

Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016

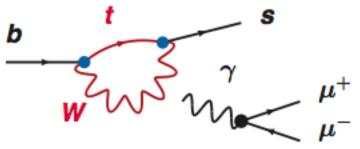
11-13 June 2016 Villa Orlandi, Anacapri, Capri Island, Italy

Recent Results on Rare B

Decays with BaBar

Martino Margoni
Universita` di Padova and INFN
on behalf of the BaBar Collaboration

- Motivation
- $\bullet B \rightarrow K^* |^+|^-$
- \bullet $B^+ \rightarrow K^+ \tau^+ \tau^-$
- B → Κππγ



Radiative Penguins

Motivation

Rare B decays: New Physics probes

- Search for deviations from Standard Model (SM) predictions due to virtual contributions of new heavy particles in loop processes
 - ◆Compare experimental results with very precise SM expectations
- The most interesting processes are those that are strongly suppressed
- in the SM: FCNC $(X_s^{+})^{-}$ [but also $X_s\gamma$, leptonic decays, LFV, CPV in B° mixing, c & τ]
 - New Physics (NP) could increase expectations by orders of magnitude [e.g. A. Buras, arXiv:0910.1032]
 - Rare B decays can probe high scales potentially sensitive to NP beyond the direct reach of LHC:

$$\Lambda_{ extsf{NP}} \sim rac{ extsf{ extit{M}}_{ extsf{ extit{W}}}}{g^2} \sqrt{rac{16\pi^2}{| extsf{ extit{V}}_{ extit{ts}}|}} \sim ext{10 TeV}$$

Rare B decays: New Physics probes

•Weak decay of hadron M into final state F described via an Effective Hamiltonian expressed by means of Operator Product Expansion:

$$A(M \to F) = \langle F | H_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_{i} V_{CKM}^{i} C_{i}(\mu) \langle F | Q_{i}(\mu) | M \rangle$$

 $C_i(\mu)$: Wilson Coefficients (perturbative short distance couplings)

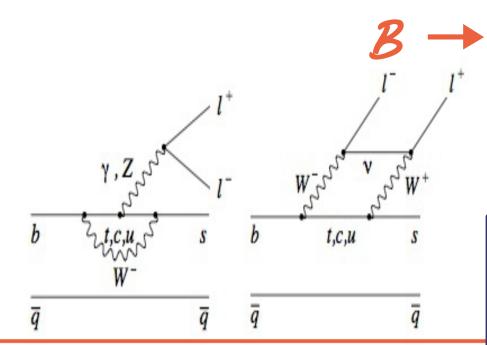
 $Q_i(\mu)$: Hadronic Matrix Elements (non -perturbative long distance effects)

• NP could modify Wilson Coefficients $C_i(\mu)$ and/or add new $Q_i(\mu)$ operators

i = 1, 2	Tree
i = 3 - 6, 8	Gluon penguin
i = 7	Photon penguin
i = 9, 10	EW penguin
i = S, P	(Pseudo)scalar penguin

Complementary information from different rare decays:

ightharpoonup Complementary information $B
ightharpoonup \mu\mu$: Scalar/Pseudoscalar interactions


 $B \rightarrow K^{(*)}$: Vector/axial interactions

$B \rightarrow K^*/^+/^-$

"Measurement of Angular Asymmetries in the Decay

 $[471 M\Upsilon(4S) \text{ events}]$

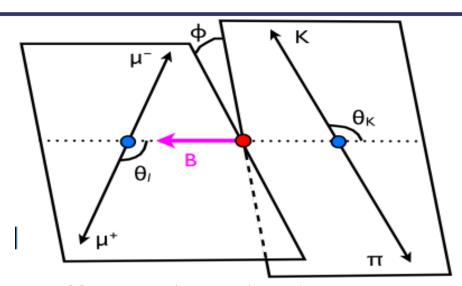
Phys. Rev. D93, 052015 (2016)

Sensitive to the effects of NP in photon, vector and axial-vector couplings which can enter at the same order as SM contributions

• Complementary information to $B \rightarrow \mu^{+}\mu^{-}$

FCNC process forbidden at tree level, BR~10⁻⁶: Probe the SM!

- •Amplitudes expressed using OPE in terms of:
 - → Hadronic Form Factors
 (accuracy ~20%)

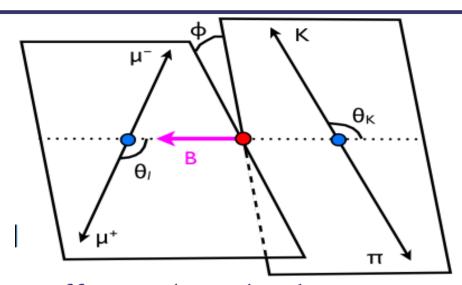

[A. Barucha et al. arXiv 1004.3249]

■ Wilson coefficients C^{eff}₇, C^{eff}₉, C^{eff}₁₀

[PRD 61, 074024 (2000), Z. Phys. C 67, 417 (1995)]

- Clean theoretical predictions expecially at low q²≈m²(μ⁺μ⁻)
- Experimentally clean signature

$B \rightarrow K^*/^+/^-$



• Differential Amplitudes:

$$\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_K)} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} (1 - F_L(q^2)) (1 - \cos^2 \theta_K)$$

$$\frac{1}{\Gamma(q^2)} \frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_\ell)} \ = \ \frac{3}{4} F_L(q^2) (1 - \cos^2\theta_l) + \\ \frac{3}{8} (1 - F_L(q^2)) (1 + \cos^2\theta_l) + \\ \mathcal{A}_{FB}(q^2) \cos\theta_l \, .$$

