x2 � (y+ z)2]. The full two-fold decay distribution (2)

then reads:
d2�

dq2d cos ✓`
= a✓`(q

2) + b✓`(q
2) cos ✓` + c✓`(q

2) cos2 ✓` , (6)

where the q2-dependent coe�cient functions are given by

a✓`(q
2) =

G2

F |Vcb|2
256⇡3m3

B

�1/2(m2

B,m
2

D, q
2) q2

✓
1� m2

`

q2

◆
2

��h
0

(q2)
��2 + m2

`

q2
��ht(q

2)
��2
�
, (7a)

b✓`(q
2) = � G2

F |Vcb|2
128⇡3m3

B

�1/2(m2

B,m
2

D, q
2) q2

✓
1� m2

`

q2

◆
2

m2

`

q2
Re

⇥
h
0

(q2)h⇤
t (q

2)
⇤
, (7b)

c✓`(q
2) = � G2

F |Vcb|2
256⇡3m3

B

�1/2(m2

B,m
2

D, q
2) q2

✓
1� m2

`

q2

◆
3 ��h

0

(q2)
��2 . (7c)

4

Helicity	amplitudes	

B						D	τντ	:	scalar	form	factor	contributes!			
For	massless	lepton	in	the	final	state	only	vector	form	factor	contributes.	
QCD	ladce	calculaLon		exist.	
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There	are	11	observables:		

1.	DifferenLal	decay	distribuLon		

2.	Forward-backward	asymmetry	

3.	Lepton	polarizaLon	asymmetry	
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3. Lepton-polarization asymmetry: We define the di↵erential decay rates, d�±/dq2, with

the spin of the charged lepton projected along the z-axis and with �` = ±1/2. In other
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and the lepton polarization asymmetry reads,
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4. Partial decay rate according to the polarization of D⇤: Splitting the decay rate accord-
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5
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3 Illustration of numerical sensitivity to physics BSM

in the quark sector

In order to numerically illustrate the sensitivity of observables defined in the previous

Section to the presence of physics BSM, we proceed as follows:

– We use the e↵ective Hamiltonian (1), which amounts to replacing the helicity ampli-

tudes by the explicit expressions given in eq. (28).

– We use the experimental results for RD = B(B ! D⌧⌫⌧ )/B(B ! Dµ⌫µ) as obtained

by BaBar and Belle, and RD⇤ = B(B ! D⇤⌧⌫⌧ )/B(B ! D⇤µ⌫µ) measured at BaBar,

Belle and LHCb, and combine them with the form factors computed in Ref. [20]. We

use that latter reference because it contains the full list of form factors needed for

this study. 8

– After switching on the NP couplings, one at the time, we compare theory with exper-

iment and find the range of allowed values for gi ⌘ gV,A,S,P,T,T5

6= 0. Since we allow

the couplings to be complex, we can choose them to be either fully real, or with a

significant imaginary part, and then examine each of the 2+10 observables discussed

in this paper, to check on their sensitivity with respect to gi 6= 0. 9

3.1 Allowed values of gV,A,S,P,T

We now illustrate the allowed values of the NP couplings gV,S,T obtained from RD, and

gV,A,P,T from RD⇤ . Furthermore we will assume that NP a↵ects the B ! D(⇤)⌧⌫⌧ decay

only. After switching on one coupling at the time we obtain the plots shown in Fig. 3. The

best fit values obtained in this way are:

gV = 0.21� i 0.76, gA = �0.18� i 0.05,

gS = �0.92� i 0.38, gP = 0.91 + i 0.38, gT = �0.42 + i 0.15, (55)

and are labeled by red stars in Fig. 3. We reiterate that in the notation of eq. (1) the

couplings gS,P,T are dimensionful and are given in GeV�1. To illustrate the e↵ect of gi 6= 0

on the observables discussed in the previous Section, we examine them in the case of

B ! D(⇤)⌧⌫⌧ for four di↵erent values of gi: the SM ones (gi = 0), the best fit values given

above, and for the extreme case of gi 6= 0 allowed from the fits, as shown in Fig. 3. The

scale in gS,P,T (µ) is implicit and is chosen to be µ = mb.

8 Obviously, for a more viable theoretical description one should use the form factors obtained through
numerical simulations of QCD on the lattice. However, since the full set of form factors obtained on the
lattice is not available, and since the purpose of this work is to point out the usefulness of the above
observables in searching for the e↵ects of NP, we will satisfy ourselves by the form factors of Ref. [20].

9Notice that the di↵erential decay rates are used as input (through RD(⇤)), which is why instead of 3+11
observables for B ! D`⌫` and B ! D⇤`⌫`, we consider the sensitivity of 2+10 observables on gi 6= 0.
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We explore a scenario of New Physics entering the description of B ! K(⇤)µµ decay through
couplings to the operators O0

9,10, satisfying C0
9 = �C0

10. From the current data on B(Bs ! µµ)
and B(B ! Kµµ)[15,22]GeV2 , we obtain constraints on ReC0

10 and ImC0
10 which we then assume

to be lepton specific, and find RK = B(B ! Kµµ)/B(B ! Kµµ)[1,6]GeV2 = 0.88(8), consistent
with recent value measured at LHCb. A specific realization of this scenario is the one with a scalar
leptoquark state �, in which C0

10 is related to the mass of � and its Yukawa couplings. We then
show that this scenario does not make any significant impact on Bs � Bs mixing amplitude nor to
B(B ! K⌫⌫̄). Instead, it can modify RK⇤ = B(B ! K⇤µµ)/B(B ! K⇤µµ)[1,6]GeV2 , which will
soon be experimentally measured and we find it to be RK⇤ = 1.11(8), while RK⇤/RK = 1.27(19).
A similar ratio of forward-backward asymmetries also becomes lower than in the Standard Model.

PACS numbers: 13.20.He,12.60.-i,14.80.Sv

I. INTRODUCTION

The b ! s transitions were in the focus of many theoretical and experimental studies during the last two decades
due to the possibility to constrain potential New Physics (NP) contributions at low energies. With LHC7 and LHC8
runs direct searches for NP became available. This gives us an excellent opportunity to question the appearance of
physics beyond Standard Model (SM). At low energies B-factories and the LHCb experiment provided flavor physics
community with a lot of rather precise results on b ! s transitions. The LHCb experiment has observed slight
discrepancies between the SM predictions and the experimental results for the angular observables in B ! K⇤µ+µ�

decay. This e↵ect has been attributed to NP, although the tension might be a result of the SM QCD e↵ects. Recently,
another anomaly in b ! s`+`� transition has been found in the ratio of the branching fractions,

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

. (1)

LHCb Collaboration measured this ratio for the square of dilepton invariant mass in the bin 1 GeV2  q2  6 GeV2,
and found [1],

RLHCb
K = 0.745±0.090

0.074 ±0.036 , (2)

lower than the SM prediction, RSM
K = 1.0003± 0.0001, in which next-to-next-to-leading QCD corrections have been

included [2]. In other words, the LHCb result points towards a 2.6 � e↵ect of the lepton flavor universality violation.
Furthermore, the combined data analysis of the Bs ! µ+µ� events gathered at LHCb and CMS resulted in B(Bs !

µ+µ�) = (2.8+0.7
�0.6)⇥ 10�9 [3], in good agreement with the SM prediction B(Bs ! µ+µ�) = (3.65± 0.23)⇥ 10�9 [4].

This o↵ers an excellent probe of b ! sµ+µ� transition in the light of SM and gives rather tight constraints on
parameter space of many models of NP. The RK anomaly has been approached in the literature in di↵erent ways:
either by using the e↵ective Lagrangian approach or in a specific model of NP. For example the e↵ective Lagrangian
approach used in references [5–8] indicated that in order to understand the measured value of RK one must include
the e↵ects of NP, and that the e↵ects of non-perturbative QCD alone could not explain such a large deviation of RK

from unity [6–21]. In particular, it was found that the NP contribution most likely a↵ects C9, C10 or C 0
9, C

0
10 e↵ective

Wilson coe�cients, and that some kind of lepton flavor universality violation is needed, e.g. Cµ
9 6= Ce

9 [10, 22]. In
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Svjetlana Fajfer† and Nejc Košnik‡
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order to determine whether RK anomaly is due to NP in electron or/and muon couplings through a combined analysis
of several decay modes, it is very important to have a high precision knowledge of hadronic form factors [16–18], which
can be computed in the region of large q2’s by means of numerical simulations of QCD on the lattice [23–25].

In this study we first use a model independent approach, assuming that NP contributes at low energies to an
operator that is a product of a right-handed quark and a left-handed muon current. In the language of b ! sµµ
e↵ective Hamiltonian such a situation corresponds to a combination of Wilson coe�cients C 0

9 and C 0
10, and that they

obey C 0
9 = �C 0

10. Decays to the final states with electron-positron pair are instead governed by the SM only. This
assumption is motivated by the fact that measured quantities of b ! se+e� processes agree with the SM predictions
better than they do for the b ! sµ+µ� processes [12], which are also more precisely measured than the electronic
modes. We consider simultaneously the constraints posed by B(B ! Kµ+µ�) and B(Bs ! µ+µ�) on such a scenario,
and then predict the RK as well as RK⇤ . We discuss other observables which might serve as additional probes of the
observed lepton-flavor universality violation.

A specific realization of the scenario we discuss in this paper is a model with a light scalar leptoquark � with
quantum numbers of SU(3)c ⇥ SU(2)L ⇥ U(1)Y being (3, 2, 1/6). It indeed verifies the relation, C 0

9 = �C 0
10 [9],

and leads to a consistency with the measured value of RK . The features of this leptoquark state have been already
described in the literature [26]. While there is no theoretical motivation to forbid leptoquark contributing to b ! see
decays, simultaneous presence of both muonic and electronic couplings could be problematic because they would,
together, induce lepton flavor violation in Bs ! eµ and µ ! e� decays. It is interesting that the flavor physics
constraints at low energies agree and are complementary with the constraints obtained from the direct experimental
searches at LHC [27, 28]. Furthermore, the atomic parity violation experiments provided a strong constraint on the
interaction of the down-quark–electron interaction with the leptoquark state [26, 29], while the couplings to muons
appear to be less constrained via B(KL ! µ±e⌥) < 4.7 ⇥ 10�12 [26, 30]. We therefore assume in our analysis that
in the b ! s`+`� processes only the muons can interact with the leptoquark state. A few other leptoquark states
have been discussed in the literature [6, 9, 14, 16] as possible candidates to contribute to the RK anomaly. However,
the leptoquark with quantum numbers (3, 2, 1/6) has a desired feature that it can be light without destabilizing the
proton [31–33]. Notice also that another light leptoquark scalar state, not mediating the proton decay, is (3, 2, 7/6)
and it leads to the relation C9 = C10. That latter scenario, however, cannot explain the RK anomaly as discussed in
Refs. [6, 14].

In Sec. II we remind the reader of the main definitions and give basic expressions for B(Bs ! µ+µ�) and B(B !
Kµ+µ�), which are then used, together with the experimental data in Sec. III, to constraint C 0

10 = �C 0
9 and show the

consistency of our value for RK with the measured one at LHCb. Furthermore, we make a prediction of the similar
ratio in the case of B ! K⇤`+`� decays and discuss other observables that might be of interest for testing the lepton
flavor universality violation. In Sec. IV we discuss a model with scalar leptoquark in which the relation C 0

10 = �C 0
9

holds exactly, and is connected to other similar processes involving the b ! s transitions which we also discuss. We
finally summarize our findings in Sec. V.

II. EFFECTIVE HAMILTONIAN AND BASIC FORMULAS

The processes with flavor structure (s̄b) (µ̄µ) at scale µ = µb = 4.8 GeV are governed by dimension-6 e↵ective
Hamiltonian [34–36]:

He↵ = �4GFp
2
VtbV

⇤
ts

2

4
6X

i=1

Ci(µ)Oi(µ) +
X

i=7,...,10

(Ci(µ)Oi(µ) + C 0
i(µ)O0

i(µ))

3

5 . (3)

The contributions of the charged-current operators O1,2, QCD penguins O3,...,6, and the electromagnetic (chromomag-
netic) dipole operators O7 (O8) will be assumed to be saturated by the SM. On the other hand, operators involving
a quark and a lepton current will contain the SM and potential NP contributions. The basis of operators may be
further extended to account for possible (pseudo)scalar or tensor operators [23], whereas for the purposes of this work
the following operators will su�ce:

O7 =
e

g2
mb(s̄�µ⌫PRb)F

µ⌫ , O8 =
1

g
mb(s̄�µ⌫G

µ⌫PRb) ,

O9 =
e2

g2
(s̄�µPLb)(¯̀�

µ`) , O10 =
e2

g2
(s̄�µPLb)(¯̀�

µ�5`) .

(4)

Here PL/R = (1 ⌥ �5)/2, while e is the electromagnetic and g the color gauge coupling. Fµ⌫ and Gµ⌫ are the
electromagnetic and color field strength tensors, respectively. The basis is further extended by the wrong-chirality
operators, O0

9,10, which are related to O9,10 by replacing PL $ PR in the quark current.
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Introduction
LHCb seen hints of LFU in b→sμμ transition (2014) 

2.6σ below the LFU prediction, RK = 1 

• First proposal and prediction of RK, RK*, RXs in 2003 
• Very precise due to efficient cancellation of hadronic uncertainties.     

e and μ are almost massless. 

RK =
B(B ! Kµ+µ�)q22[1,6] GeV2

B(B ! Ke+e�)q22[1,6] GeV2

= 0.745±0.090
0.074 ±0.036 [LHCb, 1406.6482]

[LHCb 1403.8044]

missing muons or  
too many electrons?

[Kruger, Hiller, hep-ph/0310219]

LHCb:	1403.8044	

First	proposal	and	predicLon	to	measure	RK,	RK*	and	RX,(Kruger,	Hiller	hep-ph/0310219)	

Missing	muons	or	too	many		
electrons?	

•  b						s	μμ				data	are	in	favor		
decrease	muonic	decay	rate	for		
BR(B								K	μμ)	
		

•  Scalar	operator	CS=-CP,	CS’=CP’	is	favored	by		for	muons	are	disfavored	by		
•  BR(Bs					μμ)	
•  Scalar	operators		CS=-CP,	CS’=CP’		for	electrons	can	decrease	RK	,	however	this		
is	in	conflict	with	BR(B								K	ee)	

•  Axial	(vector)	operators	can	affect	μ	or	e	Hiller,	Schmaltz	1408.1627,		
1411.4773:C9μ		=	-	C10μ	~-	[0.5,1]	

!
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!
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A. B ! Kµ+µ�

In calculating the amplitude for the B ! Kµ+µ� decay it is convenient to group the combinations of Wilson
coe�cients multiplying the same hadronic matrix element. Namely, the operators O1�6 mix at leading order into
O7,8,9 and it is customary to define e↵ective Wilson coe�cients as [37]:

Ce↵
7 (µb) =

4⇡

↵s
C7 �

1

3
C3 �

4

9
C4 �

20

3
C5 � 80

9
C6 ,

Ce↵
9 (µb) =

4⇡

↵s
C9 + Y (q2) ,

Ce↵
10 (µb) =

4⇡

↵s
C10 , C 0e↵

7,8,9,10(µb) =
4⇡

↵s
C 0

7,8,9,10 ,

(5)

where the function Y (q2) at NLL can be found in Ref. [38]. We also incorporate the NNLL mixing of O1 and O2 into
O7 and O9 as calculated in Ref. [39]. The Wilson coe�cients on the right-hand sides are evaluated at µ = µb. For the
sake of readability we will from here on discuss only the e↵ective Wilson coe�cients that will be addressed simply as
“Wilson coe�cients” and denoted without the “e↵” label. The values of the SM Wilson coe�cients at scale µb are
C7 = �0.304, C9 = 4.211, and C10 = �4.103 [37, 38, 40].

The decay spectrum as a function of the invariant mass of the muon pair is given by

d�

dq2
(B ! Kµ+µ�) = 2aµ(q

2) +
2

3
cµ(q

2) , (6)

where q2 = (pµ� + pµ+)2, while functions aµ(q2), cµ(q2) are combinations of Wilson coe�cients and hadronic form
factors and their explicit expressions can be found in Ref. [23] and in the Appendix of the present paper in the limit of
m` ! 0. The rate depends on the sums of the Wilson coe�cients of opposite chiralities, C7+C 0

7, C9+C 0
9, C10+C 0

10,
from what follows that even in principle we cannot determine the chirality of the quark-current in B ! Kµ+µ�.

Definitions of the hadronic form factors are relegated to the Appendix. We employ the form factors calculated in
the unquenched lattice simulation using non-relativistic formulation of the b quark and staggered fermion formulation
for the light quarks [24]. We use the z-expansion to parameterize the form factors and take into account the statistical
errors given by the covariance matrix of the parameters, both given in [24]. However, we neglect additional systematic
errors that should come on top of the ones contained in the covariance matrix. The correlations between form factor
parameters are propagated onto observables of interest, namely we can construct �2 statistic for B(B ! Kµ+µ�)
and RK , that are functions of the form factor parameters, as well as the Wilson coe�cients. Nonlocal contributions
to the decay amplitude due to operators O1,2 are taken into account by leading order in operator product expansion
together with next-to-next-to-leading logarithmic QCD corrections [39]. Higher orders in operator product expansion
have been shown to have small e↵ect in the large q2 region [41]. Since the partial branching ratio that we are interested
in corresponds to an integral over a large region of q2 we rely on the semi-local quark-hadron duality [42]. In the SM
limit the prediction of the branching ratio in the high-q2 bin is

B(B+ ! K+µ+µ�)|SMq22[15,22]GeV2 = (10.2± 0.5)⇥ 10�8 . (7)

The LHCb collaboration measured partial branching fractions below and above the region of charmonium reso-
nances. For the q2 > 15 GeV2 region we can predict the partial branching ratio using form factors determined on the
lattice that are largely free from extrapolation errors and parameterization dependence. Thus we will use [43],

B(B+ ! K+µ+µ�)|q22[15,22]GeV2 = (8.5± 0.3± 0.4)⇥ 10�8 , (8)

as an experimental constraint, where the errors quoted are statistical and systematic, respectively. In our analysis we
will sum the two and treat the observable with a Gaussian �2.

B. Bs ! µ+µ�

This decay receives contributions from operators with axial, scalar, and pseudoscalar lepton currents, and, owing
to the pseudoscalar nature of the Bs meson, the wrong-chirality Wilson coe�cients will a↵ect the decay with opposite
sign. In the absence of (pseudo)scalar operators, the amplitude is proportional to the di↵erence C10 � C 0

10:

P =
2mµ

mBs

(C10 � C 0
10) , (9)

3

A. B ! Kµ+µ�

In calculating the amplitude for the B ! Kµ+µ� decay it is convenient to group the combinations of Wilson
coe�cients multiplying the same hadronic matrix element. Namely, the operators O1�6 mix at leading order into
O7,8,9 and it is customary to define e↵ective Wilson coe�cients as [37]:

Ce↵
7 (µb) =

4⇡

↵s
C7 �

1

3
C3 �

4

9
C4 �

20

3
C5 � 80

9
C6 ,

Ce↵
9 (µb) =

4⇡

↵s
C9 + Y (q2) ,

Ce↵
10 (µb) =

4⇡

↵s
C10 , C 0e↵

7,8,9,10(µb) =
4⇡

↵s
C 0

7,8,9,10 ,

(5)

where the function Y (q2) at NLL can be found in Ref. [38]. We also incorporate the NNLL mixing of O1 and O2 into
O7 and O9 as calculated in Ref. [39]. The Wilson coe�cients on the right-hand sides are evaluated at µ = µb. For the
sake of readability we will from here on discuss only the e↵ective Wilson coe�cients that will be addressed simply as
“Wilson coe�cients” and denoted without the “e↵” label. The values of the SM Wilson coe�cients at scale µb are
C7 = �0.304, C9 = 4.211, and C10 = �4.103 [37, 38, 40].