- Kinematics of the decay $B \to V |^+|^-$ ($V = K^*, \varphi, \rho$) determined by three angles:
 - \bullet θ_{l} , θ_{K} , ϕ
- Event Yields reconstructed in bins of $q^2=m^2(|+|-)$
- Observables Include:
 - $lacktriangleright A_{FB}$ (forward-backward muon asymmetry)
 - F_L (fraction of longitudinally polarized K^*)
 - $P_2 = \frac{-2}{3} \frac{A_{FB}}{1 F_L}$ (with lower uncertainty from hadronic Form Factors)

• Differential Amplitudes:

$$\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_K)} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} (1 - F_L(q^2)) (1 - \cos^2 \theta_K)$$

$$\frac{1}{\Gamma(q^2)} \frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_\ell)} \; = \; \frac{3}{4} F_L(q^2) (1 - \cos^2\theta_l) \; + \\ \frac{3}{8} (1 - F_L(q^2)) (1 + \cos^2\theta_l) \; + \\ \mathcal{A}_{FB}(q^2) \cos\theta_l \; .$$

- Kinematics of the decay $B \to V |^+|^-$ ($V = K^*, \varphi, \rho$) determined by three angles:
 - \bullet $\theta_{l}, \theta_{K}, \phi$
- Event Yields reconstructed in bins of $q^2=m^2(|+|-)$
- Non-resonant S-wave B → $Kπ|^{+}|^{-}$ contribution neglected
 - Reflects in absolute bias ~ 0.01 on F_L
 & A_{FB} (smaller than statistical & systematic uncertainties)

$$\mathcal{B} \to \mathcal{K}^*/^+/^-$$

• Measurement performed using 5 modes:

$$\bullet B^{\circ} \to K^{*\circ} (\to K^{+}\pi^{-}) \mu^{+}\mu^{-}, B^{+} \to K^{*\circ} (\to K^{+}\pi^{-}) e^{+}e^{-}$$

 \star K* J/ ψ and K* ψ (2S) regions used as control samples to validate fitting procedure

q^2 bin	$q^2 \min (\text{GeV}^2/c^4)$	$q^2 \max (\text{GeV}^2/c^4)$
q_1^2	0.10	2.00
$egin{array}{c} q_1^2 \ q_2^2 \ q_3^2 \ q_4^2 \ q_5^2 \end{array}$	2.00	4.30
q_3^2	4.30	8.12
q_4^2	10.11	12.89
q_5^2	14.21	$(m_B-m_{K^*})^2$
q_0^2	1.00	6.00

• Events reconstructed by means of :

$$m_{ES} = \sqrt{E_{Beam}^{*2} - p_{B}^{*2}}$$

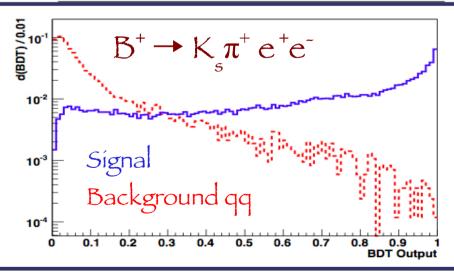
$$\Delta E = E_B^* - E_{Beam}^*$$

* = Y reference frame

Candidate multiplicity ~ 1.4 (1.1) in dielectron (dimuon) modes.

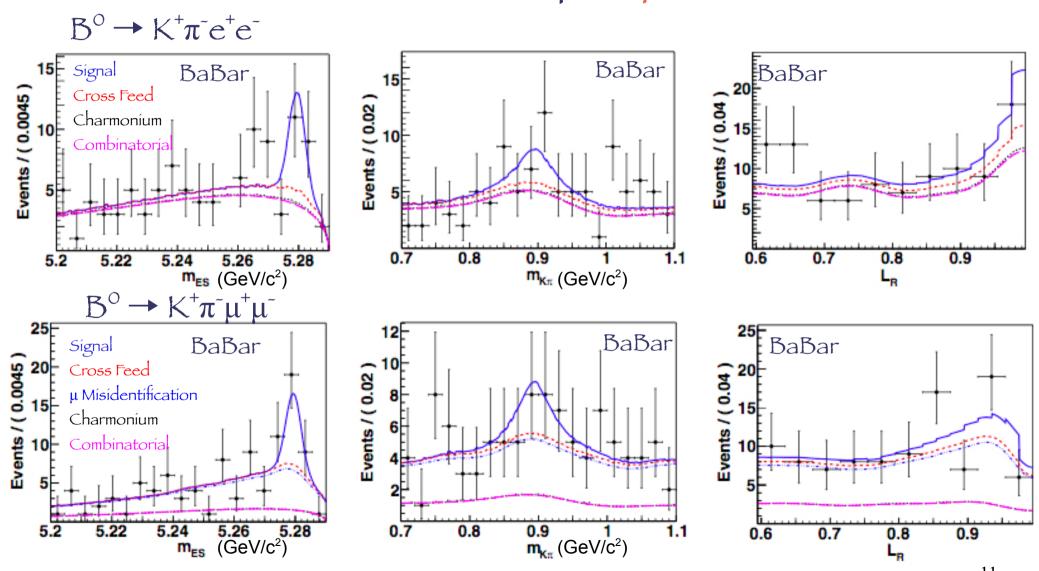
Best candidate selected based on ΔE

$B \rightarrow K^*/^+/^-$


• Measurement performed using 5 modes:

$$\bullet B^{\circ} \to K^{*\circ} (\to K^{+}\pi^{-}) \mu^{+}\mu^{-}, B^{+} \to K^{*\circ} (\to K^{+}\pi^{-}) e^{+}e^{-}$$

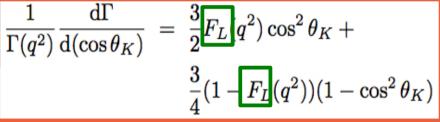
* K* J/ψ and K* ψ(2S) regions used as control samples to validate fitting procedure