The decay spectrum as a function of the invariant mass of the muon pair is given by

d�

dq2
(B ! Kµ+µ�) = 2aµ(q

2) +
2

3
cµ(q

2) , (6)

where q2 = (pµ� + pµ+)2, while functions aµ(q2), cµ(q2) are combinations of Wilson coe�cients and hadronic form
factors and their explicit expressions can be found in Ref. [23] and in the Appendix of the present paper in the limit of
m` ! 0. The rate depends on the sums of the Wilson coe�cients of opposite chiralities, C7+C 0

7, C9+C 0
9, C10+C 0

10,
from what follows that even in principle we cannot determine the chirality of the quark-current in B ! Kµ+µ�.

Definitions of the hadronic form factors are relegated to the Appendix. We employ the form factors calculated in
the unquenched lattice simulation using non-relativistic formulation of the b quark and staggered fermion formulation
for the light quarks [24]. We use the z-expansion to parameterize the form factors and take into account the statistical
errors given by the covariance matrix of the parameters, both given in [24]. However, we neglect additional systematic
errors that should come on top of the ones contained in the covariance matrix. The correlations between form factor
parameters are propagated onto observables of interest, namely we can construct �2 statistic for B(B ! Kµ+µ�)
and RK , that are functions of the form factor parameters, as well as the Wilson coe�cients. Nonlocal contributions
to the decay amplitude due to operators O1,2 are taken into account by leading order in operator product expansion
together with next-to-next-to-leading logarithmic QCD corrections [39]. Higher orders in operator product expansion
have been shown to have small e↵ect in the large q2 region [41]. Since the partial branching ratio that we are interested
in corresponds to an integral over a large region of q2 we rely on the semi-local quark-hadron duality [42]. In the SM
limit the prediction of the branching ratio in the high-q2 bin is

B(B+ ! K+µ+µ�)|SMq22[15,22]GeV2 = (10.2± 0.5)⇥ 10�8 . (7)

The LHCb collaboration measured partial branching fractions below and above the region of charmonium reso-
nances. For the q2 > 15 GeV2 region we can predict the partial branching ratio using form factors determined on the
lattice that are largely free from extrapolation errors and parameterization dependence. Thus we will use [43],

B(B+ ! K+µ+µ�)|q22[15,22]GeV2 = (8.5± 0.3± 0.4)⇥ 10�8 , (8)

as an experimental constraint, where the errors quoted are statistical and systematic, respectively. In our analysis we
will sum the two and treat the observable with a Gaussian �2.

B. Bs ! µ+µ�

This decay receives contributions from operators with axial, scalar, and pseudoscalar lepton currents, and, owing
to the pseudoscalar nature of the Bs meson, the wrong-chirality Wilson coe�cients will a↵ect the decay with opposite
sign. In the absence of (pseudo)scalar operators, the amplitude is proportional to the di↵erence C10 � C 0

10:

P =
2mµ

mBs

(C10 � C 0
10) , (9)

3

A. B ! Kµ+µ�

In calculating the amplitude for the B ! Kµ+µ� decay it is convenient to group the combinations of Wilson
coe�cients multiplying the same hadronic matrix element. Namely, the operators O1�6 mix at leading order into
O7,8,9 and it is customary to define e↵ective Wilson coe�cients as [37]:

Ce↵
7 (µb) =

4⇡

↵s
C7 �

1

3
C3 �

4

9
C4 �

20

3
C5 � 80

9
C6 ,

Ce↵
9 (µb) =

4⇡

↵s
C9 + Y (q2) ,

Ce↵
10 (µb) =

4⇡

↵s
C10 , C 0e↵

7,8,9,10(µb) =
4⇡

↵s
C 0

7,8,9,10 ,

(5)

where the function Y (q2) at NLL can be found in Ref. [38]. We also incorporate the NNLL mixing of O1 and O2 into
O7 and O9 as calculated in Ref. [39]. The Wilson coe�cients on the right-hand sides are evaluated at µ = µb. For the
sake of readability we will from here on discuss only the e↵ective Wilson coe�cients that will be addressed simply as
“Wilson coe�cients” and denoted without the “e↵” label. The values of the SM Wilson coe�cients at scale µb are
C7 = �0.304, C9 = 4.211, and C10 = �4.103 [37, 38, 40].

The decay spectrum as a function of the invariant mass of the muon pair is given by

d�

dq2
(B ! Kµ+µ�) = 2aµ(q

2) +
2

3
cµ(q

2) , (6)

where q2 = (pµ� + pµ+)2, while functions aµ(q2), cµ(q2) are combinations of Wilson coe�cients and hadronic form
factors and their explicit expressions can be found in Ref. [23] and in the Appendix of the present paper in the limit of
m` ! 0. The rate depends on the sums of the Wilson coe�cients of opposite chiralities, C7+C 0

7, C9+C 0
9, C10+C 0

10,
from what follows that even in principle we cannot determine the chirality of the quark-current in B ! Kµ+µ�.

Definitions of the hadronic form factors are relegated to the Appendix. We employ the form factors calculated in
the unquenched lattice simulation using non-relativistic formulation of the b quark and staggered fermion formulation
for the light quarks [24]. We use the z-expansion to parameterize the form factors and take into account the statistical
errors given by the covariance matrix of the parameters, both given in [24]. However, we neglect additional systematic
errors that should come on top of the ones contained in the covariance matrix. The correlations between form factor
parameters are propagated onto observables of interest, namely we can construct �2 statistic for B(B ! Kµ+µ�)
and RK , that are functions of the form factor parameters, as well as the Wilson coe�cients. Nonlocal contributions
to the decay amplitude due to operators O1,2 are taken into account by leading order in operator product expansion
together with next-to-next-to-leading logarithmic QCD corrections [39]. Higher orders in operator product expansion
have been shown to have small e↵ect in the large q2 region [41]. Since the partial branching ratio that we are interested
in corresponds to an integral over a large region of q2 we rely on the semi-local quark-hadron duality [42]. In the SM
limit the prediction of the branching ratio in the high-q2 bin is

B(B+ ! K+µ+µ�)|SMq22[15,22]GeV2 = (10.2± 0.5)⇥ 10�8 . (7)

The LHCb collaboration measured partial branching fractions below and above the region of charmonium reso-
nances. For the q2 > 15 GeV2 region we can predict the partial branching ratio using form factors determined on the
lattice that are largely free from extrapolation errors and parameterization dependence. Thus we will use [43],

B(B+ ! K+µ+µ�)|q22[15,22]GeV2 = (8.5± 0.3± 0.4)⇥ 10�8 , (8)

as an experimental constraint, where the errors quoted are statistical and systematic, respectively. In our analysis we
will sum the two and treat the observable with a Gaussian �2.

B. Bs ! µ+µ�

This decay receives contributions from operators with axial, scalar, and pseudoscalar lepton currents, and, owing
to the pseudoscalar nature of the Bs meson, the wrong-chirality Wilson coe�cients will a↵ect the decay with opposite
sign. In the absence of (pseudo)scalar operators, the amplitude is proportional to the di↵erence C10 � C 0

10:

P =
2mµ

mBs

(C10 � C 0
10) , (9)

Operators															mix	at	leading	order	into		

3

A. B ! Kµ+µ�

In calculating the amplitude for the B ! Kµ+µ� decay it is convenient to group the combinations of Wilson
coe�cients multiplying the same hadronic matrix element. Namely, the operators O1�6 mix at leading order into
O7,8,9 and it is customary to define e↵ective Wilson coe�cients as [37]:

Ce↵
7 (µb) =

4⇡

↵s
C7 �

1

3
C3 �

4

9
C4 �

20

3
C5 � 80

9
C6 ,

Ce↵
9 (µb) =

4⇡

↵s
C9 + Y (q2) ,

Ce↵
10 (µb) =

4⇡

↵s
C10 , C 0e↵

7,8,9,10(µb) =
4⇡

↵s
C 0

7,8,9,10 ,

(5)

where the function Y (q2) at NLL can be found in Ref. [38]. We also incorporate the NNLL mixing of O1 and O2 into
O7 and O9 as calculated in Ref. [39]. The Wilson coe�cients on the right-hand sides are evaluated at µ = µb. For the
sake of readability we will from here on discuss only the e↵ective Wilson coe�cients that will be addressed simply as
“Wilson coe�cients” and denoted without the “e↵” label. The values of the SM Wilson coe�cients at scale µb are
C7 = �0.304, C9 = 4.211, and C10 = �4.103 [37, 38, 40].

The decay spectrum as a function of the invariant mass of the muon pair is given by

d�

dq2
(B ! Kµ+µ�) = 2aµ(q

2) +
2

3
cµ(q

2) , (6)

where q2 = (pµ� + pµ+)2, while functions aµ(q2), cµ(q2) are combinations of Wilson coe�cients and hadronic form
factors and their explicit expressions can be found in Ref. [23] and in the Appendix of the present paper in the limit of
m` ! 0. The rate depends on the sums of the Wilson coe�cients of opposite chiralities, C7+C 0

7, C9+C 0
9, C10+C 0

10,
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and the “theoretical” branching ratio is expressed as
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For the decay constant of the Bs meson we take fBs = (228±8) MeV, consistent with the average made by FLAG [44].
Due to Bs � B̄s oscillations and relatively large ys = ��s/(2�s) in the Bs sector, the measured branching fraction
actually corresponds to a time-integrated rate of the oscillating Bs system to µ+µ� [45]. In e↵ect, the value reported
by the experimentalists is di↵erent from B(Bs ! µ+µ�)th:

B(Bs ! µ+µ�)exp =
B0

1� y2s

⇥
|P |2 + ysRe(P

2)
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Latest average of the LHCb and CMS measurements of Bs ! µ+µ� branching fraction is [3]

B(Bs ! µ+µ�)exp = (2.8+0.7
�0.6)⇥ 10�9 . (12)

The relative decay width di↵erence ys = 0.061±0.009 has been determined from LHCb simultaneous measurement of
total width �s and width di↵erence ��s in decay channels Bs ! J/ P+P� [46]. The above determined value agrees
very well with the HFAG and PDG averages [30, 47]. In the fits we use the values for �s and ��s reported by LHCb
with summed statistical and systematic errors

��s = (0.0805± 0.0123) ps�1 , �s = (0.6603± 0.0042) ps�1 , (13)

with correlation coe�cient �0.3 [46].
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We focus now on the SM extensions that a↵ect the e↵ective Hamiltonian solely by a single operator that is a
product of right-handed quark current with a left-handed lepton current. In our operator basis it corresponds to a
linear combination O0
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where ⇤ is a scale where NP degrees of freedom are integrated out. An explicit example of such a scenario can be
made in a leptoquark model that will be discussed in Section IV. If Eq. (14) holds at scale ⇤ it is neccessary to run the
Wilson coe�cients down to the low scale µb using the renormalization group equations. Under QCD renormalization
group the two operators do not run, keeping the constraint (14) intact [48]. 1 Thus we have, at low energies, a SM
modification that satisfies

C 0
9 = �C 0

10 , (15)

where C 0
9,10 are scale invariant, modulo small QED corrections.

In Fig. 1 we show in gray the 1� region in the C 0
10 plane as obtained from the fit to the partial branching fraction

of B+ ! K+µ+µ�, cf. Eq. (8). The 1� region is defined here as �2 < 2.30. The width of the “donut” reflects both
experimental and form factor uncertainties. The SM point in the parameter space is marked with a dot and exhibits
a tension with the measurement with �2 = 3.9. In Fig. 1 the 1� region (defined as before) of fit to the B(Bs ! µ+µ�)
according to Eq. (12) is depicted in blue. In this case the SM point is in comfortable agreement with the observable
(�2 = 0.7). Then we perform combined fit to all of the above quantities and find the best value to be �2

min = 2.26,
which is substantially better than the SM point with �2

SM = 4.6. The green patch is defined by �2 < �2
min + 1 = 3.26

with 39% C.L. and corresponds to the 1� region of predicted RK given below.
Assuming that the e↵ective Hamiltonian (3), tailored for b ! se+e�, receives only SM contributions, unlike

b ! sµ+µ� that also receives NP contributions from C 0
9,10, we can now predict the value of RK . In RK the

uncertainties of the hadronic form factors cancel out to a large extent in the ratio and the formula boils down to:
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10) = 1.001(1)� 0.46 Re[C 0
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1 Eq. (14) is broken only by tiny e↵ects from QED renormalization.
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Figure 1. Regions in the complex C0
10 plane that are in 1� agreement with Bs ! µ+µ� (blue), B ! Kµ+µ� (gray). Green

area corresponds to the 1� coverage of RK from fit to both observables. Black dot is the SM.

Remaining uncertainties are indicated by the numbers in parentheses. In Fig. 2 we show contours of constant RK

in the C 0
10 plane using the formula (16) with central values for the coe�cients. By dark gray we indicate the region

corresponding to the measured value of RK . In the same figure we plot again the 1� prediction of C 0
10, also shown

in Fig. 1. We see an appreciable overlap with the measured RK . Mapping the fitted region (green) to RK we obtain
the prediction

Rpred.
K = 0.88± 0.08 , (17)

which is indeed in good agreement with RLHCb
K = 0.745±0.090

0.074 ±0.036 [1].

A. Impact on B ! K⇤`+`�

B ! K⇤`+`� is particularly interesting for the NP searches because of the observables that one can construct from
the q2-dependent coe�cients I1...9 which appear in the angular distribution,
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Di↵erential decay rate is then simply d�/dq2 = (3Ic1+6Is1 �Ic2�2Is2)/4, and the similar expressions can be written for
the transverse/longitudinal part of the decay rate, for the forward-backward asymmetry, Afb(q2) = 3Is6/(4d�/dq

2),
CP-asymmetry, and several other observables. Each of the coe�cient functions, Ii ⌘ Ii(q2), can be written in terms of
transversity amplitudes, AL,R

?,k,0(q
2), which are related to the respective spin states of the on-shell K⇤-meson, and the

amplitude AL,R
t (q2) which is related to the o↵-shell virtual gauge boson decaying into the lepton pair. The superscripts

L,R indicate the chirality of the lepton. Detailed expressions can be found, for example, in Refs. [38, 49–51].
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total width �s and width di↵erence ��s in decay channels Bs ! J/ P+P� [46]. The above determined value agrees
very well with the HFAG and PDG averages [30, 47]. In the fits we use the values for �s and ��s reported by LHCb
with summed statistical and systematic errors

��s = (0.0805± 0.0123) ps�1 , �s = (0.6603± 0.0042) ps�1 , (13)

with correlation coe�cient �0.3 [46].
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We focus now on the SM extensions that a↵ect the e↵ective Hamiltonian solely by a single operator that is a
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10 implying
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where ⇤ is a scale where NP degrees of freedom are integrated out. An explicit example of such a scenario can be
made in a leptoquark model that will be discussed in Section IV. If Eq. (14) holds at scale ⇤ it is neccessary to run the
Wilson coe�cients down to the low scale µb using the renormalization group equations. Under QCD renormalization
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modification that satisfies
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where C 0
9,10 are scale invariant, modulo small QED corrections.

In Fig. 1 we show in gray the 1� region in the C 0
10 plane as obtained from the fit to the partial branching fraction

of B+ ! K+µ+µ�, cf. Eq. (8). The 1� region is defined here as �2 < 2.30. The width of the “donut” reflects both
experimental and form factor uncertainties. The SM point in the parameter space is marked with a dot and exhibits
a tension with the measurement with �2 = 3.9. In Fig. 1 the 1� region (defined as before) of fit to the B(Bs ! µ+µ�)
according to Eq. (12) is depicted in blue. In this case the SM point is in comfortable agreement with the observable
(�2 = 0.7). Then we perform combined fit to all of the above quantities and find the best value to be �2
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which is substantially better than the SM point with �2

SM = 4.6. The green patch is defined by �2 < �2
min + 1 = 3.26

with 39% C.L. and corresponds to the 1� region of predicted RK given below.
Assuming that the e↵ective Hamiltonian (3), tailored for b ! se+e�, receives only SM contributions, unlike

b ! sµ+µ� that also receives NP contributions from C 0
9,10, we can now predict the value of RK . In RK the

uncertainties of the hadronic form factors cancel out to a large extent in the ratio and the formula boils down to:
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10) = 1.001(1)� 0.46 Re[C 0

10]� 0.094(3) Im[C 0
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Figure 1. Regions in the complex C0
10 plane that are in 1� agreement with Bs ! µ+µ� (blue), B ! Kµ+µ� (gray). Green

area corresponds to the 1� coverage of RK from fit to both observables. Black dot is the SM.

Remaining uncertainties are indicated by the numbers in parentheses. In Fig. 2 we show contours of constant RK

in the C 0
10 plane using the formula (16) with central values for the coe�cients. By dark gray we indicate the region

corresponding to the measured value of RK . In the same figure we plot again the 1� prediction of C 0
10, also shown

in Fig. 1. We see an appreciable overlap with the measured RK . Mapping the fitted region (green) to RK we obtain
the prediction

Rpred.
K = 0.88± 0.08 , (17)

which is indeed in good agreement with RLHCb
K = 0.745±0.090

0.074 ±0.036 [1].

A. Impact on B ! K⇤`+`�

B ! K⇤`+`� is particularly interesting for the NP searches because of the observables that one can construct from
the q2-dependent coe�cients I1...9 which appear in the angular distribution,
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Di↵erential decay rate is then simply d�/dq2 = (3Ic1+6Is1 �Ic2�2Is2)/4, and the similar expressions can be written for
the transverse/longitudinal part of the decay rate, for the forward-backward asymmetry, Afb(q2) = 3Is6/(4d�/dq

2),
CP-asymmetry, and several other observables. Each of the coe�cient functions, Ii ⌘ Ii(q2), can be written in terms of
transversity amplitudes, AL,R

?,k,0(q
2), which are related to the respective spin states of the on-shell K⇤-meson, and the

amplitude AL,R
t (q2) which is related to the o↵-shell virtual gauge boson decaying into the lepton pair. The superscripts

L,R indicate the chirality of the lepton. Detailed expressions can be found, for example, in Refs. [38, 49–51].
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Figure 2. Contours of constant RK are indicated by dashed lines. Gray region represents the 1� measured range of RK

projected onto the C0
10 plane, whereas green contour denotes the region allowed by Bs ! µ+µ� and B ! Kµ+µ�. Black dot

is the SM.