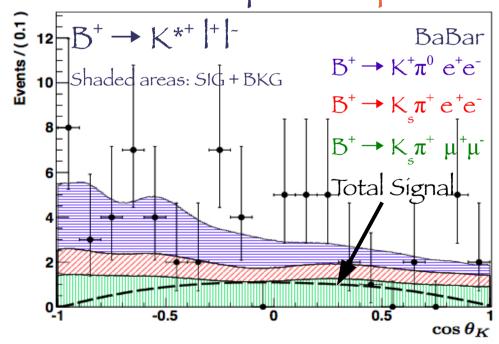

q^2 bin	q^2 min (${ m GeV}^2/c^4$)	q^2 max (${ m GeV}^2/c^4$)
q_1^2	0.10	2.00
$egin{array}{c} q_1^2 \ q_2^2 \ q_3^2 \ q_4^2 \ q_5^2 \end{array}$	2.00	4.30
q_3^2	4.30	8.12
$\boldsymbol{q_4^2}$	10.11	12.89
q_5^2	14.21	$(m_B-m_{K^*})^2$
q_0^2	1.00	6.00

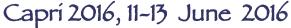
BKG from Continuum and BB reduced using a Likelihood Ratio (L_R) defined from outputs of eight BDTs exploiting kinematical and topological quantities

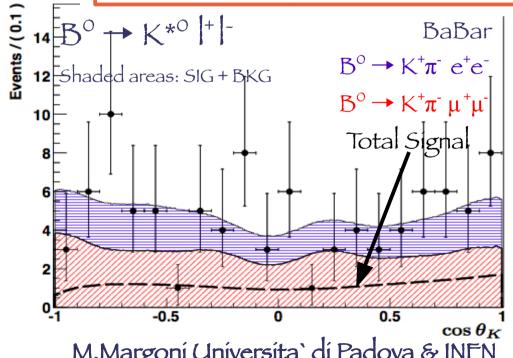
$B \rightarrow K^*/^+/^-$

•Yields, PDFs shapes & normalizations in the different q^2 bins extracted by a 3D (m_{ES} , $m(K\pi)$, L_R) fit Example: $q^2 > 14.21$ GeV²