The strategy of looking for the NP e↵ects through a detailed analysis of the angular distribution of B ! K⇤`+`�

is somewhat plagued by hadronic uncertainties. The observables built up of AL,R
?,k (q

2) turn out to be less sensitive to

hadronic uncertainties because they involve the (combinations of) hadronic form factors which appear to be under a
rather good theoretical control, especially in the region of small q2’s [52–54] (see also discussion in Ref. [51]). On the
other hand, the observables made of AL,R

0,t (q2) entail the hadronic form factors that are less well understood. Moreover,
the latter observables are subject to another kind of hadronic uncertainty, i.e. the one arising from misidentification of
the K⇡ pairs coming from B ! K⇤(! K⇡)`+`� with those emerging from B ! K⇤

0 (! K⇡)`+`�, where K⇤
0 stands

for a broad scalar state [55–59]. Finally, and to avoid problems of the cc̄-resonances in the q2-spectrum of the decay, a
standard strategy is to either work at low q2 < m2

J/ or large q2 & 15GeV2, in which the impact of the cc̄-resonances
is expected to be small. To be more specific, we fully rely on quark-hadron duality since we avoid the region in which
the prominent narrow cc̄-resonances appear, and integrate over a window & 5 GeV2. 2

With the information obtained in the previous section of this paper, i.e. with C 0
10 = �C 0

9 extracted from the
comparison of the measured B(Bs ! µ+µ�) and B(B ! Kµ+µ�)q2>15 GeV2 with the corresponding theoretical
expressions, we already showed that we were able to verify the consistency of our result for RK with the one measured
at LHCb. With our approach, in which only the decay to muon-pair is modified, we can also predict RK⇤ , defined as

RK⇤ =
�(B ! K⇤µ+µ�)q22[1,6] GeV2

�(B ! K⇤e+e�)q22[1,6] GeV2

, (19)

as well as the ratio of the two [6, 22], namely,

XK =
RK⇤

RK
� 1 . (20)

In Ref. [19] it was shown that the ratio of forward-backward asymmetries integrated between q2 2 [4, 6] GeV2 can

2 For a recent attempt to more realistically model the e↵ects of such resonances see Ref. [60] or those discussed previously in Refs. [61, 62].
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and the “theoretical” branching ratio is expressed as

B(Bs ! µ+µ�)th = B0|P |2 , B0 =
f2
Bs

m3
Bs
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G2
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2|VtbVts|2
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4m2

µ

m2
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. (10)

For the decay constant of the Bs meson we take fBs = (228±8) MeV, consistent with the average made by FLAG [44].
Due to Bs � B̄s oscillations and relatively large ys = ��s/(2�s) in the Bs sector, the measured branching fraction
actually corresponds to a time-integrated rate of the oscillating Bs system to µ+µ� [45]. In e↵ect, the value reported
by the experimentalists is di↵erent from B(Bs ! µ+µ�)th:

B(Bs ! µ+µ�)exp =
B0

1� y2s

⇥
|P |2 + ysRe(P

2)
⇤
. (11)

Latest average of the LHCb and CMS measurements of Bs ! µ+µ� branching fraction is [3]

B(Bs ! µ+µ�)exp = (2.8+0.7
�0.6)⇥ 10�9 . (12)

The relative decay width di↵erence ys = 0.061±0.009 has been determined from LHCb simultaneous measurement of
total width �s and width di↵erence ��s in decay channels Bs ! J/ P+P� [46]. The above determined value agrees
very well with the HFAG and PDG averages [30, 47]. In the fits we use the values for �s and ��s reported by LHCb
with summed statistical and systematic errors

��s = (0.0805± 0.0123) ps�1 , �s = (0.6603± 0.0042) ps�1 , (13)

with correlation coe�cient �0.3 [46].

III. NEW PHYSICS IN C0
9 = �C0

10 AND PREDICTION FOR RK

We focus now on the SM extensions that a↵ect the e↵ective Hamiltonian solely by a single operator that is a
product of right-handed quark current with a left-handed lepton current. In our operator basis it corresponds to a
linear combination O0

9 �O0
10 implying

C 0
9(⇤) = �C 0

10(⇤) , (14)

where ⇤ is a scale where NP degrees of freedom are integrated out. An explicit example of such a scenario can be
made in a leptoquark model that will be discussed in Section IV. If Eq. (14) holds at scale ⇤ it is neccessary to run the
Wilson coe�cients down to the low scale µb using the renormalization group equations. Under QCD renormalization
group the two operators do not run, keeping the constraint (14) intact [48]. 1 Thus we have, at low energies, a SM
modification that satisfies

C 0
9 = �C 0

10 , (15)

where C 0
9,10 are scale invariant, modulo small QED corrections.

In Fig. 1 we show in gray the 1� region in the C 0
10 plane as obtained from the fit to the partial branching fraction

of B+ ! K+µ+µ�, cf. Eq. (8). The 1� region is defined here as �2 < 2.30. The width of the “donut” reflects both
experimental and form factor uncertainties. The SM point in the parameter space is marked with a dot and exhibits
a tension with the measurement with �2 = 3.9. In Fig. 1 the 1� region (defined as before) of fit to the B(Bs ! µ+µ�)
according to Eq. (12) is depicted in blue. In this case the SM point is in comfortable agreement with the observable
(�2 = 0.7). Then we perform combined fit to all of the above quantities and find the best value to be �2

min = 2.26,
which is substantially better than the SM point with �2

SM = 4.6. The green patch is defined by �2 < �2
min + 1 = 3.26

with 39% C.L. and corresponds to the 1� region of predicted RK given below.
Assuming that the e↵ective Hamiltonian (3), tailored for b ! se+e�, receives only SM contributions, unlike

b ! sµ+µ� that also receives NP contributions from C 0
9,10, we can now predict the value of RK . In RK the

uncertainties of the hadronic form factors cancel out to a large extent in the ratio and the formula boils down to:

RK(C 0
10) = 1.001(1)� 0.46 Re[C 0

10]� 0.094(3) Im[C 0
10] + 0.057(1)|C 0

10|2 . (16)

1 Eq. (14) is broken only by tiny e↵ects from QED renormalization.
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For the decay constant of the Bs meson we take fBs = (228±8) MeV, consistent with the average made by FLAG [44].
Due to Bs � B̄s oscillations and relatively large ys = ��s/(2�s) in the Bs sector, the measured branching fraction
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projected onto the C0
10 plane, whereas green contour denotes the region allowed by Bs ! µ+µ� and B ! Kµ+µ�. Black dot

is the SM.

The strategy of looking for the NP e↵ects through a detailed analysis of the angular distribution of B ! K⇤`+`�

is somewhat plagued by hadronic uncertainties. The observables built up of AL,R
?,k (q

2) turn out to be less sensitive to

hadronic uncertainties because they involve the (combinations of) hadronic form factors which appear to be under a
rather good theoretical control, especially in the region of small q2’s [52–54] (see also discussion in Ref. [51]). On the
other hand, the observables made of AL,R

0,t (q2) entail the hadronic form factors that are less well understood. Moreover,
the latter observables are subject to another kind of hadronic uncertainty, i.e. the one arising from misidentification of
the K⇡ pairs coming from B ! K⇤(! K⇡)`+`� with those emerging from B ! K⇤

0 (! K⇡)`+`�, where K⇤
0 stands

for a broad scalar state [55–59]. Finally, and to avoid problems of the cc̄-resonances in the q2-spectrum of the decay, a
standard strategy is to either work at low q2 < m2

J/ or large q2 & 15GeV2, in which the impact of the cc̄-resonances
is expected to be small. To be more specific, we fully rely on quark-hadron duality since we avoid the region in which
the prominent narrow cc̄-resonances appear, and integrate over a window & 5 GeV2. 2

With the information obtained in the previous section of this paper, i.e. with C 0
10 = �C 0

9 extracted from the
comparison of the measured B(Bs ! µ+µ�) and B(B ! Kµ+µ�)q2>15 GeV2 with the corresponding theoretical
expressions, we already showed that we were able to verify the consistency of our result for RK with the one measured
at LHCb. With our approach, in which only the decay to muon-pair is modified, we can also predict RK⇤ , defined as

RK⇤ =
�(B ! K⇤µ+µ�)q22[1,6] GeV2

�(B ! K⇤e+e�)q22[1,6] GeV2

, (19)

as well as the ratio of the two [6, 22], namely,

XK =
RK⇤

RK
� 1 . (20)

In Ref. [19] it was shown that the ratio of forward-backward asymmetries integrated between q2 2 [4, 6] GeV2 can

2 For a recent attempt to more realistically model the e↵ects of such resonances see Ref. [60] or those discussed previously in Refs. [61, 62].
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also be sensitive to lepton flavor universality violation. After defining,

A`
fb[4�6] =

3

4

Z 6 GeV2

4 GeV2

Is6(q
2) dq2

�(B ! K⇤`+`�)q22[4,6] GeV2

, (21)

the ratio of forward-backward asymmetries is then simply,

Rfb =
Aµ

fb[4�6]

Ae
fb[4�6]

. (22)

To compute the above-mentioned quantities we use the standard values of the Wilson coe�cients [40], and include
the e↵ect of quark loops in the coe�cients C7,9 arising from the operators O1,2, as calculated in Ref. [39]. We neglect
the soft gluon corrections to the charm quark loop at low q2, which according to Ref. [63] is reasonable. At low q2 the
hard scattering contributions are neglected. For the form factors we use the values computed by means of QCD sum
rules on the light cone [64]. In Fig. 3 we show our results for RK⇤ , XK and Rfb as functions of Re[C 0

10]. For an easier
comparison, in the same plot we also show RK . The range 0.075  Re[C 0

10]  0.41 has been obtained in the previous
section of this paper, where we showed that for a given value of 0.075  Re[C 0

10]  0.41 there is a region of allowed
Im[C 0

10], and therefore instead of curves in Fig. 3 we actually have the corresponding regions of values determined
by Im[C 0

10]. We should emphasize again that the uncertainties related to form factors cancel to a large extent in the
ratios. As for the results, we first see that in the scenario with C 0

10 = �C 0
9 6= 0, allowing coupling to muons only, and
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Figure 3. RK , RK⇤ , XK and Rfb, defined in Eq. (1,19,20,22) respectively, are plotted as functions of Re[C0
10], in the range

allowed by the measured values of B(Bs ! µ+µ�) and B(B ! Kµ+µ�)q2>15 GeV2 . Instead of a curve for each quantity we
actually have a region of values, reflecting the fact that for each Re[C0

10] there is a range of allowed values of Im[C0
10], as shown

in Fig. 1.

explicitly realized in the model with a (3, 2, 1/6) leptoquark state, we get

RK = 0.88± 0.08 , RK⇤ = 1.11± 0.08 ,

XK = 0.27± 0.19 , Rfb = 0.84± 0.12 ,
(23)
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explicitly realized in the model with a (3, 2, 1/6) leptoquark state, we get

RK = 0.88± 0.08 , RK⇤ = 1.11± 0.08 ,

XK = 0.27± 0.19 , Rfb = 0.84± 0.12 ,
(23)



SU(3)⇥ SU(2)⇥ U(1) Spin Symbol Type 3B + L
(3,3, 1/3) 0 S3 LL (SL

1 ) �2

(3,2, 7/6) 0 R2 RL (SL
1/2), LR (SR

1/2) 0

(3,2, 1/6) 0 ˜R2 RL (

˜SL
1/2), LR 0

(3,1, 4/3) 0 ˜S1 RR (

˜SR
0 ) �2

(3,1, 1/3) 0 S1 LL (SL
0 ), RR (SR

0 ), RR �2

(3,1,�2/3) 0 ¯S1 RR �2

(3,3, 2/3) 1 U3 LL (V L
1 ) 0

(3,2, 5/6) 1 V2 RL (V L
1/2), LR (V R

1/2) �2

(3,2,�1/6) 1 ˜V2 RL (

˜V L
1/2), LR �2

(3,1, 5/3) 1 ˜U1 RR (

˜V R
0 ) 0

(3,1, 2/3) 1 U1 LL (V L
0 ), RR (V R

0 ), RR 0

(3,1,�1/3) 1 ¯U1 RR 0

Table 1: List of scalar and vector leptoquarks. See text for details.

leptoquark states. The SM fermions are Li
L ⌘ (1,2,�1/2)i = (⌫iL eiL)

T ,
eiR ⌘ (1,1,�1)

i, Qi
L ⌘ (3,2, 1/6)i = (ui

L diL)
T , ui

R ⌘ (3,1, 2/3)i, and
diR ⌘ (3,1,�1/3)i, where the numbers within brackets represent the SM gauge
group SU(3) ⇥ SU(2) ⇥ U(1) transformation properties. For example, a state
denoted as (3,2, 1/6) transforms as triplet (doublet) of SU(3) (SU(2)) with the
U(1) hypercharge of 1/6. Superscript i(= 1, 2, 3) is a flavor index and subscripts
L and R denote left- and right-chiral fermion fields, respectively. Superscript T
will always stand for transposition. It is in the SU(2) group space of the SM
in this particular instance. We take quarks (leptons) to have baryon (lepton)
number B = 1/3 (L = 1) in accordance with the usual convention.

The (hyper)charge normalization is defined through ˆQ = I3 +Y , where ˆQ is
the electric charge operator that yields eigenvalues Q in units of absolute value
of the electron charge, I3 stands for the diagonal generator of SU(2), and Y
represents U(1) hypercharge operator. The electric charge of dR ⌘ (3,1,�1/3)
is, for example, Q = 0 + (�1/3) = �1/3, where dR is right-chiral down-type
quark.

At least two neutrinos are conclusively massive. However, their Dirac and/or
Majorana nature is not yet experimentally ascertained. One might accordingly
add to the SM fermion content one or more electrically neutral fields that could
take on a role of right-chiral neutrinos. We denote these hypothetical fermions
with ⌫R(⌘ (1,1, 0)). If these states are added one could have more LQ states
than there would be in the SM model with purely left-chiral neutrinos. We
include this possibility to insure generality of our considerations.

The list of all possible LQs is given in Table 1. There are, all in all, six
scalar and six vector leptoquark multiplets if one uses transformations under
the SM gauge group as the classification criterion. In the first column we ex-
plicitly specify the SM transformation properties that can be easily understood
on purely group theoretical grounds as follows.

5

LQ	

l	

q	

F=3B	+L		fermion	number;	F=0		no	proton	decay	at	tree	level	

Q=T3	+	Y	

Leptoquarks	
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generalization of the effective weak Lagrangian is the following:

LSL
e↵ = �4GFp

2

Vij

(

(U`k + gLij;`k)(ū
i
L�

µdjL)(
¯`L�µ⌫

k
L)

+ gRij;`k(ū
i
R�

µdjR)(
¯`R�µ⌫

k
R)

+ gRR
ij;`k(ū

i
Rd

j
L)(

¯`R⌫
k
L) + hRR

ij;`k(ū
i
R�

µ⌫djL)(
¯`R�µ⌫⌫

k
L)

+ gLL
ij;`k(ū

i
Ld

j
R)(

¯`L⌫
k
R) + hLL

ij;`k(ū
i
L�

µ⌫djR)(
¯`L�µ⌫⌫

k
R)

+ gLR
ij;`k(ū

i
Ld

j
R)(

¯`R⌫
k
L)

+ gRL
ij;`k(ū

i
Rd

j
L)(

¯`L⌫
k
R)

)

+ h.c..

(23)

In this section we use the following shorthand notation for the mixing matrices
in the quark and lepton sector: V ⌘ VCKM and U ⌘ VPMNS. In Eq. (23) the
indices i, j, `, k refer to the fermion mass eigenstates. In the SM limit only the
term proportional to the PMNS matrix Uk` survives and results in lepton flavor
universal process rates, when these are summed over undetected neutrino flavor
k. Modifications of the left-handed currents, parametrized by gL, are expected
in the presence of leptoquarks that transform either as singlets or triplets under
SU(2). On the other hand, the right-handed currents proportional to gR are dis-
tinct signature of weak singlet LQ states. Further operators involving chirality
flipping currents are possible in the presence of LQ states and are parameter-
ized by couplings gXY

ij;`k, where X and Y refer to chiralities of the up-type quark
and charged lepton, respectively. (The chiralities of the down-type quark and
the neutrino are then determined as being opposite to chiralities of the up-type
quark and charged lepton, respectively. E.g., gRL

ij;`k multiplies an operator that
is composed of right-handed up-type quark and left-handed charged lepton.)
Pair of couplings scalar and tensor couplings (gRR, hRR

) has common origin in
a single scalar operator in the Fierzed basis that is characteristic of scalar LQ
scenarios. Same holds true for pair (gLL, hLL). At the matching scale the two
couplings are related: gRR(LL)

= 4hRR(LL). Finally, effective couplings gLR and
gRL can be non-zero only when a vector LQ state is integrated out.

The tree-level matching procedure is performed for each leptoquark at the
matching scale, which is here taken to be the mass M of the LQ state being
integrated out, and results in a subset of effective couplings which are laid out
in Table 3. The quoted expressions are in accord with the couplings notation
established in Section 1. Derivation of the expressions contained in Table 3 is
straightforward: first one writes down the tree-level leptoquark exchange am-
plitude in the leading order in q2/M2

LQ expansion where q2 is the momentum
flow through the LQ propagator. Leptoquark exchanges lead to effective four-
fermion operators in the operator basis that is Fierzed with respect to (23) and
one has to be careful in the matching procedure to take into account an extra
minus sign that comes from different ordering of fermionic operators acting on
asymptotic states in the LQ model and in the effective theory (23) calculation.

26

LQ	in	charge	current	processes		The most transparent procedure that takes care of the sign due to fermionic per-
mutations is to Fierz-transform the fermionic operators on the level of effective
operators (23) and then perform the matching. Furthermore, the amplitude
for the LQ states with F = 2 will contain currents with charge-conjugated
spinors. In such cases one first expresses the relevant effective operator in terms
of charge-conjugated fields and only then applies the Fierz transformation. To
achieve that one invokes a transpose relation of field bilinears:

¯ 1 (�
↵�� · · · �!) C

2 = ± 2 (�
! · · · ���↵) C

1 . (24)

The plus (minus) sign in Eq. (24) applies for even (odd) number of � matrices
between the two fields.

The values of Wilson coefficients in Table 3, valid at the scale M have to
be run to the characteristic scale of the hadronic process. The renormalization
group effects of QCD multiplicatively renormalize the scalar and tensor coeffi-
cients of the Lagrangian (23), while the vector currents are not renormalized. In
the leading logarithmic order the set of scalar couplings runs with the anomalous
dimension of the mass term:

gXY
ij;`k(µ) =



↵S(µ)

↵S(mqf+1)

�� �S

2�
(f)
0 · · ·



↵S(mb)

↵S(mt)

�� �S

2�
(5)
0



↵S(mt)

↵S(M)

�� �S

2�
(6)
0 gXY

ij;`k(M).

(25)

Here XY = LL,RR,LR,RL and f is the number of quarks lighter than scale µ.
The scalar anomalous dimension is �S = �8 and the beta function coefficient
reads �(n)

0 = 11 � 2n/3 [99], where n is the number of active quark flavors.
Analogous relation holds for the tensor couplings hRR,LL

ij;`k with the appropriate
change �S ! �T = 8/3 [100].

A comment related to the unobservability of PMNS matrix effects is in order
here. In Table 3 we list the effective couplings for neutrinos mass eigenstates
whereas experimentally one cannot differentiate between neutrino species. We
have consistently imposed a convention where the couplings to the left-handed
lepton doublets are defined in the mass basis of charged leptons. Left-handed
neutrino in the final eigenstate k is thus always accompanied by U`k, where `
refers to a charged lepton. The rates for k = 1, 2, 3 are then summed employing
the unitarity of the PMNS matrix and the final rate is equal to the prediction
of a theory with massless neutrinos and no mixing, i.e., U = 1 [21].

3.1.1. P ! `�⌫̄
The leptonic decays P ! `�⌫̄ of charged pseudoscalar meson are one of

the most important tests of the presence of leptoquarks. The distinct helicity
suppression of the left-handed current operators in the SM and their lepton
universality make these decays very sensitive to leptoquarks. The only hadronic
input relevant to leptonic decays is a decay constant, defined via

h0 | ūi�
µ�5dj |P (p)i = ifP p

µ, (26)

27

EffecLve	Lagrangian	for	charged	current	process:	

running	for		
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Scalars gLij;`k gRij;`k gRR
ij;`k = 4hRR

ij;`k gLL
ij;`k = 4hLL

ij;`k

S3 � v2

M2
(x†V ⇤)`i(xU)jk

4Vij

R2
v2

M2
(xU)iky`j

4Vij

˜R2
v2

M2

(V y)ikx
⇤
j`

4Vij

S1
v2

M2
(vU)jk(V

T v)⇤i`
4Vij

� v2

M2
yjkx

⇤
i`

4Vij

v2

M2
(vU)jkx

⇤
i`

4Vij

v2

M2
yjk(V

T v)⇤i`
4Vij

Vectors gLij;`k gRij;`k gLR
ij;`k gRL

ij;`k

U3 � v2

M2

(V xU)ikx
⇤
j`

2Vij

V2
v2

M2
(xU)jk(V

T y)i`
Vij

U1
v2

M2

(V xU)ikx
⇤
j`

2Vij

v2

M2

ziky
⇤
j`

2Vij
� v2

M2

(V xU)iky
⇤
j`

Vij
� v2

M2

zikx
⇤
j`

Vij

˜V2 � v2

M2
x⇤
i`yjk

Vij

Table 3: Effective leptoquark charged-current couplings g(M), h(M), defined by Eq. (23), at
the matching scale M .

where the flavor of the pseudoscalar is P�
(ūidj). The matrix element of pseu-

doscalar density can be expressed, via equation of motion i /D = m , by deriva-
tive of the axial current, ū�5d = �i@µ(ū�µ�5d)/(mu+md) and one can express
h0 | ūi�5dj |P (p)i = � ifPm2

P
mui+mdj

. The decay amplitude is then

AP!`⌫̄k =

p
2GFVijfPmP

("

�m̂`(U`k + gLij;`k) +
gRR
ij;`k � gLR

ij;`k

m̂ui
+ m̂dj

#

(ū`PLv⌫̄)

+

"

m̂`g
R
ij;`k � gLL

ij;`k � gRL
ij;`k

m̂ui
+ m̂dj

#

(ū`PRv⌫̄)

)

,

(27)

where m̂` = m`/mP . The decay width reads

�P!`⌫̄ =

G2
F |Vij |2
8⇡

f2
Pm

3
P (1� m̂2

`)
2

⇥
(

m̂2
` + 2m̂`Re

X

k

"

U⇤
`k

 

m̂`g
L
ij;`k � gRR

ij;`k � gLR
ij;`k

m̂ui
+ m̂dj

!#

+

X

k

�

�

�

�

�

m̂`g
L
ij;`k � gRR

ij;`k � gLR
ij;`k

m̂ui
+ m̂dj

�

�

�

�

�

2

+

X

k

�

�

�

�

�

m̂`g
R
ij;`k � gLL

ij;`k � gRL
ij;`k

m̂ui
+ m̂dj

�

�

�

�

�

2)

.

(28)

The summation over neutrino species k eliminate all dependence on the PMNS
matrix U when explicit expressions for effective couplings are inserted into (28).
In the decay width expression (28) it is apparent that LQ states which introduce
couplings other than gL or gR do not entail the m2

` scaling of the width, which

28

RD(*)		puzzles	can	be	explained	by	these	modificaLons	of	the	le�-handed		
(right-handed,	scalar/pseudoscular,	tensor	currents),	if	all	other	flavor		
constraints	allow	that!	

Scalar	LQ		



The number of observables in the case RD⇤ is much larger then in the case of RD

as discussed already by many authors [115, 116, 117, 118, 96, 119, 114]. Based
on current results on RD and RD⇤ , the authors of Ref. [96], have found best fit
points for the couplings gL = 0.18± 0.04, hRR

= 0.52± 0.02 and gRR
= 0.23±

0.05. The invariant dilepton mass distribution can be obtained after performing
integration over the angle ✓⌧ in (46), as discussed in [115, 117, 96, 119, 113].

3.2. Rare meson decays
The mechanisms of LQ contributions to rare meson decays differs qualita-

tively from the mechanism of rare SM decays. By rare decays we mean here
decays with neutral quark and lepton currents (q̄0q)(¯`0`) or (q̄0q)(⌫̄0⌫) that are
induced exclusively via loop diagrams and are suppressed by the unitarity of the
CKM matrix (GIM mechanism) or are even absent (lepton flavor violation) in
the SM. The competing LQ amplitudes are tree-level induced and present a very
serious constraint on the flavor changing LQ couplings. Tree-level LQ ampli-
tudes are exemplified in Fig. 7 for decays that involve charged leptons. In order

2/
3
(
5/

3
)

d(u) `0

` d0(u0
)

4/
3
(
1/

3
)

d(u) `

`0 d0(u0
)

Figure 7: Diagrams of rare meson decays of flavor (

¯d0d)(¯`0`) and (ū0u)(¯`0`) induced by LQs.
The F = 0 leptoquarks contribute as shown in the left-hand side diagram, F = 2 as shown
in the right-hand diagram. Propagators are labelled by charge of the relevant components of
the LQ.

to connect to large body of phenomenological literature on rare (semi)leptonic
meson decays, we introduce the commonly used effective Lagrangians.

3.2.1. P ! P 0
(V )`�`0+ and P ! `�`0+

Lq̄jqi``0 = �4GFp
2

�q

"

C7O7 + C70O70 +

X

i=9,10,S,P

⇣

C``0

i O``0

i + C``0

i0 O``0

i0

⌘

+ C``0

T O``0

T + C``0

T5O``0

T5

#

+ h.c.,

(48)
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with the following operators that are susceptible to LQ effects

O7 =

emq

(4⇡)2
(q̄j�µ⌫PRq

i
)Fµ⌫ , O``0

S =

e2

(4⇡)2
(q̄jPRq

i
)(

¯``0),

O``0

9 =

e2

(4⇡)2
(q̄j�µPLq

i
)(

¯`�µ`
0
) , O``0

P =

e2

(4⇡)2
(q̄jPRq

i
)(

¯`�5`
0
),

O``0

10 =

e2

(4⇡)2
(q̄j�µPLq

i
)(

¯`�µ�5`
0
).

(49)

The set of operators with “primes”, i0 = 7

0, 90, 100, S0, P 0, are related to the
“unprimed” set by switching the roles of PL and PR. We have explicitly labelled
the lepton indices for the operators that potentially violate leptonic flavor. All
quark fields have definite charge and thus the above Lagrangian covers both up-
and down-quark processes. In the case of the latter, di ! dj`�`0+, we have
�q = VqiV ⇤

qj while for ui ! uj`�`0+ the same factor reads �q = V ⇤
iqVjq. The

conventions follow the structure of effective Hamiltonian in rare B decays [120],
where the dominant SM contribution is from the top quark and one puts q = t.
For the short-distance contributions to rare charm decays one usually sets q = b.
Note that the basis for the rare kaon decays differs slightly from the above
convention [121, 122]. In the scalar leptoquark scenarios we must allow for the
possibility of tensor operators:

O``0

T =

e2

(4⇡)2
(q̄j�µ⌫q

i
)(

¯`�µ⌫`0), O``0

T5 =

e2

(4⇡)2
(q̄j�µ⌫q

i
)(

¯`�µ⌫�5`
0
). (50)

The result of tree-level matching of a single LQ scenario to the effective La-
grangian is given in form of Wilson coefficients collected in Table 4. At one-loop
level the contributions to electromagnetic penguins coefficients C7, C 0

7 may ap-
pear as well, but these have negligible effects compared to C9(0),10(0),S(0),P (0),T,T5,
where the latter coefficients appear at tree-level (cf. e.g. [95]).

The leptonic decay width of a neutral meson to two charged leptons of same
flavor depends on the Wilson coefficients C``

10(0)
, C``

S(0) , C``
P (0) :

�P!`+`� = f2
Pm

3
P

G2
F↵

2

64⇡3
|�q|2�`(m

2
P )



m2
P

m2
b

�

�

�

C``
S � C``

S0

�

�

�

2
✓

1� 4m2
`

m2
P

◆

+

�

�

�

mP

mb

�

C``
P � C``

P 0
�

+ 2

m`

mP

�

C``
10 � C``

100
�

�

�

�

2
�

,

(51)

where �`(q2) =
p

1� 4m2
`/q

2. The SM contributes only to the C10 coefficient
that contributes with helicity suppression factor m2

` to the decay width, which
is not present for scalar or pseudoscalar coefficients. Experimental limits from
P ! `+`� are thus are mostly sensitive to LQ scenarios that generate C``

S(0) ,
C``

P (0) [123]. On the other hand, the LFV decay modes P ! ``0 depend further
on C``0

9 [124] and are even more constraining than the lepton flavor conserving
ones. Leptonic decays have been studied also in[125, 126].
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LQ di ! dj`�`0+ decays, �q = VqiV ⇤
qj ui ! uj`�`0+ decays, �q = V ⇤

iqVjq

S3 C9 = �C10 = � v2

M2
⇡

↵�q
xi`0x⇤

j` C9 = �C10 = � v2

M2
⇡

↵�q
(V Tx)i`0(V Tx)⇤j`

R2 C9 = C10 =

v2

M2
⇡

2↵�q
y`iy⇤`0j C9 = C10 =

v2

M2
⇡

2↵�q
(yV †

)`i(yV †
)

⇤
`0j

C90 = �C100 =
v2

M2
⇡

2↵�q
xj`0x⇤

i`

CS = CP = � v2

M2
⇡

2↵�q
x⇤
i`(yV

†
)

⇤
`0j

CS0
= �CP 0

= � v2

M2
⇡

2↵�q
xj`0(yV †

)`i

CT = (CS + CS0
)/4

CT5 = (CS � CS0
)/4

˜R2 C90 = �C100 =
v2

M2
⇡

2�q↵
xj`0x⇤

i`

˜S1 C90 = C100 = � v2

M2
⇡

2�q↵
xi`0x⇤

j`

S1 C9 = �C10 = � v2

M2
⇡

2↵�q
(V T v)i`0(V T v)⇤j`

C90 = C100 = � v2

M2
⇡

2↵�q
xi`0x⇤

j`

CS = CP =

v2

M2
⇡

2↵�q
xi`0(V T v)⇤j`

CS0
= �CP 0

=

v2

M2
⇡

2↵�q
(V T v)i`0x⇤

j`

CT = (CS + CS0
)/4

CT5 = (CS � CS0
)/4

U3 C9 = �C10 =

v2

M2
⇡

�q↵
xj`0x⇤

i` C9 = �C10 =

v2

M2
2⇡
�q↵

(V x)j`0(V x)⇤i`
V2 C9 = C10 = � v2

M2
⇡

�q↵
yi`0y⇤j`

C90 = �C100 = � v2

M2
⇡

�q↵
xi`0x⇤

j`

CS = �CP =

v2

M2
⇡

�q↵
xi`0y⇤j`

CS0
= CP 0

=

v2

M2
⇡

�q↵
yi`0x⇤

j`

C9 = C10 = � v2

M2
⇡

�q↵
(V T y)i`0(V T y)⇤j`

˜V2 C90 = �C100 = � v2

M2
⇡

�q↵
xi`0x⇤

j`

˜U1 C90 = C100 =
v2

M2
⇡

�q↵
xj`0x⇤

i`

U1 C9 = �C10 =

v2

M2
⇡

�q↵
xj`0x⇤

i`

C90 = C100 =
v2

M2
⇡

�q↵
yj`0y⇤i`

CS = �CP = � v2

M2
2⇡
�q↵

xj`0y⇤i`

CS0
= CP 0

= � v2

M2
2⇡
�q↵

yj`0x⇤
i`

Table 4: Tree-level Wilson coefficients of leptoquark models in rare semileptonic decays. Val-
ues quoted are valid at the matching scale taken to be the LQ mass M . We have not explicitly
written the lepton flavor indices on the Wilson coefficients, as introduced in the operator basis.
Thus a table entry for e.g., C9, stands for C``0

9 .
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(3,2,7/6)	

All fields in Eq. (2) are specified in the mass eigenstate basis. The tran-
sition from the flavor to the mass eigenstate basis is accomplished through
the following transformations: uj

L ! (V †
CKM)jkuk

L, djL ! djL, ejL ! ejL, and
⌫jL ! (VPMNS)jk⌫kL. We implicitly assume that the individual rotations in the
left-chiral sector are not physical. This might not be the case in all circum-
stances.

1.3. R2 = (3,2, 7/6)

Yukawa couplings of R2 to the SM fermions are

LY = �xij ū
i
RR

a
2✏

abLj,b
L + yij ē

i
RR

a ⇤
2 Qj,a

L + h.c.. (3)

x and y in Eq. (3) are arbitrary complex 3 ⇥ 3 Yukawa matrices. In the mass
eigenstate basis we have

LY =� xij ū
i
Re

j
LR

5/3
2 + (xVPMNS)ij ū

i
R⌫

j
LR

2/3
2

+ (yV †
CKM)ij ē

i
Ru

j
LR

5/3 ⇤
2 + yij ē

i
Rd

j
LR

2/3 ⇤
2 + h.c., (4)

where the LQ superscript denotes electric charge of R2 components. There are
two independent Yukawa couplings for both R5/3

2 and R2/3
2 . One is of RL and

the other of LR type. If LQ couples to both left- and right-chiral quarks it
is referred to as non-chiral leptoquark. R2 is thus a non-chiral leptoquark of
genuine kind.

We have already outlined the ambiguity attached to the first, second or
third generation leptoquark nomenclature. There is yet another aspect to this
issue. Namely, LQ multiplets that transform non-trivially under SU(2) can
have one charged component to be of the first, second or third generation type
but that would not be the case with other charged component(s). This can be
nicely illustrated with this particular leptoquark. For example, R2/3

2 could be
referred to as the first generation LQ if yij = y�1i�1j and xij = 0, i, j = 1, 2, 3,
where �ij is the Kronecker delta. However, R5/3

2 would then be leptoquark that
simultaneously couples an electron to all up-type quarks. We implicitly assume
that all unitary rotations in the flavor space of the right-chiral sector and the
individual rotations of the left-chiral sector are not physical.

1.4. ˜R2 = (3,2, 1/6)

There are two renormalizable terms that describe interactions of ˜R2 with
matter. These are

LY = �xij
¯diR ˜Ra

2✏
abLj,b

L + yij ¯Q
i,a
L

˜Ra
2⌫

j
R + h.c.. (5)

We assume that there are three right-chiral neutrinos ⌫jR, j = 1, 2, 3. xij and
yij are then elements of arbitrary complex 3 ⇥ 3 Yukawa coupling matrices.
Since the presence of right-chiral neutrinos is questionable we bar in Table 1 all
symbols associated with them. For example, second term in Eq. (5) is of LR

9

The	model	is	constrained	by:	
	
	
	
	
	
	

Z ! bb̄

(g � 2)µ
⌧ ! µ�

(c	–quark	in	the	loop)	

(τ			in	the	loop)	

µ ! e�

I.	Doršner,	S.F.,	N.	Košnik,	arXiv:	1306.6493	

two	states	with	electric	charge	5/3	and	2/,	
has	a	coupling	with	SM	neutrino	

Not	good	candidate	for			
RK	,		C9=	C10!	

Examples	of	LQ	



11σ  region allowed by 
existing data  

couplings remain 
perturbative all the 
 way to the GUT scale 

2σ region allowed by 
existing data  



type. This can accordingly be read off from Table 1 allowing for an easy removal
of the relevant coupling, if necessary. The list of scalar leptoquarks that also
includes those that couple to (three) ⌫R states with associated list of fermion
bilinears has been provided in Ref. [16].

Note that ˜R2 actually comprises two leptoquarks. One has Q = 2/3 and the
other has Q = �1/3. The SU(2) contraction yields

LY =� xij
¯diRe

j
L
˜R2/3
2 + (xVPMNS)ij

¯diR⌫
j
L
˜R�1/3
2

+ (VCKMy)ij ū
i
L⌫

j
R
˜R2/3
2 + yij ¯d

i
L⌫

j
R
˜R�1/3
2 + h.c., (6)

where the LQ superscript denotes electric charge of a given SU(2) doublet com-
ponent of ˜R2. The important point to notice is that the Yukawa couplings
of ˜R2/3

2 and ˜R�1/3
2 that are associated with x (y) are related through PMNS

(CKM) parameters. These, on the other hand, are well-measured physical pa-
rameters. (For the latest experimental measurements of the mixing parameters
see, for example, Ref. [14].) ˜R2 is clearly genuine leptoquark with F = 0. In
fact, all genuine leptoquarks have F = 0.

1.5. ˜S1 = (3,1, 4/3)

The couplings of ˜S1 to matter read

LY = xij
¯dC i
R

˜S1e
j
R + yij ū

C i
R

˜S⇤
1u

j
R + h.c.. (7)

This LQ has purely RR couplings. One can observe that y is an antisymmetric
matrix in any (flavor) basis.

1.6. S1 = (3,1, 1/3)

There are five possible operators that describe how S1 = (3,1, 1/3) interacts
with fermions. These are

LY =vij ¯Q
C i,a
L S1✏

abLj,b
L + xij ū

C i
R S1e

j
R + yij ¯d

C i
R S1⌫

j
R + zij ¯Q

C i,a
L S⇤

1✏
abQj,b

L

+ wij ū
C i
R S⇤

1d
j
R + h.c., (8)

where z is a symmetric matrix in flavor space [16], i.e., zij = zji, whereas all
other matrices are a priori completely arbitrary.

The operators of Eq. (8), after the contraction in the SU(2) space, yield the
following terms:

LY =� (vVPMNS)ij
¯dC i
L S1⌫

j
L + (V T

CKMv)ij ū
C i
L S1e

j
L + xij ū

C i
R S1e

j
R + yij ¯d

C i
R S1⌫

j
R

+ (V T
CKMz)ij ū

C i
L S⇤

1d
j
L � (zV †

CKM)ij
¯dC i
L S⇤

1u
j
L + wij ū

C i
R S⇤

1d
j
R + h.c.. (9)

This LQ allows for LL, RR, and RR operators. S1 is often referred to simply
as a color triplet that is behind the “infamous” doublet-triplet splitting problem
that is frequently discussed in the field of grand unified model building.
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1.	Good	candidate	for	RK		according	to:		Hiller&Schmaltz,	

1408.1627	;		Hiller	&	de	Medeiros	Varzielas,	1503.01084	for	RK:	

																																							

H eff ¼ " 4GFffiffiffi
2

p !t

"X6

i¼1

Cið"ÞOið"Þ

þ
X

i¼7;8;9;10;P;S

ðCið"ÞOið"Þ þ C0
ið"ÞO0

ið"ÞÞ

þ CTOT þ CT5OT5

#
; (2)

where !t ¼ VtbV
&
ts. Effective operators that receive contri-

butions from leptoquarks are the two-quark, two-lepton
operators,

O9¼
e2

g2
ð!s#"PLbÞð !‘#"‘Þ;

O10¼
e2

g2
ð !s#"PLbÞð !‘#"#5‘Þ; OS ¼ e2

16$2 ð!sPRbÞð !‘‘Þ;

OP¼
e2

16$2 ð !sPRbÞð !‘#5‘Þ; OT ¼
e2

16$2 ð !s%"&bÞð !‘%"&‘Þ;

OT5¼
e2

16$2 ð!s%"&bÞð !‘%"&#5‘Þ: (3)

The chirally flipped operatorsO0
9;10;S;P are obtained from the

above ones by L $ R exchange. e ¼
ffiffiffiffiffiffiffiffiffiffi
4$'

p
is the unit of

electric charge, g is the strong coupling, and PL;R ¼ ð1'
#5Þ=2. Four-quark operators O1...6 and radiative penguin
operators O7;8 can be found in Ref. [15]. Values of the
Wilson coefficients are calculated by means of matching
the full theory onto the effective theory at the electroweak
scale and subsequently solving the renormalization group
equations to run them down to scale "b ¼ 4:8 GeV. Decay
amplitudes are conveniently expressed in terms of effective
Wilson coefficients at the scale "b [16],

Ceff
7 ð"bÞ ¼

4$

's
C7 "

1

3
C3 "

4

9
C4 "

20

3
C5 "

80

9
C6;

Ceff
9 ð"bÞ ¼

4$

's
C9 þ Yðq2Þ; Ceff

10 ð"bÞ ¼
4$

's
C10;

C0;eff
7;8;9;10ð"bÞ ¼

4$

's
C0
7;8;9;10; (4)

where function Yðq2Þ was defined in [16]. For the SM
contributions we will use the next-to-next-to-leading loga-
rithm values Ceff;SM

7 ð"bÞ ¼ "0:304, Ceff;SM
9 ð"bÞ ¼ 4:211,

and Ceff;SM
10 ð"bÞ ¼ "4:103 [15,16]. Numerical values of

other parameters entering theoretical predictions can be
found in [6].