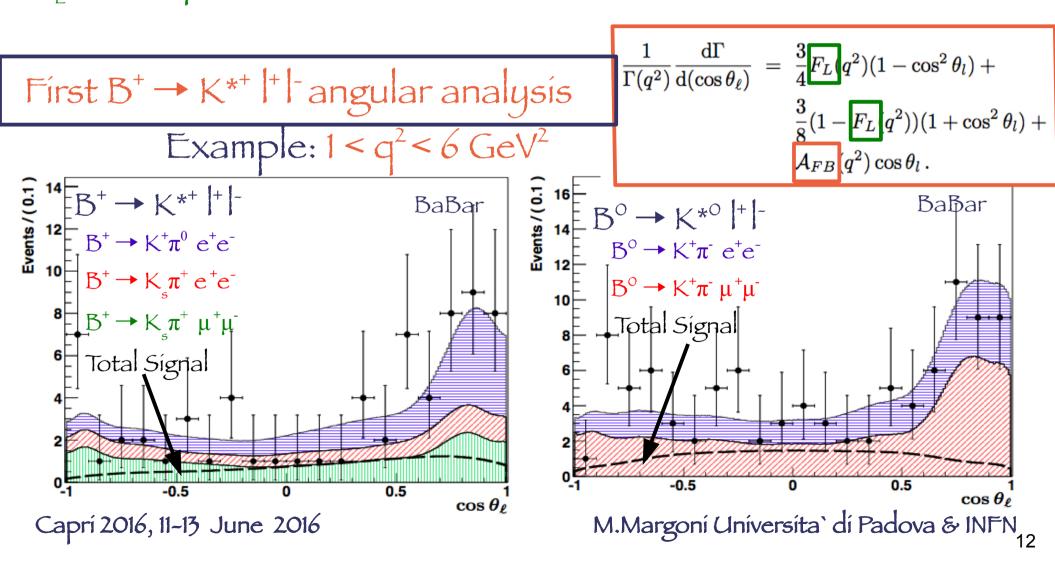

Capri 2016, 11-13 June 2016

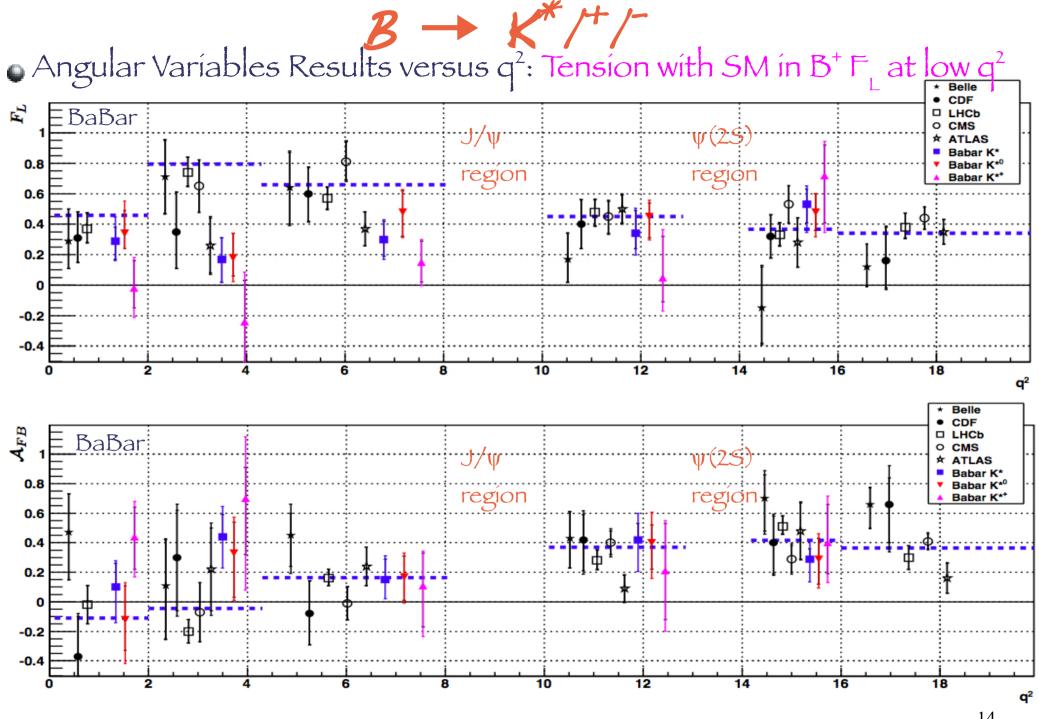

M.Margoni Universita` di Padova & INFN


- F, in the different q2 bins extracted as only free parameter by a $4D(m_{_{ES}},m(K\pi),L_{_{R}},\cos(\theta_{_{K}}))$ fit using PDFs defined in the previous step
- Fit model for F and A $_{_{FB}}$ validated on K* J/ ψ and K* $\psi(2S)$
- •BKG shapes from m_{FS} side bands (checked on LFV B \rightarrow K*e μ)


First $B^+ \to K^{*+}$ | angular analysis $\left| \frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_K)} \right| = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{1}{2} F_L(q^2) \cos^2 \theta_$

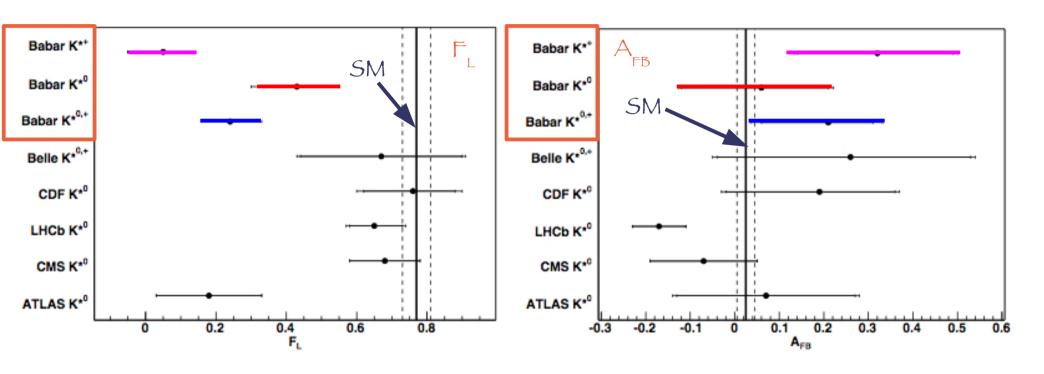
Example: $1 < q^2 < 6 \text{ GeV}^2$





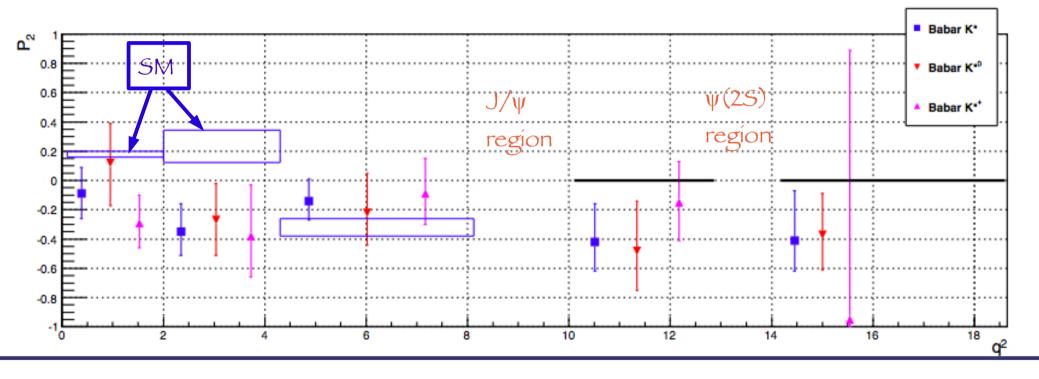
M.Margoni Universita` di Padova & INFN

• A_{FB} in the different q^2 bins extracted as only free parameter by a $4D(m_{ES}, m(K\pi), L_R, \cos(\theta_l))$ fit using PDFs defined in the previous step • F, fixed to previous result



Capri 2016, 11-13 June 2016

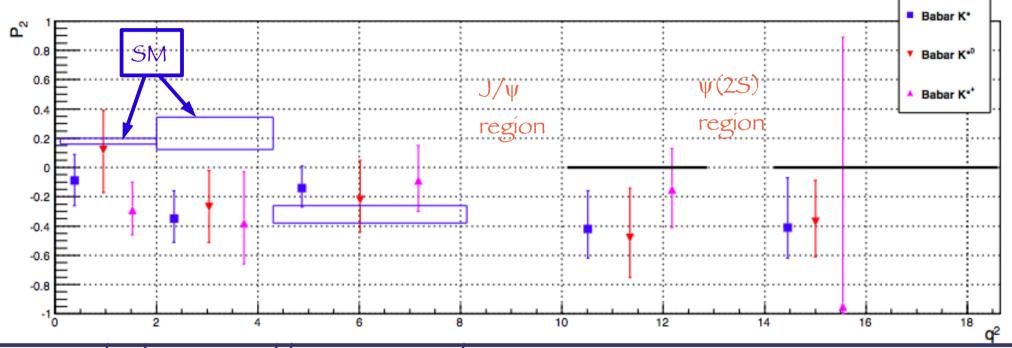
M.Margoni Universita` di Padova & INFN


• Angular Variable Results for 1 < q² < 6 GeV²

 \circ 1 < q^2 < 6 GeV²: Perturbative window with theory error under good control, away from $q^2 \rightarrow 0$ photon pole and $c\bar{c}$ resonances at higher q^2 • Small F, value for $B^+ \rightarrow K^{*+} | ^+| ^-$ (First Angular Analysis)