The diagrams in Fig. 1 will contribute to the Wilson
coefficients of operators (3). We will assume that a lepto-
quark state lies at a scale (1 TeV, still perfectly allowed
by limits set by the direct searches [17], where we also
perform the tree-level matching. For our purposes we can

neglect the anomalous dimensions of coefficients Cð0Þ
9 and

Cð0Þ
10 [18], whereas the anomalous dimensions of scalar and

pseudoscalarWilson coefficients run with the same anoma-
lous dimension as mbð"Þ [19]. Lepton flavor universality
of all beyond the SM contributions will be assumed
throughout this work in order to make a straightforward
interpretation of experimental constraint from BrðB !
K‘þ‘"Þwhere a result given in [4] is a combination of ‘ ¼
e and ‘ ¼ " modes.
In the following sections we will omit the ‘‘eff’’ label

when writing down beyond the SM contributions to the
effective Wilson coefficients.

III. OBSERVABLES AND THEIR STANDARD
MODEL PREDICTIONS

The Bs ! ‘þ‘" decay branching fraction in a general
NP model reads

BrðBs ! ‘þ‘"Þ

¼ (Bs
f2Bs

m3
Bs

G2
Fj!tj2'2

ð4$Þ3 )‘ðm2
Bs
Þ

)
"m2

Bs

m2
b

jCS " C0
Sj2

$
1" 4m2

‘

m2
Bs

%

þ
&&&&&&&&
mBs

mb
ðCP " C0

PÞ þ 2
m‘

mBs

ðC10 " C0
10Þ

&&&&&&&&
2
#
; (5)

where )‘ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" 4m2

‘=q
2

q
. The above branching frac-

tion is sensitive exclusively to contributions of differences
between operators with left- and right-handed quark cur-
rents, C10 " C0

10, CS " C0
S, and CP " C0

P. The latter two
combinations are effectively constrained due to lifted
helicity suppression unless the relative phases of Wilson
coefficients allow cancellations between CSðCPÞ and
C0
SðC0

PÞ. In the SM only C10 is present in (5) and leads to
prediction [6]

Br ðBs ! "þ""ÞSM ¼ ð3:3* 0:3Þ ) 10"9; (6)

whereas the latest 95% confidence level bound from the
LHCb experiment [1] is

Br ðBs ! "þ""Þexp < 4:5) 10"9: (7)

The decay branching fraction, BrðB ! K‘þ‘"Þ, on the
other hand, receives contributions from C7 þ C0

7, C9 þ C0
9,

C10 þ C0
10, CS þ C0

S, and CP þ C0
P, while we have ne-

glected contribution of the tensor operators that have small
contributions in leptoquark models, as will be shown
below. The decay width reads [20]

FIG. 1. Two possible charges of a leptoquark in b ! s‘þ‘"

diagram.
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two	states	with	electric	charge	2/3	and	-1/3	
	

(3,2,1/6)		 can	explain	both	RK	and			RD(*)	at	tree	level!	

	C9’	=	-C10’		
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We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2, 1/6): three RH Dirac neutrinos ⌫R.

LY = YL
ij L̄Li

e�(1/6)dRj +YR
ij Q̄L,i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.

Damir Becirevic (LPT - Orsay) Origin of LFV 43 / 51

RD	

	
	
	
	

2.	Can		explain	RD(*	)		if	neutrino		right-handed!	In	this	case	there	is	

no	interference	with	the	SM	neutrinos.		

D.	Becirevic,	SF,	N.	Kosnik	and	O.	Sumensari	(1606.xxxxx)		
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Model	passed	all	flavor	tests:	

Theory Challenge
A New Model for R

K

and R
D

[Becirevic, Fajfer, Kosnik, Sumensari Preliminary!]

We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2, 1/6): three RH Dirac neutrinos ⌫R.

LY = YL
ij L̄Li

e�(1/6)dRj +YR
ij Q̄L,i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.
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A New Model for R
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and R
D

[Becirevic, Fajfer, Kosnik, Sumensari Preliminary!]

RD constraint using LQCD FFs. [MILC & Fermilab. 2015]
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LQ di ! dj⌫⌫̄0 decays, �q = VqiV ⇤
qj ui ! uj⌫⌫̄0 decays, �q = V ⇤

iqVjq

S3 CL =

v2

M2
⇡

2↵�q
(xU)i⌫0

(xU)

⇤
j⌫

R2 CR = � v2

M2
⇡

2↵�q
(xU)j⌫0

(xU)

⇤
i⌫

S1 CL =

v2

M2
⇡

2↵�q
(vU)i⌫0

(vU)

⇤
j⌫

U3 CL = � v2

M2
2⇡
↵�q

(xU)j⌫0
(xU)

⇤
i⌫ CL = � v2

M2
⇡

↵�q
(V xU)j⌫0

(V xU)

⇤
i⌫

V2 CR =

v2

M2
⇡

↵�q
(xU)i⌫0

(xU)

⇤
j⌫

˜V2 CR =

v2

M2
⇡

↵�q
(xU)i⌫0

(xU)

⇤
j⌫

U1 CL = � v2

M2
⇡

↵�q
(V xU)j⌫0

(V xU)

⇤
i⌫

Table 5: Tree-level Wilson coefficients of leptoquark models in rare decays qi ! qj⌫⌫̄0. Values
quoted are valid at the matching scale taken to be the LQ mass M . We have not explicitly
written the neutrino eigenmass state indices on the Wilson coefficients, as introduced in the
operator basis. Thus a table entry for e.g., CL, stands for C⌫⌫0

L .

A detailed study of LQ contributions to B ! K(⇤)⌫0⌫ can be found in
Ref. [133].

3.3. Neutral meson anti-meson oscillations
The LQ induced MM mixing amplitudes originate from diagrams with LQ

state with F = 0 or F = 2, accompanied by leptons in the box. For the F = 2

states which always couple to two quarks, additional box diagrams with virtual
quarks are possible. The F = 2 states naïvely seem to mediate meson mixing
at tree level, however the diquark couplings (yij) are always antisymmetric in
flavor space, as shown in Section 1 (also cf. [16]). One can easily see that mixing
amplitudes vanish for antisymmetric diquarks Yukawas.

With LQ couplings to lepton and quark in the main focus of this review,
proton decay constraints forces the diquark couplings of any F = 2 LQ state to
be negligible. For an alternative approach where diquark aspect of F = 2 LQ
state has been considered in neutral meson mixing constraints cf. [67].

The interaction Lagrangian of any scalar LQ can be split down to couplings
to left- and right-handed quarks of definite charge:

L = q̄i [lijPR + rijPL] `
j S + h.c., (54)

where qi denote quarks of definite charge (2/3 or �1/3), `j stands for charged
leptons or neutrinos or their charge conjugate (charges �1, 0, 1). Couplings l and
r can be straightforwardly obtained from defining Lagrangians of each scalar LQ
presented in Section 1. The effective Lagrangian in the approximation where
we only keep the LQ mass finite reads

Le↵ =

�1

128⇡2m2
S

⇥

(ll†)2ji(q̄
j�µPLq

i
)(q̄j�µPLq

i
) + (rr†)2ji(q̄

j�µPRq
i
)(q̄j�µPRq

i
)

� 4(ll†)ji(rr
†
)ji(q̄

jPLq
i
)(q̄jPRq

i
)

⇤

.
(55)
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Nucleus V (p)[m(5/2)
µ ] V (n)[m(5/2)

µ ] �capture[10
6s�1]

Ti4822 0.0396 0.0468 2.59

Au197
79 0.0974 0.146 13.07

Table IV: Data taken from Tables I and VIII of [43].

7. µ� e conversion in nuclei

Four fermion e↵ective Lagrangian (6) contains also the LFV terms (d̄�µPRd){µ̄�µPRe, ē�µPRµ}. The most stringent
bound on such interactions is expected from experimental searches for µ � e conversion in nuclei. In order to derive
the relevant constraints one needs to calculate the appropriate nuclear matrix elements of the above operators. A
detailed analysis has been carried out in [43]. We can write the nuclear µ� e conversion rate as

�conversion =
|YedY ⇤

µd|2

4m4
�

|V (p) + 2V (n)|2 , (27)

where the nuclear matrix elements V (p,n), calculated in [43] for titanium and gold nuclei are given in Tab. IV.
Presently the most stringent bounds on Bµe ⌘ �conversion/�capture was set by the SINDRUM collaboration with

B(Ti)
µe < 4.3 ⇥ 10�12 [44] and B(Au)

µe < 7 ⇥ 10�13 [45], both at 90% C.L. . Comparing these with our theoretical
expressions we obtain the corresponding 1� bounds

|YedY
⇤

µd|2 < 1.9(20)⇥ 10�13
⇣ m�

400 GeV

⌘4

from Au(Ti) . (28)

Note that the same couplings also appear in the ⇡0 ! e±µ⌥ decay branching fraction, whose expectation is thus
pushed far below the current experimental upper bound of ⇠ 10�10.

C. One-loop e↵ects of �

Next we turn our attention to observables which are a↵ected by leptoquark couplings of � at the one-loop level.
These are K � K̄ and B � B̄ mixing amplitudes, LFV neutral current processes like the radiative µ and ⌧ decays,
as well as flavor diagonal observables, such as the anomalous magnetic moments of leptons or the decay width of the
Z to bb̄ pairs. With the exploratory nature of our study in mind, we do not consider nonlocal loop contributions
due to the e↵ective four-fermion Lagrangian (6), since such e↵ects are constrained by the tree-level processes already
considered in Sec. III B. The particular case of new absorptive contributions a↵ecting Bs � B̄s oscillations will be
discussed in Sec. IV.

1. ✏K and �mK
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d̄
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d
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Figure 1: K � K̄ mixing diagrams with leptons and � in the box loop.

The SM result for the dispersive mixing matrix element, relevant for ✏K is [46]

MSM
12K =

G2
Fm

2
W

12⇡2
f2
KmKB̂K

⇥

�2
c⌘1S0(xc) + �2

t⌘2S0(xt) + 2�c�t⌘3S0(xc, xt)
⇤

. (29)
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The SM result for the dispersive mixing matrix element, relevant for ✏K is [46]
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12K =
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LQ di ! dj⌫⌫̄0 decays, �q = VqiV ⇤
qj ui ! uj⌫⌫̄0 decays, �q = V ⇤

iqVjq
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Table 5: Tree-level Wilson coefficients of leptoquark models in rare decays qi ! qj⌫⌫̄0. Values
quoted are valid at the matching scale taken to be the LQ mass M . We have not explicitly
written the neutrino eigenmass state indices on the Wilson coefficients, as introduced in the
operator basis. Thus a table entry for e.g., CL, stands for C⌫⌫0

L .

A detailed study of LQ contributions to B ! K(⇤)⌫0⌫ can be found in
Ref. [133].

3.3. Neutral meson anti-meson oscillations
The LQ induced MM mixing amplitudes originate from diagrams with LQ

state with F = 0 or F = 2, accompanied by leptons in the box. For the F = 2

states which always couple to two quarks, additional box diagrams with virtual
quarks are possible. The F = 2 states naïvely seem to mediate meson mixing
at tree level, however the diquark couplings (yij) are always antisymmetric in
flavor space, as shown in Section 1 (also cf. [16]). One can easily see that mixing
amplitudes vanish for antisymmetric diquarks Yukawas.

With LQ couplings to lepton and quark in the main focus of this review,
proton decay constraints forces the diquark couplings of any F = 2 LQ state to
be negligible. For an alternative approach where diquark aspect of F = 2 LQ
state has been considered in neutral meson mixing constraints cf. [67].

The interaction Lagrangian of any scalar LQ can be split down to couplings
to left- and right-handed quarks of definite charge:

L = q̄i [lijPR + rijPL] `
j S + h.c., (54)

where qi denote quarks of definite charge (2/3 or �1/3), `j stands for charged
leptons or neutrinos or their charge conjugate (charges �1, 0, 1). Couplings l and
r can be straightforwardly obtained from defining Lagrangians of each scalar LQ
presented in Section 1. The effective Lagrangian in the approximation where
we only keep the LQ mass finite reads

Le↵ =

�1

128⇡2m2
S

⇥

(ll†)2ji(q̄
j�µPLq

i
)(q̄j�µPLq

i
) + (rr†)2ji(q̄

j�µPRq
i
)(q̄j�µPRq

i
)

� 4(ll†)ji(rr
†
)ji(q̄

jPLq
i
)(q̄jPRq

i
)

⇤

.
(55)
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much di↵erent from the examples discussed in this paper, because the amplitude for J/ ! `+`� is dominated by
the tree-level electromagnetic interaction diagram which is much larger than the weak interaction one, suppressed by
1/m2

Z with respect to the dominant one, and therefore completely negligible. Our leptoquark state is m� � mZ , and
its contribution to J/ ! `+`� is even smaller than the weak interaction diagram and cannot make an impact on
the decay of charmonia at the present level of accuracy.

Instead, the weak b ! sµ+µ� decays in the SM are loop-induced so that the tree level contribution involving
couplings to the leptoquark state may become comparable in size to the SM amplitude, which is why the b ! sµ+µ�

is likely to be more sensitive to the presence of the term described by the lagrangian (25). The relevant leptoquark
coupling for the b ! sµ+µ� is the product YµbYµs, which enters the Wilson coe�cients divided by m2

�. The scalar
particle exchange generates scalar operators in the Fierzed basis and those appear as (pseudo)vector currents in the
ordinary operator basis [9]:

C 0
10 = �C 0

9 =
�⇡

2
p
2GFVtbV ⇤

ts↵

YµbY
⇤
µs

m2
�

. (26)

We assume other elements of Yukawa matrix Y to vanish. The same state will also contribute at loop level to electro-
and chromo-magnetic operators C 0

7(m�) and C 0
8(m�) where these coe�cients will be suppressed by electromagnetic

↵(m�)/(4⇡) and strong ↵S(m�)/(4⇡) couplings at high scale m�, respectively. We have explicitly checked that these
modifications result in negligibly small value of C 0

7 when compared to the C7 of SM, cf. Eq. (5). In the remainder of
this Section we will analyze additional observables that constrain this leptoquark scenario.

The considered leptoquark state � couples to the neutrinos with the same couplings as to the charged leptons, only
modified by a PMNS rotation matrix. Namely, the charge �1/3 state will generate (s̄b)(⌫̄⌫) operators while the box
diagrams will lead to Bs � B̄s mixing.

A. Contribution of (3, 2, 1/6) leptoquark in Bs � B̄s oscillation frequency

The state (3, 2, 1/6) will induce �B = 2 box diagrams with µ and �(2/3) or ⌫ and �(�1/3) running in the box. The
two contributions of boxes with µ and ⌫ are equal in the mµ = 0 limit and in sum they amount to

CLQ
6 (m�) = �

Y ⇤2
µb Y

2
µs

64⇡2m2
�

. (27)

The e↵ective �B = 2 Hamiltonian is defined as

He↵ = CSM
1 (b̄�µPLs) (b̄�

µPLs) + CLQ
6 (b̄�µPRs) (b̄�

µPRs) + h.c. , (28)

where PL/R = (1 ⌥ �5)/2. The coe�cient in Eq. (27) is subject to QCD renormalization and has to be evaluated

at scale µb. The anomalous dimensions of CLQ
6 is however equal to the one of CSM

1 . Therefore the two Wilson
coe�cients renormalize with the same multiplicative factor between scales µ = mt, where SM is matched onto
e↵ective Hamiltonian (28), and µb, where the hadronic matrix elements are computed. Remaining CLQ

6 running from
m� down to mt is already in the asymptotic regime of QCD and can be safely neglected. The mass di↵erence of the
Bs � B̄s system is then

�mBs =
2

2mBs

����
G2

Fm
2
W

16⇡2
(V ⇤

tbVts)
2⌘BS0(xt) +

⌘B
4
CLQ

6 (m�)

���� hB̄
0
s |b̄�µ(1� �5)s b̄�

µ(1� �5)s|B0
s i . (29)

By using Eq. (26) we can write

CLQ
6 (m�) = �G2

F

8⇡4
(V ⇤

tbVts)
2↵2m2

�(C
0⇤
10)

2 , (30)

which, together with hB̄0
s |b̄�µ(1� �5)s b̄�µ(1� �5)s|B0

s i = (8/3)f2
Bs

m2
Bs

BBs , gives

�mBs =
G2

Fm
2
W

6⇡2
|V ⇤

tbVts|2f2
Bs

mBsBBs⌘BS0(xt)
| {z }

�mSM
Bs

����1�
1

2⇡2

↵2

S0(xt)
(C 0⇤

10)
2 m

2
�

m2
W

���� . (31)

b ! sµ+µ�

(3,2,1/6)	does	not	modify	(	g-2)μ	
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Combining	Δ	B	=2	and	Δ	B	=1			
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With the current values for fBs = 228(8) MeV and BBs = 1.33(6), as obtained in numerical simulations of QCD on

the lattice [44], and mMS
t (mt) = 160+5

�4 GeV [30], we get 4

�mSM
Bs

= 17.3± 1.7 ps�1, (32)

which is in excellent agreement with the measured �mBs = 17.7(2)ps�1 [30]. With the values of C 0
10 determined in the

previous Section, we see that Eq. (31) leads to a very loose upper bound form�. For example, for Re[C 0
10] 2 [0.15, 0.35],

we get the upper bound of the order 100 TeV.

B. Impact of (3, 2, 1/6) leptoquark on B ! K⌫⌫̄

In the presence of leptoquark� the pair of neutrinos in the final state of B ! K⌫⌫̄ may be in any flavor combination.
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If the leptoquark state (3, 2, 1/6) is present then it will manifest itself in B ! K⌫⌫̄ through right-handed operators:
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Here V denotes the PMNS matrix. The experimentally accessible decay width of B ! K⌫⌫̄ is a sum of partial widths
of B ! K⌫i⌫̄j . The amplitudes are proportional to the sum of the SM and leptoquark contribution and the two will
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C 0
10 is the Wilson coe�cient of b ! sµ+µ� that we obtained from the fits to experimental data in the previous

Section. Last line of Eq. (36) was obtained by applying the unitarity of matrix V , and assuming that Yµb and Yµs

are the only non-zero elements of the matrix Y . Finally, the q2-spectrum of this decay reads,

d�

dq2
(B ! K⌫⌫̄) =

|N |2
384⇡3m3

B

f+(q
2)

⇥
�(m2

B ,m
2
K , q2)

⇤3/2
✓
3|CSM

L |2 + |C 0
10|2 � 2Re[CSM⇤

L C 0
10]

◆
, (37)

where q2 in this case stands for the invariant mass of the neutrino pair. Notice that the above expression, for C 0
10 = 0,

confirms Eq. (2.14) of Ref. [70]. The expression (37) can be recast into a product of the SM q2-spectrum and a
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where its lower and upper bounds have been derived from the 1� region of C 0
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learn that the B(B ! K⌫̄⌫) will increase by at most 5% if leptoquark � is present.
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Compared with [34] we obtain a stronger bound on the
mixed-chirality couplings, because we include RG evolu-
tion e↵ects of the charm-quark mass. On the other hand,
a stronger bound (by about a factor 3) than ours on the
same-chirality couplings can be derived from the decay
D+ ! ⇡+µ+µ� [34, 35]. A comprehensive analysis of
other rare charm processes along the lines of these ref-
erences is left for future work. Note that relations (8),
(12) and (14) can naturally be satisfied assuming hier-
archical matrices with O(1) entries for the left-handed
couplings and an overall suppression of right-handed cou-
plings. Such a suppression is technically natural, since
the right-handed couplings arise from a di↵erent opera-
tor in the Lagrangian (4).

Loop-Induced Processes. Earlier this year, LHCb has
reported a striking departure from lepton universality in
the ratio R

K

in (2) [18]. Leptoquarks can provide a nat-
ural source of flavor universality violation, because their
couplings to fermions are not governed by gauge sym-
metries, see e.g. [36, 37]. A model-independent analysis
of this observable was presented in [38–40], while global
fits combining the data on R

K

with other observables
in b ! s`+`� transitions (in particular angular distri-
butions in B̄ ! K̄⇤µ+µ�) were performed in [23–26].
The authors of [38–40] also studied leptoquark models,
in which contributions to R

K

arise at tree level. In this
case the leptoquark mass is expected to be outside the
reach for discovery at the LHC, unless the relevant cou-
plings are very small. In our model e↵ects on R

K

arise
first at one-loop order from diagrams such as those shown
in Figure 2, while we do not find any contributions from
flavor-changing � and Z penguins. Working in the limit
where M2

�

� m2
t,W

, we obtain for the contributions to
the relevant Wilson coe�cients in the basis of [38]
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(15)

where m
t

⌘ m
t

(m
t

) ⇡ 162.3 GeV is the top-quark mass
and f(x

t

) = 1 + 3
xt�1

�
ln xt
xt�1 � 1

� ⇡ 0.47. Analogous

expressions hold for b ! se+e� transitions. The first
term in each expression arises from the four mixed W– �
box graphs. Relation (6) ensures that the sum of these
diagrams is gauge invariant. Importantly, these terms
inherit the CKM and GIM suppression factors of the
SM box diagrams. The remaining terms result from the
box diagram containing two leptoquarks. A good fit to
the data can be obtained for �1.5 < Cµ

LL

< �0.7 and
Cµ

LR

⇡ 0 at µ ⇠ M
�

, assuming that new physics only
a↵ects the muon mode – the “one-operator benchmark
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FIG. 2. Loop graphs contributing to b ! sµ+µ� transitions.

point” considered in [38]. In this letter we concentrate
on this benchmark point for simplicity. Interestingly, the
global fit to all b ! s`+`� data is also much improved for
Cµ

LL

⇡ �1 and Cµ

LR

⇡ 0 [23–26], and even the slight devi-
ation in the ratio Br(B

s

! µ+µ�)/Br(B
s

! µ+µ�)SM =
0.79 ± 0.20 seen in the combination of LHCb [41] and
CMS [42] measurements can be explained. These ob-
servations yield further evidence for the suppression of
right-handed leptoquark couplings compared with left-
handed ones. We will see below that such a pattern is
also required by purely leptonic rare processes.

The contributions from mixed W– � box graphs in (15)
are controlled by the couplings of the leptoquark to top-
quarks and muons. These terms are predicted to be pos-
itive in our model and hence alone they cannot explain
the R

K

anomaly. The contributions from the box graph
with two internal leptoquarks are thus essential to repro-
duce the benchmark value Cµ

LL

⇡ �1. This requires
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The analogous combination of right-handed couplings
should be smaller, so as to obtain Cµ

LR

⇡ 0. Combin-
ing (16) with the upper bound in (12) yields
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where the top contribution is suppressed for the lep-
toquark masses we consider. In order to reproduce
Cµ

LL

= �0.7 or �1.5 instead of the benchmark value �1,
the right-hand side of this bound must be replaced by 2.0
or 2.9, respectively. The above condition can naturally be
satisfied with a large generation-diagonal coupling �L

cµ

.

The ratio (�L�L†)
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) in (16) can also be con-
strained by the existing measurements of the B
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s

mixing amplitude. In our model the new-physics con-
tribution arises from box diagrams containing two lep-
toquarks, which generate the same operator as in the
SM. It is thus useful to follow the suggestion of the
UTfit Collaboration and define the ratio C
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FIG. 1. Tree-level diagrams contributing to weak decays.

and U
q

(V
q

) denote the rotations of the left-handed
(right-handed) fermion fields. These definitions imply

V T

CKM �L

ue

= �L

d⌫

U
e

, (6)

which involves the CKM matrix VCKM = U †
u

U
d

. ATLAS
and CMS have searched for pair-produced leptoquarks in
various final states. The search channels ��⇤ ! µ+µ�jj
and ��⇤ ! bb̄⌫⌫̄ are the most relevant ones for our anal-
ysis. The most recent ATLAS/CMS analyses exclude a
leptoquark lighter than 850 GeV/760 GeV at 95% CL,
assuming Br(� ! µj) = 0.5 [27, 28]. ATLAS also derives
a lower bound of 625 GeV assuming Br(� ! b⌫) = 1 [27].
These bounds can be weakened by reducing the branch-
ing fractions to the relevant final states.

Tree-Level Processes. The leptoquark � mediates
semileptonic B-meson decays at tree level, as shown in
the first graph of Figure 1. This gives rise to the e↵ective
Lagrangian
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where i, j, k are flavor indices. The first term generates
additive contributions to the CKM matrix elements V

ub

and V
cb

, which may be di↵erent for the di↵erent lepton
flavors. The second term includes novel tensor struc-
tures not present in the SM. It may help to explain why
determinations of V

ub

and V
cb

from inclusive and exclu-
sive B-meson decays give rise to di↵erent results. Of
particular interest are the decays B̄ ! D(⇤)⌧ ⌫̄, whose
rates are found to be about 30% larger than in the
SM. A model-independent analysis of this anomaly in
the context of e↵ective operators, including the e↵ects of
renormalization-group (RG) evolution from µ = M

�

to
µ = m

b

, has been performed in [13, 17]. In the last pa-
per it was found that an excellent fit to the experimental
data is obtained for a scalar leptoquark with parameters

�L⇤
c⌧

�L

b⌫⌧
⇡ 0.35 M̂2

�

, �R⇤
c⌧

�L

b⌫⌧
⇡ �0.03 M̂2

�

(8)

with large and anti-correlated errors, where it was as-
sumed that the only relevant neutrino is ⌫

⌧

, as only this
amplitude can interfere with the SM and hence give rise
to a large e↵ect. Throughout this letter M̂

�

⌘ M
�

/TeV.
For a leptoquark mass near the TeV scale, these con-
ditions can naturally be satisfied with O(1) left-handed

and somewhat smaller right-handed couplings. We will
ignore three other fit solutions found in [17], since they
require significantly larger couplings.

Our model also gives rise to tree-level flavor-changing
neutral currents (FCNCs), some examples of which are
shown in Figure 1. Particularly important for our anal-
ysis are the rare decays B̄ ! K̄⌫⌫̄ and D0 ! µ+µ�.
The e↵ective Lagrangian for B̄ ! K̄(⇤)⌫⌫̄ as well as the
corresponding inclusive decay reads
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2M2
�

�L⇤
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b⌫j
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L

�
µ

b
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�µ⌫j

L

. (9)

Apart from possibly di↵erent neutrino flavors, this in-
volves the same operator as in the SM. It follows that
the ratio R

⌫⌫̄

= �/�SM for either the exclusive or the
inclusive decays is given by
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(10)
where

�
�L�L†�
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=
P

i

�L

b⌫i
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s4
W
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)
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�

. (11)

Here X0(xt

) = xt(2+xt)
8(xt�1) + 3xt(xt�2)

8(1�xt)2
ln x

t

⇡ 1.48 with x
t

=

m2
t

/m2
W

denotes the SM loop function, and s2
W

= 0.2313
is the sine squared of the weak mixing angle. Currently
the strongest constraint arises from upper bounds on the
exclusive modes B� ! K�⌫⌫̄ and B� ! K⇤�⌫⌫̄ ob-
tained by BaBar [29] and Belle [30], which yield R
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<
4.3 and R
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< 4.4 at 90% CL [31]. Using the Schwarz
inequality, we then obtain from (10)
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. (12)

The FCNC process D0 ! µ+µ� can arise at tree level
in our model. Neglecting the SM contribution, which is
two orders of magnitude smaller than the current exper-
imental upper bound, we find the decay rate
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where f
D

= 212(1) MeV [32] is the D-meson decay con-
stant and �

µ

= (1 � 4m2
µ

/m2
D

)1/2. We use the running
charm-quark mass m

c
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�

) ⇡ 0.54 GeV to prop-
erly account for RG evolution e↵ects up to the high scale
M

�

⇠ 1 TeV. Assuming that either the mixed-chirality
or the same-chirality couplings dominate, we derive from
the current experimental upper limit Br(D0 ! µ+µ�) <
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generated as a small perturbation.

The answer is positive with
GF = Gq

F ⇥ Gl
F (1.4)

Gq
F = U(2)Q ⇥ U(2)u ⇥ U(2)d ⇥ U(1)d3, Gl

F = U(2)L ⇥ U(2)e ⇥ U(1)e3 , (1.5)

in the notation of Ref. [9,10], and � is a leptoquark singlet under GF , carrying either one of
the following quantum numbers under the SM gauge group:

1. Uµ = (3, 1)
2/3, Vector singlet-model;

2. Uµ = (3, 3)
2/3, Vector triplet-model;

3. S = (3̄, 3)
1/3, Scalar triplet-model.

Dynamical explanations of the above anomalies have already been proposed in the liter-
ature both in terms of vector uncoloured mediators [11] and in terms of leptoquark medi-
ators [12–14].2 Here we focus on the specific realization of leptoquark models based on the
flavor group GF since:

i) this explains their dominant coupling to the third generation only (in particular only to
the left-handed quark and lepton doublets which are the only GF -invariant fermions);

ii.) the breaking of GF specifies the source of the flavour violating couplings needed to
give rise predominantly to the operator (c̄L�µbL)(⌧̄L�µ⌫L) and, at a weaker level, to
(s̄L�µbL)(µ̄L�µµL) as well.

About the needed breakings of GF , we stick to the minimal set of spurions

yd3 = (1, 1, 1)�1

�u = (2, 2̄, 1)
0

�d = (2, 1, 2̄)
0

VQ = (2, 1, 1)
0

(1.6)

for Gq
F [9] and

ye3 = (1, 1)�1

�e = (2, 2̄)
0

VL = (2, 1)
0

(1.7)

for Gl
F [17, 18].

In the following we write down in the three cases above the leptoquark (LQ) couplings
to the fermions in their physical bases after inclusion of GF -breaking (Section 2) and we
calculate the relevant amplitudes at tree level (Section 3). Consistency with current data is
achieved only by the Uµ = (3, 1)

2/3 model above. The dominant loop e↵ects when the tree
level amplitude vanishes are calculated in Section 4 for the surviving vector-singlet model.
The overall consistency of the model with data is illustrated in Section 5, where further
expected signals are also examined. A tentative UV completion of the phenomenological
model is briefly outlined in Section 6. Summary and conclusions are drown in Section 7.

2 Leptoquark explanations of a single set of anomalies (either neutral or charged currents) have been
discussed in Ref. [15]. For a recent discussion of the two set of anomalies in terms of e↵ective four-
fermion operators see Ref. [16].
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2

of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with
neutrinos, and various charged lepton flavor violating decay modes. The considered state has no couplings to diquarks
and has therefore definite baryon and lepton numbers and does not mediate proton decay. In [35] the same leptoquark
state has been considered in a more restricted scenario with couplings to the third generation fermions in the weak
basis.

The outline of this paper is the following: In Sec. II we describe how to accommodate RD(⇤) and RK within the
vector triplet leptoquark mediating quarks and lepton interactions. Sec. III discusses current constraints on the model
and further experimental signatures of this model, while in the last Section we present conclusions.

II. SIGNALS

The vector multiplet Uµ
3

that transforms under the SM gauge group as (3, 3, 2/3) couples to a leptoquark current
with V �A structure:

LU3 = gijQ̄i�
µ ⌧AUA

3µ Lj + h.c. . (1)

Here ⌧A, A = 1, 2, 3 are the Pauli matrices in the SU(2)L space whereas i, j = 1, 2, 3 count generations of the left-
handed lepton and quark doublets, L and Q, respectively. The couplings gij are in general complex parameters, while
for the sake of simplicity we will restrict our attention to the case where they are real. The absence of any other
term at mass dimension 4 of the operators ensures the conservation of baryon and lepton numbers and this allows the
leptoquark U

3

to be close to the TeV scale without destabilizing the proton. The interaction Lagrangian (1) is written

in the mass basis with gij entries defined as the couplings between the Q = 2/3 component of the triplet, U (2/3)
3µ , to

d̄Li and `Lj . Remaining three types of vertices to eigencharge states U (2/3)
3µ , U (5/3)

3µ , and U (�1/3)
3µ are then obtained

by rotating the g matrix, where necessary, with the Cabibbo-Kobayashi-Maskawa (CKM) matrix V from the left or
with the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U from the right:

LU3 = U (2/3)
3µ

h
(VgU)ij ūi�

µPL⌫j � gij d̄i�
µPL`j

i

+ U (5/3)
3µ (

p
2Vg)ij ūi�

µPL`j

+ U (�1/3)
3µ (

p
2gU)ij d̄i�µPL⌫j .

(2)

If ultraviolet origin of the Uµ
3

LQ is a gauge boson field of some higher symmetry group (e.g. Grand Unified Theory),
then the coupling matrix g in the mass basis should be unitary. Furthermore, in such theories the ability to choose
gauge and the presence of additional Goldstone degrees of freedom would ensure renormalizability, in contrast to the
e↵ective theory of Eq. (1). In this work we limit ourselves to the tree-level constraint for which the details of the
underlying ultraviolet completion are irrelevant.

The b ! sµ+µ� processes are a↵ected by the product g⇤bµgsµ whereas the crucial parameter for b ! c⌧�⌫̄ is gb⌧ .
We do not insist on a particular flavor structure of the matrix g but note that the explanation of the LFU puzzles in
the neutral and charged currents involves parameters gsµ, gbµ, and gb⌧ , which will be our tunable flavor parameters
of the model. We assume the remaining elements gij are negligibly small:

g =

0

@
0 0 0
0 gsµ 0
0 gbµ gb⌧

1

A , Vg =

0

@
0 Vusgsµ + Vubgbµ Vubgb⌧
0 Vcsgsµ + Vcbgbµ Vcbgb⌧
0 Vtsgsµ + Vtbgbµ Vtbgb⌧

1

A . (3)

The rotated matrix Vg determines the couplings of the LQ to the up-type quarks among which we also have a U (2/3)
3µ

coupling to c̄⌫, required to explain RD(⇤) .
The leptoquark U

3

implements a combination of Wilson coe�cients in the b ! sµ+µ� e↵ective Lagrangian [17, 37],

C
9

= �C
10

=
⇡

VtbV⇤
ts↵

g⇤bµgsµ
v2

M2

U

, (4)

which has been shown to significantly improve the global fit of the b ! sµ+µ� observables with the 1� preferred
region C

9

2 [�0.81,�0.50] [38], see also [39]. Here v = 246 GeV is the electroweak vacuum expectation value. In this
case we find

g⇤bµgsµ 2 [0.7, 1.3]⇥ 10�3 (MU/TeV)2 . (5)
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3µ , to
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N. Košnik, Moriond EW, March 13, ‘16Lepton flavor nonuniversality in b→sℓ+ℓ− processes

Even with LFU violation,  LFV can be avoided. 
                                                                                                           [Grinstein, Camalich, 1407.7044] 

In leptoquark models, LFV is closely tied to LFUV. 

For LFV one needs to affect electronic and muonic decay modes 
simultaneously: 
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Relating LFUv to Lepton Flavor Violation
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Universality lost,  
flavour conserved!



Both	RD(*)	,	RK		get	contribuLons	at	tree	level			

3

Note that the e↵ective coupling (4) also brings the LFU observable RK in agreement with the experimental value [38].

On the other hand, the correction to the semileptonic decays b ! c⌧�⌫̄ also proceeds via exchange of the U (2/3)
3µ

state. The e↵ective semileptonic Lagrangian in the SM complemented by the LQ correction is:

L
SL

= �

4GFp

2
VcbU⌧i +

g⇤b⌧ (VgU)ci
M2

U

�
(c̄�µPLb)(⌧̄ �µPL⌫i) + h.c. (6)

The second term shifts the e↵ective value of |Vcb|2 as measured in semitauonic decays summed over all neutrino species
in the final state:

���V(⌧)
cb

���
2

' |Vcb|2

1 +

v2

M2

U

Re

✓
g⇤b⌧ (Vg)c⌧

Vcb

◆�
. (7)

The above expression contains the interference term with the SM amplitude while the pure LQ contribution is rendered
negligible compared to the interference term by an additional factor v2/M2

U . In the same manner the semimuonic

decay widths b ! cµ�⌫̄ are proportional to |V(µ)
cb |2 that is given by an analogous expression to Eq. (7). From the fit

to the measured ratio RD(⇤) done in Ref. [33] we learn that at 1� we have the following constraint:

Re
⇥
g⇤b⌧ (Vg)c⌧ � g⇤bµ(Vg)cµ

⇤
= (0.18± 0.04) (MU/TeV)2 . (8)

We are allowing for LQ modifications to take place for both ` = µ, ⌧ in b ! c`�⌫̄.
In summary, the data on b ! sµ+µ� and RD(⇤) points to a region in parameter space where

gbµgsµ ⇡ 10�3 ,

Vcb(g
2

b⌧ � g2bµ)� gbµgsµ ⇡ 0.18 ,
(9)

is satisfied, if MU = 1 TeV. From the first equation we learn that, once we impose perturbativity condition
(|gsµ, gbµ, gb⌧ | <

p
4⇡), that both |gsµ| and |gbµ| are also bounded from below, |gsµ|, |gbµ| & 3 ⇥ 10�4. The sec-

ond equation can be simplified to

g2b⌧ � g2bµ ⇡ 4.4 , (10)

which indicates |gb⌧ | & 2.