• $P_2 = \frac{-2}{3} \frac{A_{FB}}{1 - F_L}$: Reduced theoretical uncertainty & greater sensitivity to non-SM contributions

[Nucl. Phys. B854, 321 (2012); JHEP 1204, 104 (2012); Phys. Rev. D88, 074002 (2013); JHEP 1412, 125 (2014)]



- Theoretical predictions available only at low q² [JHEP 1412, 125 (2014)]
- •Slight tension observed with SM

$B \rightarrow K^*/^+/^-$

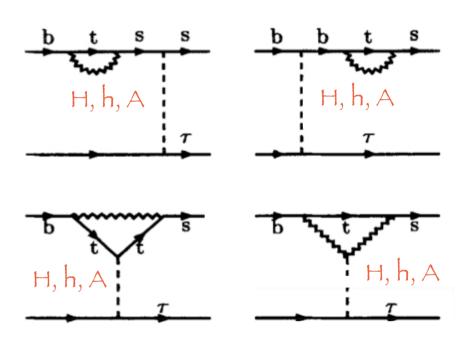
• $P_2 = \frac{-2}{3} \frac{A_{FB}}{1 - F_L}$: Reduced theoretical uncertainty & greater sensitivity to non-SM contributions

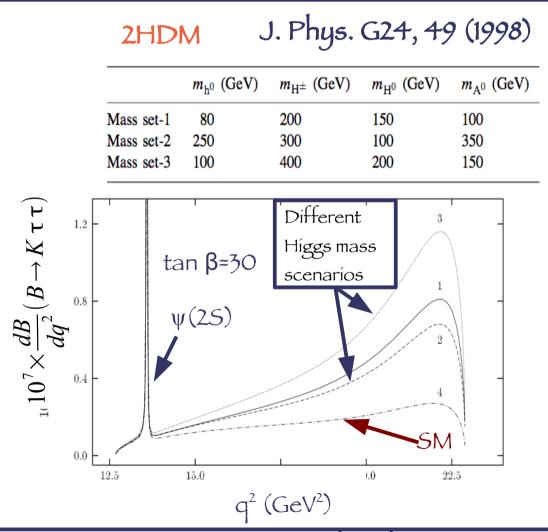
[Nucl. Phys. B854, 321 (2012); JHEP 1204, 104 (2012); Phys. Rev. D88, 074002 (2013); JHEP 1412, 125 (2014)]

- Result dominated by statistical error
- Systematics from BKG modeling, signal angular efficiency, PDFs parameterization & cross feed from different signal decays

17

\rightarrow $K^{+}\tau^{+}\tau^{-}$

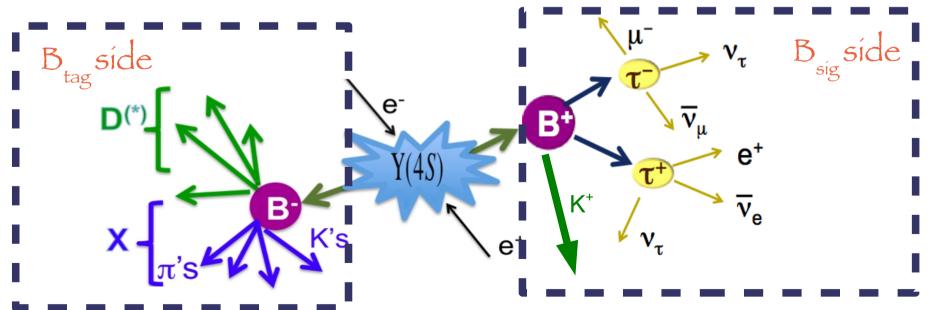

"Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$ at the BaBar Experiment" $[471 M\Upsilon(4S) \text{ events}]$ arXiv:1605.09637 Submitted to Phys. Rev. Lett.


$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$

•Highly suppressed in the SM: BR~(1-2)10⁻⁷

Provides additional sensitivity to New Physics due to third-generation

couplings & large τ mass


Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

- · Measurement performed using only leptonic τ decays:
 - $\Rightarrow B^+ \rightarrow K^+ \tau^+ \tau^- , \tau \rightarrow \mu \nu_{\tau} \nu_{\mu} , \tau \rightarrow e \nu_{\tau} \nu_{e}$
 - Three signal modes: ee, μμ, eμ
- Many neutrinos in the final states: lack of kinematic constraints
 - → Signal events selected on the recoil of fully reconstructed hadronic

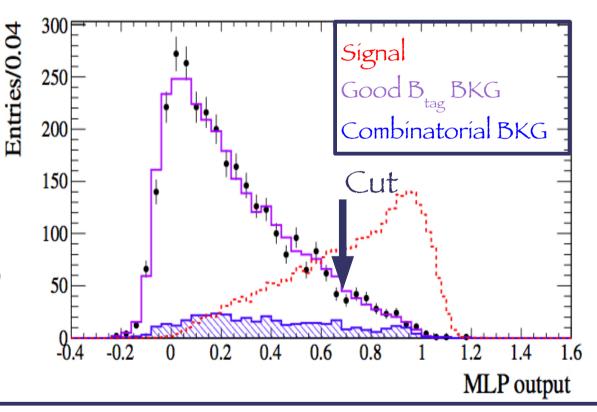
$$B \to DX \text{ decays } (B_{tag}) \ (D = D^{(*)0}, D^{(*)\pm}, D_S^{(*)}, J/\psi; X < 6 \text{ h } (h=K, \pi))$$