III. ADDITIONAL CONSTRAINTS

A. LFU in the kaon sector

Potentially very severe constraints are the measurements of |Vus| in kaon muonic decays due to U
3µ contributions

in s ! uµ�⌫̄ but not in s ! ue�⌫̄, since first generation charged leptons are not a↵ected by the studied LQ at tree
level. E↵ects of this type are exposed by the lepton flavor universality ratios between decays involving the kaon and
di↵erent charged leptons:

RK
e/µ =

�(K� ! e�⌫̄)

�(K� ! µ�⌫̄)
, RK

⌧/µ =
�(⌧� ! K�⌫)

�(K� ! µ�⌫̄)
. (11)

Note that the value of |Vus| obtained from the global CKM fits relies on the data on semielectronic decays (c.f.
experimental inputs to Vus of the CKMfitter results [40] prepared for the EPS 2015 conference) that are not subject
to the leptoquark amplitudes. The SM value of |Vus| is thus not a relevant constraint on the leptoquark couplings.
The measured value of RK

e/µ is due to the NA62 experiment [41] while the SM prediction has been calculated with

negligible uncertainty [42] and is in good agreement with the experimental result:

RK(exp)

e/µ = (2.488± 0.010)⇥ 10�5 , RK(SM)

e/µ = (2.477± 0.001)⇥ 10�5 . (12)

In the ⌧/µ sector, the SM prediction and the value obtained from the measured branching fractions [43] agree as well:

RK(exp)

⌧/µ = (1.101± 0.016)⇥ 10�2 , RK(SM)

⌧/µ = (1.1162± 0.00026)⇥ 10�2 . (13)

shi�s	the	CKM	cb	element	

RK		and	RD(*)		lead		
to	constraints		
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Note that the e↵ective coupling (4) also brings the LFU observable RK in agreement with the experimental value [39].

On the other hand, the correction to the semileptonic decays b ! c⌧�⌫̄ also proceeds via exchange of the U (2/3)
3µ

state. The e↵ective semileptonic Lagrangian in the SM complemented by the LQ correction is:
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The second term shifts the e↵ective value of |Vcb|2 as measured in semitauonic decays summed over all neutrino species
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The above expression contains the interference term with the SM amplitude while the pure LQ contribution is rendered
negligible compared to the interference term by an additional factor v2/M2

U . In the same manner the semimuonic

decay widths b ! cµ�⌫̄ are proportional to |V(µ)
cb |2 that is given by an analogous expression to Eq. (7). From the fit

to the measured ratio RD(⇤) done in Ref. [34] we learn that at 1� we have the following constraint:
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We are allowing for LQ modifications to take place for both ` = µ, ⌧ in b ! c`�⌫̄.
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of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with
neutrinos, and various charged lepton flavor violating decay modes. The considered state has no couplings to diquarks
and has therefore definite baryon and lepton numbers and does not mediate proton decay. In [36] the same leptoquark
state has been considered in a more restricted scenario with couplings to the third generation fermions in the weak
basis.

The outline of this paper is the following: In Sec. II we describe how to accommodate RD(⇤) and RK within the
scenario where vector triplet leptoquark mediates quark and lepton interactions. Sec. III discusses current constraints
on the model and further experimental signatures of this model, while in the last Section we present conclusions.

II. SIGNALS

The vector multiplet Uµ
3

that transforms under the SM gauge group as (3, 3, 2/3) couples to a leptoquark current
with V �A structure:

LU3 = gijQ̄i�
µ ⌧AUA

3µ Lj + h.c.. (1)

Here ⌧A, A = 1, 2, 3 are the Pauli matrices in the SU(2)L space whereas i, j = 1, 2, 3 count generations of the left-
handed lepton and quark doublets, L and Q, respectively. The couplings gij are in general complex parameters, while
for the sake of simplicity we will restrict our attention to the case where they are real. The absence of any other
term at mass dimension 4 of the operators ensures the conservation of baryon and lepton numbers and this allows the
leptoquark U

3

to be close to the TeV scale without destabilizing the proton. The interaction Lagrangian (1) is written

in the mass basis with gij entries defined as the couplings between the Q = 2/3 component of the triplet, U (2/3)
3µ , to

d̄Li and `Lj . Remaining three types of vertices to eigencharge states U (2/3)
3µ , U (5/3)

3µ , and U (�1/3)
3µ are then obtained

by rotating the g matrix, where necessary, with the Cabibbo-Kobayashi-Maskawa (CKM) matrix V from the left or
with the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U from the right:

LU3 = U (2/3)
3µ

h
(VgU)ij ūi�

µPL⌫j � gij d̄i�
µPL`j

i

+ U (5/3)
3µ (

p
2Vg)ij ūi�

µPL`j

+ U (�1/3)
3µ (

p
2gU)ij d̄i�µPL⌫j + h.c..

(2)

If ultraviolet origin of the Uµ
3

LQ is a gauge boson field of some higher symmetry group (e.g. Grand Unified Theory),
then the coupling matrix g in the mass basis should be unitary. Furthermore, in such theories the ability to choose
gauge and the presence of additional Goldstone degrees of freedom would ensure renormalizability, in contrast to the
e↵ective theory of Eq. (1). In this work we limit ourselves to the tree-level constraint for which the details of the
underlying ultraviolet completion are irrelevant.

The b ! sµ+µ� processes are a↵ected by the product g⇤bµgsµ whereas the crucial parameter for b ! c⌧�⌫̄ is gb⌧ .
We do not insist on a particular flavor structure of the matrix g but note that the explanation of the LFU puzzles in
the neutral and charged currents involves parameters gsµ, gbµ, and gb⌧ , which will be our tunable flavor parameters
of the model. We assume the remaining elements gij are negligibly small:

g =

0

@
0 0 0
0 gsµ 0
0 gbµ gb⌧

1

A , Vg =

0

@
0 Vusgsµ + Vubgbµ Vubgb⌧
0 Vcsgsµ + Vcbgbµ Vcbgb⌧
0 Vtsgsµ + Vtbgbµ Vtbgb⌧

1

A . (3)

The rotated matrix Vg determines the couplings of the LQ to the up-type quarks among which we also have a U (2/3)
3µ

coupling to c̄⌫, required to explain RD(⇤) .
The leptoquark U

3

implements a combination of Wilson coe�cients in the b ! sµ+µ� e↵ective Lagrangian [18, 38],

C
9

= �C
10

=
⇡

VtbV⇤
ts↵

g⇤bµgsµ
v2

M2

U

, (4)

which has been shown to significantly improve the global fit of the b ! sµ+µ� observables with the 1� preferred
region C

9

2 [�0.81,�0.50] [39], see also [40]. Here v = 246 GeV is the electroweak vacuum expectation value. In this
case we find

g⇤bµgsµ 2 [0.7, 1.3]⇥ 10�3 (MU/TeV)2 . (5)
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Note that the e↵ective coupling (4) also brings the LFU observable RK in agreement with the experimental value [38].

On the other hand, the correction to the semileptonic decays b ! c⌧�⌫̄ also proceeds via exchange of the U (2/3)
3µ

state. The e↵ective semileptonic Lagrangian in the SM complemented by the LQ correction is:
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The second term shifts the e↵ective value of |Vcb|2 as measured in semitauonic decays summed over all neutrino species
in the final state:
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The above expression contains the interference term with the SM amplitude while the pure LQ contribution is rendered
negligible compared to the interference term by an additional factor v2/M2

U . In the same manner the semimuonic

decay widths b ! cµ�⌫̄ are proportional to |V(µ)
cb |2 that is given by an analogous expression to Eq. (7). From the fit

to the measured ratio RD(⇤) done in Ref. [33] we learn that at 1� we have the following constraint:
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We are allowing for LQ modifications to take place for both ` = µ, ⌧ in b ! c`�⌫̄.
In summary, the data on b ! sµ+µ� and RD(⇤) points to a region in parameter space where

gbµgsµ ⇡ 10�3 ,
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is satisfied, if MU = 1 TeV. From the first equation we learn that, once we impose perturbativity condition
(|gsµ, gbµ, gb⌧ | <

p
4⇡), that both |gsµ| and |gbµ| are also bounded from below, |gsµ|, |gbµ| & 3 ⇥ 10�4. The sec-

ond equation can be simplified to

g2b⌧ � g2bµ ⇡ 4.4 , (10)

which indicates |gb⌧ | & 2.
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Potentially very severe constraints are the measurements of |Vus| in kaon muonic decays due to U
3µ contributions

in s ! uµ�⌫̄ but not in s ! ue�⌫̄, since first generation charged leptons are not a↵ected by the studied LQ at tree
level. E↵ects of this type are exposed by the lepton flavor universality ratios between decays involving the kaon and
di↵erent charged leptons:
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Note that the value of |Vus| obtained from the global CKM fits relies on the data on semielectronic decays (c.f.
experimental inputs to Vus of the CKMfitter results [40] prepared for the EPS 2015 conference) that are not subject
to the leptoquark amplitudes. The SM value of |Vus| is thus not a relevant constraint on the leptoquark couplings.
The measured value of RK

e/µ is due to the NA62 experiment [41] while the SM prediction has been calculated with

negligible uncertainty [42] and is in good agreement with the experimental result:

RK(exp)

e/µ = (2.488± 0.010)⇥ 10�5 , RK(SM)
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In the ⌧/µ sector, the SM prediction and the value obtained from the measured branching fractions [43] agree as well:
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⌧/µ = (1.1162± 0.00026)⇥ 10�2 . (13)

3

Note that the e↵ective coupling (4) also brings the LFU observable RK in agreement with the experimental value [38].

On the other hand, the correction to the semileptonic decays b ! c⌧�⌫̄ also proceeds via exchange of the U (2/3)
3µ

state. The e↵ective semileptonic Lagrangian in the SM complemented by the LQ correction is:

L
SL

= �

4GFp

2
VcbU⌧i +

g⇤b⌧ (VgU)ci
M2

U

�
(c̄�µPLb)(⌧̄ �µPL⌫i) + h.c. (6)

The second term shifts the e↵ective value of |Vcb|2 as measured in semitauonic decays summed over all neutrino species
in the final state:

���V(⌧)
cb

���
2

' |Vcb|2

1 +

v2

M2

U

Re

✓
g⇤b⌧ (Vg)c⌧

Vcb

◆�
. (7)

The above expression contains the interference term with the SM amplitude while the pure LQ contribution is rendered
negligible compared to the interference term by an additional factor v2/M2

U . In the same manner the semimuonic

decay widths b ! cµ�⌫̄ are proportional to |V(µ)
cb |2 that is given by an analogous expression to Eq. (7). From the fit

to the measured ratio RD(⇤) done in Ref. [33] we learn that at 1� we have the following constraint:

Re
⇥
g⇤b⌧ (Vg)c⌧ � g⇤bµ(Vg)cµ

⇤
= (0.18± 0.04) (MU/TeV)2 . (8)

We are allowing for LQ modifications to take place for both ` = µ, ⌧ in b ! c`�⌫̄.
In summary, the data on b ! sµ+µ� and RD(⇤) points to a region in parameter space where

gbµgsµ ⇡ 10�3 ,

Vcb(g
2

b⌧ � g2bµ)� gbµgsµ ⇡ 0.18 ,
(9)

is satisfied, if MU = 1 TeV. From the first equation we learn that, once we impose perturbativity condition
(|gsµ, gbµ, gb⌧ | <

p
4⇡), that both |gsµ| and |gbµ| are also bounded from below, |gsµ|, |gbµ| & 3 ⇥ 10�4. The sec-

ond equation can be simplified to

g2b⌧ � g2bµ ⇡ 4.4 , (10)

which indicates |gb⌧ | & 2.

III. ADDITIONAL CONSTRAINTS

A. LFU in the kaon sector

Potentially very severe constraints are the measurements of |Vus| in kaon muonic decays due to U
3µ contributions

in s ! uµ�⌫̄ but not in s ! ue�⌫̄, since first generation charged leptons are not a↵ected by the studied LQ at tree
level. E↵ects of this type are exposed by the lepton flavor universality ratios between decays involving the kaon and
di↵erent charged leptons:

RK
e/µ =

�(K� ! e�⌫̄)

�(K� ! µ�⌫̄)
, RK

⌧/µ =
�(⌧� ! K�⌫)

�(K� ! µ�⌫̄)
. (11)

Note that the value of |Vus| obtained from the global CKM fits relies on the data on semielectronic decays (c.f.
experimental inputs to Vus of the CKMfitter results [40] prepared for the EPS 2015 conference) that are not subject
to the leptoquark amplitudes. The SM value of |Vus| is thus not a relevant constraint on the leptoquark couplings.
The measured value of RK

e/µ is due to the NA62 experiment [41] while the SM prediction has been calculated with

negligible uncertainty [42] and is in good agreement with the experimental result:

RK(exp)

e/µ = (2.488± 0.010)⇥ 10�5 , RK(SM)

e/µ = (2.477± 0.001)⇥ 10�5 . (12)

In the ⌧/µ sector, the SM prediction and the value obtained from the measured branching fractions [43] agree as well:

RK(exp)

⌧/µ = (1.101± 0.016)⇥ 10�2 , RK(SM)

⌧/µ = (1.1162± 0.00026)⇥ 10�2 . (13)

4

From the Lagrangian (2) and couplings (3) one can derive the LQ modification of Vus as measured in s ! uµ�⌫̄
decay:

V(µ)
us = Vus


1 +

v2

2M2

U

Re

✓
g⇤sµ(Vg)uµ

Vus

◆�

⌘ Vus

h
1 + �(µ)us

i
,

(14)

Again, we have neglected the pure LQ terms which are proportional to v4/M4

U . The presence of LQ modifies both
LFU ratios RK

e/µ, R
K
⌧/µ by a common factor

RK(SM)

`/µ ! RK(SM)

`/µ

h
1� 2�(µ)us

i
, ` = e, ⌧ . (15)

We determine �(µ)us = (�2.2± 2.2)⇥ 10�3 and �(µ)us = (6.7± 7.1)⇥ 10�3 using the e/µ (12) and ⌧/µ (13) LFU ratios,

respectively. Combining the two results in �(µ)us = (�1.4±2.1)⇥10�3 and allows to put constraint on the LQ couplings:

Re

✓
|gsµ|2 +

Vub

Vus
g⇤sµgbµ

◆
= (�4.6± 6.9)⇥ 10�2(MU/TeV)2 . (16)

B. Semitauonic top decays

The eigencharge state U (2/3)
3µ can have large e↵ects also in semileptonic decays of the top quarks, in particular in

the decay mode t ! b⌧+⌫ being a purely third-generation transition. The correction to the tau-specific CKM element
Vtb reads

V(⌧)
tb = Vtb

h
1 + �(⌧)tb

i
, �(⌧)tb =

v2

2M2

U

Re

✓
g⇤b⌧ (Vg)t⌧

Vtb

◆
. (17)

The correction �(⌧)tb should be smaller than the relative error on Vtb as measured in decay B(t ! b⌧+⌫) = 0.096±0.028
by the CDF collaboration [44]:

v2

M2

U

Re

✓
g⇤b⌧ (Vg)t⌧

Vtb

◆
< 0.29 . (18)

yielding immediately

|gb⌧ | < 2.2 (MU/TeV) . (19)

Recent analysis of the top decays in the tt̄ production channel already probe Vtb in semitauonic decays of the top
quark with competitive precision [45, 46].

C. b ! cµ�⌫̄ decay

For the rate of the semimuonic decays we are not aware, to our best knowledge, of an experimental measurement
of B ! D`�⌫̄ quoting separate lepton-specific rates for ` = e and ` = µ. From the data on the semileptonic decays
b ! c`�⌫̄ the average of inclusive and exclusive determinations is |Vcb|exp. = (41.00± 1.07)⇥ 10�3, a value reported
by the HFAG [47] and used by the CKMfitter group. On the other hand, CKMfitter performed a fit without using
|Vcb|exp. as input and the preliminary result is then |Vcb|indirect = (42.99+0.36

�1.41) ⇥ 10�3 [40]. The di↵erence between
experimental and indirect determination of Vcb can then be assigned to the leptoquark contribution:

|Vcb|exp. � |Vcb|indirect = (�2.0+1.7
�1.2)⇥ 10�3

=
v2

2M2

U

|Vcb|Re
✓
g⇤bµ(Vg)cµ

Vcb

◆
.

(20)

The ensuing constraint is

|Vcb|Re
✓
g⇤bµ(Vg)cµ

Vcb

◆
2 [�0.1,�0.01]⇥ 10�3 (MU/TeV)2 . (21)
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From the Lagrangian (2) and couplings (3) one can derive the LQ modification of Vus as measured in s ! uµ�⌫̄
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Again, we have neglected the pure LQ terms which are proportional to v4/M4
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LFU ratios RK
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K
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We determine �(µ)us = (�2.2± 2.2)⇥ 10�3 and �(µ)us = (6.7± 7.1)⇥ 10�3 using the e/µ (12) and ⌧/µ (13) LFU ratios,
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B. Semitauonic top decays

The eigencharge state U (2/3)
3µ can have large e↵ects also in semileptonic decays of the top quarks, in particular in
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The correction �(⌧)tb should be smaller than the relative error on Vtb as measured in decay B(t ! b⌧+⌫) = 0.096±0.028
by the CDF collaboration [44]:
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Recent analysis of the top decays in the tt̄ production channel already probe Vtb in semitauonic decays of the top
quark with competitive precision [45, 46].
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Notice that the considered leptoquark does not a↵ect the semielectronic decays, and that the entire e↵ect in originates
from semimuonic decays in our model. Although the presented bound includes intrinsic pollution from the semielec-
tronic events, in lack of better constraint, we apply it as a bound on the LQ modification of semimuonic decays. It
would be indeed very useful to have experimental results on the semileptonic rates for di↵erent leptons in the final
states.

D. B ! Kµ⌧ decay

The observables that probe the LQ couplings with the b quark and violate lepton flavor are, at tree level, B� !
K�µ+⌧� and decays of bottomonium to ⌧µ. The branching ratio of the latter process is constrained at the level of
10�6 but taking into account large decay widths of bottomonia states, these bounds are not competitive with the
bound B(B� ! K�µ+⌧�) < 2.8 ⇥ 10�5 at 90% CL [48]. We can estimate the decay width by adapting the bound
from the very same process analysed in the case of scalar leptoquark in the representation (3̄, 1, 4/3) [49]:

|gb⌧gsµ| . 0.09(MU/TeV)2 . (22)

E. Fitting the couplings

In Fig. 1 we show the e↵ect of the constraints in the gsµ-gb⌧ space. The best fit point with all the constraints and
signals included is obtained at �2 ' 3 and is much favoured over the SM situation. Clearly there is preference for
large gb⌧ to correct the large SM tree-level e↵ect in b ! c⌧�⌫̄. On the other hand, gsµ is an order of magnitude
smaller, and is responsible, together with moderately large gbµ (not shown in Fig. 1), for the correction of the 1-loop
SM e↵ect in b ! sµ+µ�.

Figure 1. Constraints of real parameters gsµ and gb⌧ in units MU/TeV. The fitted regions are outlined in thick (1�) and thick
dashed (2�).