20

M.Margoni Universita` di Padova & INFN

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

B_{tag} Reconstruction


- $_{\rm e}$ B hadronic decays selected by means of $\rm\,m_{_{\rm ES}}$ & $\Delta\rm E$
- \bullet Best candidate per event retained from the highest purity mode (computed from MC) & ΔE
 - Only B_{tag} candidates with Purity > 40% used $\rightarrow \epsilon(B_{tag}) \approx (0.2 0.4)\%$
- Continuum events suppressed by exploiting a Likelihood Selector consisting of six event-shape variables (e.g. Thrust, missing momentum vector, $P(B_{tag})$, angles between them,...)
 - LS > 0.5 removes > 75% of BKG retaining 80% of the signal

21

$\mathcal{B}^{+} \rightarrow \mathsf{K}^{+} \tau^{+} \tau^{-}$

• B \rightarrow K⁺ τ ⁺ τ ⁻ Reconstruction

- ullet Signal candidates reconstructed from events with three charged particles, identified as K + two leptons, not belonging to B $_{\rm tag}$
- \bullet Vetos applied against J/ ψ , D $^{\circ}$ \rightarrow K π (\rightarrow μ), γ \rightarrow $e^{+}e^{-}$, π^{0} \rightarrow $\gamma\gamma$
- Dominant BKG from
 B → D^(*) | v, D^(*) → K | v
 (same final-state)
 suppressed by a Neural
 Network using angles
 between momenta, m(K⁺|-)
 and missing energy

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

BR for each of the signal modes:

$$\mathcal{B}_{i} = \frac{N_{\text{obs}}^{i} - N_{\text{bkg}}^{i}}{\epsilon_{\text{sig}}^{i} N_{B\bar{B}}} N_{B\bar{B}}$$

$$N_{B\bar{B}} = 471 \times 10^{6}$$

	e^+e^-	$\mu^+\mu^-$	$e^+~\mu^-$
$\overline{N^i_{ m bkg}}$	$49.4 \pm 2.4 \pm 2.9$	$45.8{\pm}2.4\ \pm}3.2$	$59.2{\pm}2.8\ \pm}3.5$
$N_{ m bkg}^i \ \epsilon_{ m sig}^i (imes 10^{-5})$	$1.1 \pm\! 0.2 \!\pm\! 0.1$	$1.3 \pm 0.2 \pm 0.1$	$2.1{\pm}0.2{\pm}0.2$
$N_{ m obs}^i$	45	39	92
Significance (σ)	-0.6	-0.9	3.7

- \bullet Signal efficiencies and expected Peaking BKG events (92%) obtained from simulation corrected to reproduce $B_{_{\rm tag}}$ data yield
- Expected combinatorial BKG events (8%) from data m_{ES} Side Band

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

BR for each of the signal modes:

$$\mathcal{B}_i = rac{N_{
m obs}^i - N_{
m bkg}^i}{\epsilon_{
m sig}^i N_{B\overline{B}}}$$

$$N_{B\bar{B}} = 471 \times 10^6$$

	e^+e^-	$\mu^+\mu^-$	$e^+~\mu^-$
$\overline{N^i_{ m bkg}}$	$49.4{\pm}2.4{\pm}2.9$	$45.8{\pm}2.4\ \pm}3.2$	$59.2{\pm}2.8\ \pm}3.5$
$\epsilon_{ m sig}^i(imes 10^{-5})$	$1.1 \pm 0.2 \pm 0.1$	$1.3 {\pm} 0.2 {\pm} 0.1$	$2.1{\pm}0.2{\pm}0.2$
$N_{ m obs}^i$	45	39	92
Significance (σ)	-0.6	-0.9	3.7

- \bullet e⁺e⁻, $\mu^+\mu^-$ yields show consistency with expected BKG events.
- \bullet eµ channel has excess of 3.7 σ :
 - No evident signal-like behaviour or systematic problems from kinematic distributions

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

BR for each of the signal modes:

$$\mathcal{B}_i = rac{N_{
m obs}^i - N_{
m bkg}^i}{\epsilon_{
m sig}^i N_{Bar{B}}}$$

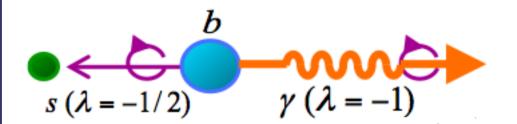
$$N_{B\bar{B}} = 471 \times 10^6$$

	e^+e^-	$\mu^+\mu^-$	$e^+~\mu^-$
$N_{ m bkg}^i$	$49.4{\pm}2.4{\pm}2.9$	$45.8{\pm}2.4\ \pm}3.2$	$59.2{\pm}2.8\ \pm}3.5$
$N^i_{ m bkg} \ \epsilon^i_{ m sig} (imes 10^{-5})$	$1.1 \pm 0.2 \pm 0.1$	$1.3 \pm 0.2 \pm 0.1$	$2.1 {\pm} 0.2 {\pm} 0.2$
$N_{ m obs}^i$	45	39	92
Significance (σ)	-0.6	-0.9	3.7

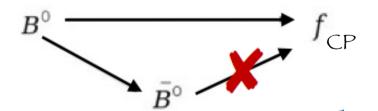
• Overall significance < 2σ:

$$BR(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3} (90\% CL)$$
 First Measurement

 $_{\rm e}$ Systematics from B $_{\rm tag}$ yield correction, theoretical models for efficiency determination, PID, and Data/MC agreement

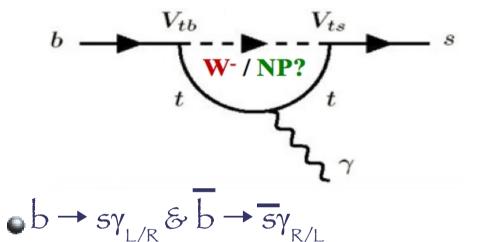

$\mathcal{B} \rightarrow \mathsf{K}\pi\pi\gamma$

"Time-dependent analysis of $B^{\circ} \rightarrow K_{\varsigma} \pi^{-} \pi^{+} \gamma$ and studies of the $K^{\dagger}\pi^{\bar{}}\pi^{\dagger}$ system in $B^{\dagger}\rightarrow K^{\dagger}\pi^{\bar{}}\pi^{\dagger}\gamma$ decays"


 $[471 M\Upsilon(4S) \text{ events}]$

Phys. Rev. D93, 052013 (2016)

Radiative decays and the y polarization



$$b \to s\gamma_L & \overline{b} \to \overline{s}\gamma_R$$

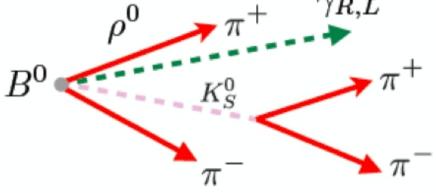
Mixing induced CP Asymmetry ≈0

 New heavy particles in the loop could enhance opposite helicity γ contribution

$$B^0$$
 \bar{B}^0
 f_{CP}

Mixing induced CP Asymmetry ≠0

Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$


$$\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) - \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) + \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}$$
$$= \mathcal{S}_{f_{CP}} \sin(\Delta m_{d}\Delta t) - \mathcal{C}_{f_{CP}} \cos(\Delta m_{d}\Delta t)$$

- SM predicts $S_{f_{CP}} = m_s/m_b = 0.02$
- Look for enhancement due to new-particle exchange

 $[\Delta t = t_{Rec} - t_{Tag}]$ from distance between the two B° decay vertices in the event]

- Experimentally: perform a time-dependent analysis of $B^o \to K_s \rho \gamma$
- Main Issue: dilution from irreducible BKG from non CP eigenstates:

CP eigenstate $B^0 \to K_s \rho \gamma$ Non CP eigenstate $B^0 \to K^*(K_s \pi) \pi \gamma$ $\rho^0 = \pi^+ \qquad \gamma_{R,L} \qquad \qquad \pi^- \qquad \gamma_{R,L}$

Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$

$$\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) - \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) + \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}$$
$$= \mathcal{S}_{f_{CP}} \sin(\Delta m_{d}\Delta t) - \mathcal{C}_{f_{CP}} \cos(\Delta m_{d}\Delta t)$$

- SM predicts $S_{f_{CP}} = m_s/m_b = 0.02$
- Look for enhancement due to new-particle exchange

 $[\Delta t = t_{Rec} - t_{Tag}]$ from distance between the two B° decay vertices in the event]

- Experimentally: perform a time-dependent analysis of $B^{\circ} \to K_s \rho \gamma$
- Main Issue: dilution from irreducible BKG from non CP eigenstates:

CP eigenstate
$$B^{\circ} \rightarrow K_{s} \rho \gamma$$
 Non CP eigenstate $B^{\circ} \rightarrow K^{*}(K_{s} \pi) \pi \gamma$

Dilution:
$$\mathcal{D}_{K^0_S
ho\gamma}$$
 \equiv $\mathcal{S}_{K^0_S\pi^+\pi^-\gamma}$ $\mathcal{S}_{K^0_S
ho\gamma}$

Effective value on inclusive K ππγ sample

Signal value

Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$

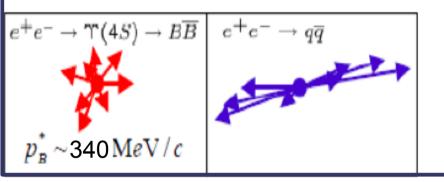
• Dilution expressed in terms of few resonant decay modes:

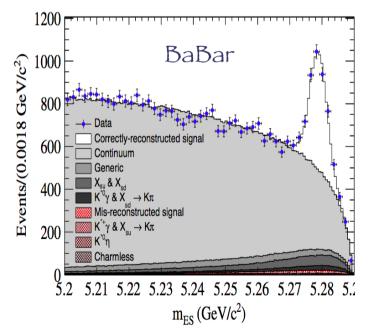
$$\rho^0 K_s$$
, $K^{*+}\pi^-$, $K^{*-}\pi^+$, $(K\pi)_o^{*+}\pi^-$, $(K\pi)_o^{*-}\pi^+S$ -wave $(K^*_o(1430) + NR$ component) and their interference:

$$\mathcal{D}_{K_{S}^{0}\rho\gamma} \equiv \frac{\mathcal{S}_{K_{S}^{0}\pi^{+}\pi^{-}\gamma}}{\mathcal{S}_{K_{S}^{0}\rho\gamma}} = \frac{\int \left[|A_{\rho K_{S}^{0}}|^{2} - |A_{K^{*+}\pi^{-}}|^{2} - |A_{(K\pi)_{0}^{*+}\pi^{-}}|^{2} + 2\Re(A_{\rho K_{S}^{0}}^{*}A_{K^{*+}\pi^{-}}) + 2\Re(A_{\rho K_{S}^{0}}^{*}A_{(K\pi)_{0}^{*+}\pi^{-}}) \right] dm^{2}}{\int |A_{\rho K_{S}^{0}}|^{2} + |A_{K^{*+}\pi^{-}}|^{2} + |A_{(K\pi)_{0}^{*+}\pi^{-}}|^{2} + 2\Re(A_{\rho K_{S}^{0}}^{*}A_{K^{*+}\pi^{-}}) + 2\Re(A_{\rho K_{S}^{0}}^{*}A_{(K\pi)_{0}^{*+}\pi^{-}}) dm^{2}}$$