F. Further experimental signatures

The e↵ect of the LQ triplet state B ! K(⇤)µ+µ� directly implies an e↵ect of similar size in B ! K(⇤)⌫̄⌫. Using the
notation of Ref. [50] and extended in [32] to account for lepton flavor violation, we employ the e↵ective Lagrangian

Lb!s⌫̄⌫
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=
GF↵

⇡
p
2
VtbV

⇤
tsC

ij
L (s̄�µPLb)(⌫̄i�

µ(1� �
5

)⌫j) . (23)
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10�6 but taking into account large decay widths of bottomonia states, these bounds are not competitive with the
bound B(B� ! K�µ+⌧�) < 2.8 ⇥ 10�5 at 90% CL [49]. We can estimate the decay width by adapting the bound
from the very same process analysed in the case of scalar leptoquark in the representation (3̄, 1, 4/3) [50]:

|gb⌧gsµ| . 0.09(MU/TeV)2. (22)

E. B ! K(⇤)⌫⌫̄ decay

The B ! K(⇤)⌫⌫̄ probes lepton flavor conserving as well as lepton flavor violating combination of the LQ couplings.
Using the notation of Refs. [51, 52] and extended in [33] to account for lepton flavor violation, we employ the e↵ective
Lagrangian
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The e↵ect of the U
3

leptoquark has been already studied in [52]. In the SM we have, for each pair of neutri-
nos, CSM,ij

L = CSM

L �ij , where CSM

L = �6.38 ± 0.06 [51]. On the other hand, the vector LQ generates CLQ,ij
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U ). The branching ratios of B ! K(⇤)⌫̄⌫ — defined as a sum over branching fraction
for each combination of neutrino species in the final state — get modified by the same factor for both K and K⇤

decay modes [52] and reads:
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�
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The LQ prediction of Br(B ! K(⇤)⌫⌫̄) is thus obtained by rescaling the SM prediction, e.g. Br(B+ ! K+⌫⌫̄) =
(4.0 ± 0.5) ⇥ 10�6, by factor (24). Notice that due to the large coupling gb⌧ the most important contribution is the
LFV contribution of the last term in (24). Imposing the 90% C.L. experimental bound Br(B+ ! K+⌫⌫̄) < 1.6⇥10�5

then constrains same coupling combination as the LFV decay B ! Kµ⌧ .

F. Fitting the couplings

In Fig. 1 we show the e↵ect of the constraints projected onto gsµ-gb⌧ space; gbµ is free parameter of the fit. The
best fit point with all the constraints and signals included is obtained at �2 ' 3 and is much favoured over the SM
situation. Clearly there is preference for large gb⌧ to correct the large SM tree-level e↵ect in b ! c⌧�⌫̄. On the other
hand, gsµ is two orders of magnitude smaller, and is responsible, together with moderately large gbµ (0.1 . |gbµ| . 1,
not shown in Fig. 1), for the correction of the 1-loop SM e↵ect in b ! sµ+µ�.
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large gb⌧ to correct the large SM tree-level e↵ect in b ! c⌧�⌫̄. On the other hand, gsµ is an order of magnitude
smaller, and is responsible, together with moderately large gbµ (not shown in Fig. 1), for the correction of the 1-loop
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The e↵ect of the LQ triplet state B ! K(⇤)µ+µ� directly implies an e↵ect of similar size in B ! K(⇤)⌫̄⌫. Using the
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In the SM we have, for each pair of neutrinos, CSM

L = �6.38 ± 0.06 [50], while the vector LQ generates Cµµ
L = 2C

9

,
where C

9

is defined in Eq. (4). The branching ratio is inclusive of all neutrino species and in this case the unitarity
of the PMNS matrix U allows us to ignore neutrino mixing and we can set U = 1 [51]. The relative modification of
the decay rate of B ! K⌫̄⌫ is

1 +
4

3
Re(C

9

/CSM

L ) +
4

3
|C

9

/CSM

L |2 . (24)

The enhancement factor from the dominant interference term can reach up to 1.17 for C
9

= �0.8.

Consequences of the vector LQ for rare charm decays can be extracted from the couplings of the U (5/3)
3

in Eq. (2).
One can easily derive the contribution to the c ! uµ+µ� e↵ective Lagrangian. Following notation of Ref. [52], one

can easily find that there is contribution to C(ūc)
9,10 Wilson coe�cients:

C(ūc)
9

= �C(ūc)
10

=
2⇡(Vg)uµ(Vg)⇤cµ

VubV⇤
cb↵

v2

M2

U

. (25)

We find |C̃
9

| ⌘ |C(ūc)
9

/(VubV⇤
cb)| . 0.05, an order of magnitude below the currently allowed bound |C̃

9

|  0.63 [52].
One of the most sensitive channels to test this model is the decay t ! b⌧+⌫ which was already used to constrain

the couplings. The largest coupling gb⌧ which drives this top decay is large, |gb⌧ | ⇠ 2, and according to Eq. (17) it
increases the decay rate by 20%.

In addition our vector leptoquark contributes to RK⇤ = �(B ! K⇤µ+µ�)/�(B ! K⇤e+e�). As already discussed
in [53], in scenarios with left-handed currents the RK⇤ is predicted to be larger than RK . Future LHCb measurements
of RK⇤ will definitely help in di↵erentiation between di↵erent models.

IV. CONCLUSIONS

We propose that the simple extension of the SM by vector leptoquark that is a weak triplet one can simultaneously
explain all three B physics anomalies. This triplet of massive vector meson states has states with electric charges 5/3,
2/3 and �1/3. The coupling of the charge 2/3 state with the second and third generation of down quarks and charged
leptons introduces, via CKM and PMNS mixing, coupling of the 2/3 state to the up-type quarks and neutrinos, charge
�1/3 state to the down-type quarks and neutrinos, and couplings of charge 5/3 state to up-type quarks and charged
leptons. Our model is constrained by a number of tree level processes in addition to the B physics anomalies: tests
of lepton flavor universality in K physics, semileptonic top decays t ! b⌧+⌫, b ! c`�⌫̄ transition, and lepton flavor
violating decay B ! Kµ⌧ . We predict also that vector leptoquark a↵ects c ! uµ+µ� decays. The most stringent
constraint comes from D0 ! µ+µ� decay as noticed in [52]. However, our prediction for the appropriate Wilson
coe�cients C

9,10 turned out to be much smaller than the ones allowed by the experimental data as discussed in [52].
We have also predicted moderate increases of decay B ! K⌫̄⌫ and top decay t ! b⌧+⌫. Our results are normalized
to the mass of this states to be 1 TeV, which is in agreement with current direct searches of CMS/ATLAS limits on
the leptoquark of the second/third generation [54, 55]. Further e↵orts on both sides—theoretical and experimental—
might help to understand better impact and perspective of this NP candidate.
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C(ūc)
9

= �C(ūc)
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10

=
2⇡(Vg)uµ(Vg)⇤cµ

VubV⇤
cb↵

v2

M2

U

. (25)

We find |C̃
9

| ⌘ |C(ūc)
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to the mass of this states to be 1 TeV, which is in agreement with current direct searches of CMS/ATLAS limits on
the leptoquark of the second/third generation [54, 55]. Further e↵orts on both sides—theoretical and experimental—
might help to understand better impact and perspective of this NP candidate.
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in Eq. (2).
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One of the most sensitive channels to test this model is the decay t ! b⌧+⌫ which was already used to constrain

the couplings. The largest coupling gb⌧ which drives this top decay is large, |gb⌧ | ⇠ 2, and according to Eq. (17) it
increases the decay rate by 20%.

In addition, the U
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leptoquark contributes to RK⇤ = �(B ! K⇤µ+µ�)/�(B ! K⇤e+e�). As already discussed
in [54], in scenarios with left-handed currents the two LFU ratios, RK⇤ and RK , are predicted to be approximately
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C(ūc)
9

= �C(ūc)
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constraint comes from D0 ! µ+µ� decay as noticed in [52]. However, our prediction for the appropriate Wilson
coe�cients C
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We have also predicted moderate increases of decay B ! K⌫̄⌫ and top decay t ! b⌧+⌫. Our results are normalized
to the mass of this states to be 1 TeV, which is in agreement with current direct searches of CMS/ATLAS limits on
the leptoquark of the second/third generation [54, 55]. Further e↵orts on both sides—theoretical and experimental—
might help to understand better impact and perspective of this NP candidate.
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We would like to thank Ilja Doršner and Jernej F. Kamenik for very useful discussions. We acknowledge support
of the Slovenian Research Agency.

[1] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 101802 (2012), 1205.5442.
[2] J. P. Lees et al. (BaBar), Phys. Rev. D88, 072012 (2013), 1303.0571.
[3] M. Huschle et al. (Belle), Phys. Rev. D92, 072014 (2015), 1507.03233.
[4] I. Adachi et al. (Belle), in Proceedings, 24th International Symposium on Lepton-Photon Interactions at High Energy

(LP09) (2009), 0910.4301, URL http://inspirehep.net/record/834881/files/arXiv:0910.4301.pdf.
[5] A. Bozek et al. (Belle), Phys. Rev. D82, 072005 (2010), 1005.2302.
[6] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 111803 (2015), [Addendum: Phys. Rev. Lett.115,no.15,159901(2015)],

1506.08614.



Light	vector	leptoquarks:	facing	new	problems				

•  UV	compleLon	is	the	main	problem	of	this	approach;	

•  Contrary	to	SM	gauge	bosons,	if	vector	leptoquarks	are	not	gauge	boson	

(e.g.	SU(5)	GUT		with	LQ	being	in	some	other	representaLon	of	SU(5),	not	24)	

we	have	to	work	with	non-renormalizable	model.	

	

•  	Problem	with	loops	within	this	approach	(e.g.	Barbieri	et	al.	1512.01560)	

discussed	vector	letpquarks	(3,1,2/3),	(3,3,2/3)	and	for	loop	processes	they		

used	cut-off.		



Can	one	LQ	be	light	within	any	GUT	theory?	

Main	issue:	How	to	accommodate	light	LQ	within	GUT	or	composite	model?	

Inclusion	of	45	scalar	representaLon	SU(5)	GUT	
Both	are	needed:	
Higgses	in	5	and	45!	

																																																				Yes!		
	
I.Doršner,	S.F.	J.F.	Kamenik	and	N.	Košnik,	0906.5585;	1007.2604	;			
	
UnificaLon	possible	with	2	light	scalars!	

Is	unificaLon	possible	with	some	of	light	scalars	in		45?	

	S(3)x	S(2)XU(1)	content	of	45	:	



Summary	and	outlook	

Ø  B	physics	anomalies	offer	unique	tests	of	SM	extensions	at	low	energies;	

Ø  	3σ	effects	have	to	be	further	tested	experimentally		(e.g.	RK*);	

Ø  Suggested	new	observables	might	clarify	need	for	NP;	

Ø  Leptoquarks	are	one	of	suggested	SM	extension	which	might	explain		
						observed	discrepancies;	
	
Ø  (3,2,1/6)0		(3,3,2/3)1				are	our	favorable	candidates	(do	not		destabilize	
							proton)	

Ø  Light	scalar	leptoquarks	are	simpler	to	accommodate	within	GUT	framework	
						then	vector	leptoquarks.	
	
Ø  Is	it	possible	to	construct	any	GUT	(or	composite	model)	with	only	one	light	LQ?	
	



Thanks!	



Test	of	lepton	flavour	universality	violaLon			

In	1510.0311	(de	Beor	and	Hiller)	it	was	pointed	out	that	bounds	on		
electron-positron	mode	are	weaker:		

BR(D+ ! ⇡+e+e�) < 1.1⇥ 10�6

10

As we use muonic modes frequently, in the following Wilson coefficients and operators without a

lepton flavor index are understood as muonic ones, that is C
(µ)
i = Ci etc.

Neglecting the SM Wilson coefficients, we find the following constraints on the BSM Wilson

coefficients from the limits on the branching fraction of D+ ! ⇡+µ+µ� given in Table II in the

high q2-region (
p
q2 � 1.25GeV) at CL=90%

0.9|C9 + C 0
9|2 + 0.9|C10 + C 0

10|2 + 4.1|CS + C 0
S |2 + 4.2|CP + C 0

P |2 + 1.1|CT |2 + 1.0|CT5|2

+ 0.6Re[(C9 + C 0
9)C

⇤
T ] + 1.2Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 2.3|C7|2 + 2.8Re[C7(C9 + C 0
9)

⇤
] + 0.8Re[C7C

⇤
T ] . 1 . (29)

Analogous constraints in the full q2-region are somewhat stronger. They read

1.3|C9 + C 0
9|2 + 1.4|C10 + C 0

10|2 + 2.2|CS + C 0
S |2 + 2.3|CP + C 0

P |2 + 0.9|CT |2 + 0.8|CT5|2

+ 0.9Re[(C9 + C 0
9)C

⇤
T ] + 1.0Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 3.7|C7|2 + 4.4Re[C7(C9 + C 0
9)

⇤
] + 1.3Re[C7C

⇤
T ] . 1 . (30)

The branching fraction B(D0 ! µ+µ�
) < 6.2 · 10�9 at CL=90% [29] provides complementary

constraints as

|CS � C 0
S |2 + |CP � C 0

P + 0.1(C10 � C 0
10)|2 . 0.007 . (31)

Thus, D ! ⇡µµ is sensitive to the complete set of operators, however, the purely leptonic decays

put stronger constraints on scalar/pseudoscalar operators.

Barring cancellations, we find, consistent with [34], |C(0)
9,10| . 1, which can exceed the resonance

contribution at high q2. Assuming no further flavor suppression for the BSM contribution g2/⇤2

(weakly-induced tree level) or g4/(16⇡2
⇤

2
) (weak loop), the limits on C

(0)
9,10 imply quite mild con-

straints for the scale of new physics: ⇤ & O(5) TeV or ⇤ around the electroweak scale, respectively.

With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

constraints on the other coefficients read |CT,T5| . 1 and |C(0)
S,P | . 0.1. In Fig. 3 we illustrate BSM

effects in the D+ ! ⇡+µ+µ� differential branching fraction at high q2 with two viable choices for

BSM-induced Wilson coefficients. As anticipated, the BSM distributions can exceed the SM one.

Constraints on c ! uee modes are weaker than the c ! uµµ ones, B(D+ ! ⇡+e+e�) < 1.1·10�6

and B(D0 ! e+e�) < 7.9 · 10�8 at CL=90% [29], and imply
���C(e)

S,P � C
(e)0
S,P

��� . 0.3 ,
���C(e)

9,10 � C
(e)0
9,10

��� . 4 ,
���C(e)

T,T5

��� . 5 ,
���C7

⇣
C

(e)
9 � C

(e)0
9

⌘��� . 2 . (32)
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In	1510.0965	(S.F.	and	N.	Košnik)	it	was	suggested,	assuming	as	in	the	case	
																															that	NP	does	not	affect	electron-positron	mode,	that	tests	of	LFU		
can	be	performed	either	in	I	or	II	bin		
B ! Ke+e�

10

For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)

BR(D0 ! e+e�) < 7.9⇥ 10�8
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|C̃i|max

RII

⇡

SM - 0.999± 0.001

C̃
7

1.6 ⇠ 6–100

C̃
9

1.3 ⇠ 6–120

C̃
10

0.63 ⇠ 3–30

C̃S 0.05 ⇠ 1–2

C̃P 0.05 ⇠ 1–2

C̃T 0.76 ⇠ 6–70

C̃T5

0.74 ⇠ 6–60

C̃
9

= ±C̃
10

0.63 ⇠ 3–60

C̃0
9

= �C̃0
10

��
LQ(3,2,7/6)

0.34 ⇠ 1–20

Table III. The LFU ratio RII

⇡ at high dilepton invariant mass bin and maximal value of each Wilson coe�cient (applies also for
the primed coe�cients, C̃0

i). It is assumed that NP contributes only to the muonic mode. The SM value of RII

⇡ is given in the
first row.

In the SM the departure of the above ratios from 1 comes entirely from lepton mass di↵erences. We find RI,SM
⇡ =

0.87 ± 0.09 in the low-q2 and RII,SM
⇡ = 0.999 ± 0.001 in the high-q2 region, where in the latter region both leptons

are e↵ectively massless. In Tab. III we quote ranges for the ratio RII
⇡ for the maximal allowed values of Wilson

coe�cients by rare charm decays considered in the previous Sections. Generally we find that with currently allowed
Wilson coe�cients and assuming no NP contribution in electronic modes these ratios could become much larger. The
spread in these predictions is large because of unknown relative phases in the resonant part of the spectrum, i.e.,
BR(D+ ! ⇡+e+e�) ⇡ BR(D+ ! ⇡+µ+µ�) ⇡ (0.5–5.3) ⇥ 10�9. Note that large enhancements are allowed in the
scenarios which are currently constrained by D+ ! ⇡+µ+µ�. In the low-q2 region the interference terms in RI

⇡ are
even more pronounced since the e↵ect of nearby ⇢ resonance is interfering either in positive or in negative direction,
and thus we cannot conclude the sign of deviation from the SM value of RI

⇡.

VI. SUMMARY AND OUTLOOK

Motivated by the great improvement of bounds on rare charm decays by the LHCb experiment we determine
bounds on the e↵ective Wilson coe�cients. Existing data implies upper bounds on the e↵ective Wilson coe�cients as
presented in Tab.II. The strongest constraints on C10, CP , CS and C 0

10, C
0
P , C

0
S are obtained from the bound on the

branching fraction of D0 ! µ+µ� decay. The nonresonant di↵erential decay width distribution gives bounds on Ci,
i = 7, 9, 10, S, P, T, T5 as well as on the coe�cients of the operators of opposite chirality. The constraints are stricter
in the high dilepton invariant mass bin than in the low dilepton invariant mass bin, and this statement applies in
particular to the contributions of the scalar and pseudoscalar operators. Forward-backward asymmetry is sensitive to
the combination of scalar and tensor coe�cients at high-q2.

Then, we have investigated new physics models in which the e↵ective operators may be generated. We have found
that the presence of a leptoquark which is either scalar and weak doublet, (3, 2, 7/6), or has spin-1 and is a weak
singlet, (3, 1, 5/3), can lead to sizeable contributions to the Wilson coe�cients C 0

9 and C 0
10. Sensitivity to the LQ

scenarios is similar in high-q2 bin of D+ ! ⇡+µ+µ� and D0 ! µ+µ�, while D0 � D̄0 mixing results in somewhat
stronger constraint. For the Two Higgs doublet model of type III the presence of scalar and pseudoscalar operators
enhances sensitivity in D0 ! µ+µ� and therefore results in small e↵ects in D+ ! ⇡+µ+µ�. We have also discussed a
SM extension by a Z 0 gauge boson where tree-level amplitude in D0 � D̄0 mixing is a dominant constraint and leaves
no possibility of signals in rare charm decays.

Our study indicates a possibility to check whether lepton flavor universality between muonic and electronic channels
is valid by means of studying ratios of widths of D+ ! ⇡+`+`� at low or high dilepton invariant mass bins, RI,II

⇡ . In
the SM the two ratios are close to 1, especially in the high-q2 bin. Assuming the electronic decay is purely SM-like
we find that in the high-q2 bin the ratio RII

⇡ is in most cases significantly increased with respect to the SM prediction,
while there is no clear preference between higher and lower values at low-q2 bin ratio RI

⇡. In the leptoquark models
studied in this paper the ratio may be greatly increased, but slight decrease cannot be excluded, presently due to
unknown interplay of weak phases with the phases of resonant spectrum. Chances to observe new physics in rare charm
decays are possible in models where the connection to the stringent constraints stemming from B and K flavor physics
are hindered. New physics models which fulfill this condition are main candidates to be exposed experimentally by

RI,SM
⇡ = 0.87± 0.09

RII,SM
⇡ = 0.999± 0.001AssumpLons:	

-  e+e-	mode	are	SM-like;	
-  NP	enters	in	μ+μ-	mode	only;	
-  listed	Wilson	coefficients	are	maximally	allowed	by	current	LHCb	data.	
	