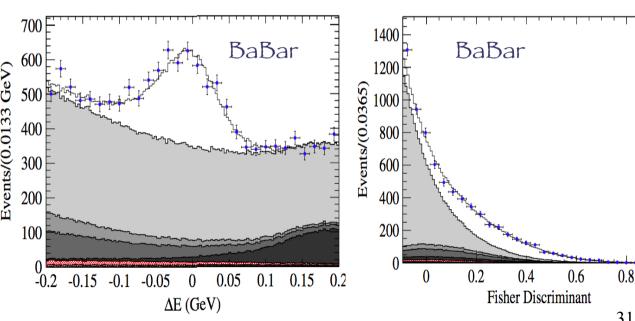
$$\left[\left[\text{LAL-15-75} \right] \left(2O15 \right) \right]$$

- Ideal World: Perform a time-dependent Amplitude Analysis
- Real World: Not enough statistics, dilution computed from the amplitudes of the intermediate resonances from $B^+ \to K^+\pi^+\pi^-\gamma$ assuming Isospin Symmetry


$\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma$ Selection

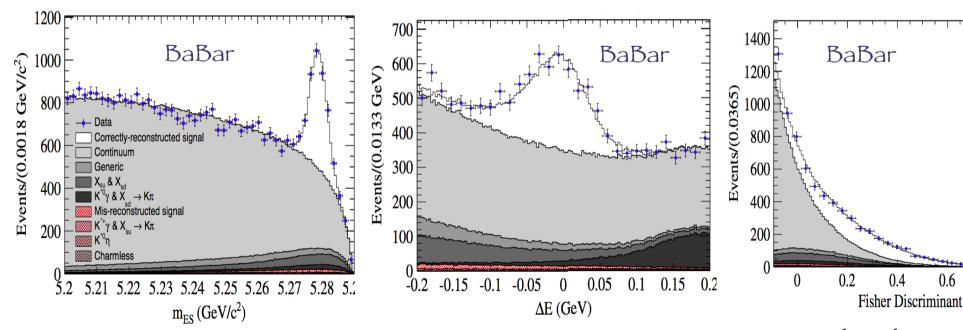

- $B^+ \rightarrow K^+ \pi^- \pi^- \gamma$ events selected by means of:
 - \bullet 1.5 < E_{γ}^{*} < 3.5 GeV

* = Y reference frame


- \rightarrow m_{ES}
- ΔE

Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

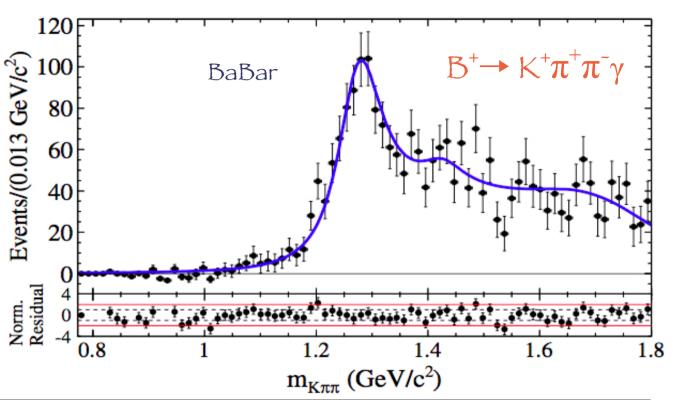

$\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma$ Selection

• $B^+ \to K^+ \pi^- \gamma$ signal yield extracted from an unbinned fit to m_{ES} , ΔE and Fisher discriminant:

$$N_{\text{sig}} = 2441 \pm 91^{+41}_{-54}$$

→ BF(B⁺ → K⁺
$$\pi$$
⁺ π ⁻ γ) ≈ (24.5±0.9±1.2) 10⁻⁶

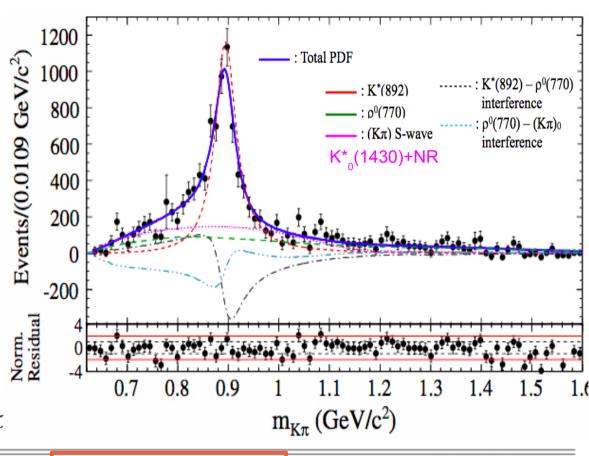
• m(K $\pi\pi$), m(K π) and m($\pi\pi$) spectra obtained using sPlot technique [NIM A 555, 356-369 (2005)]


Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

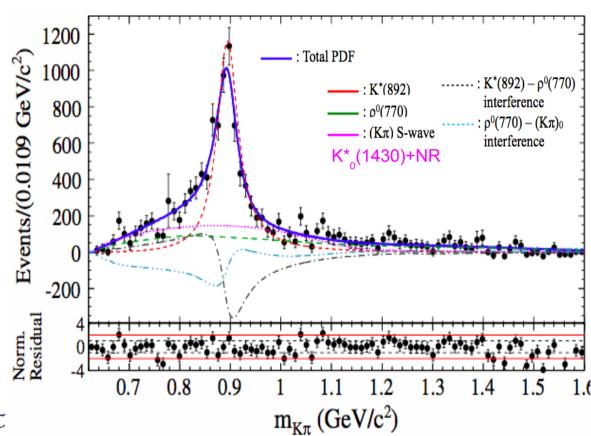
0.8

$\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma$ Analysis


BFs of the various resonances decaying to $K\pi\pi$ extracted from the $m(K\pi\pi)$ spectrum

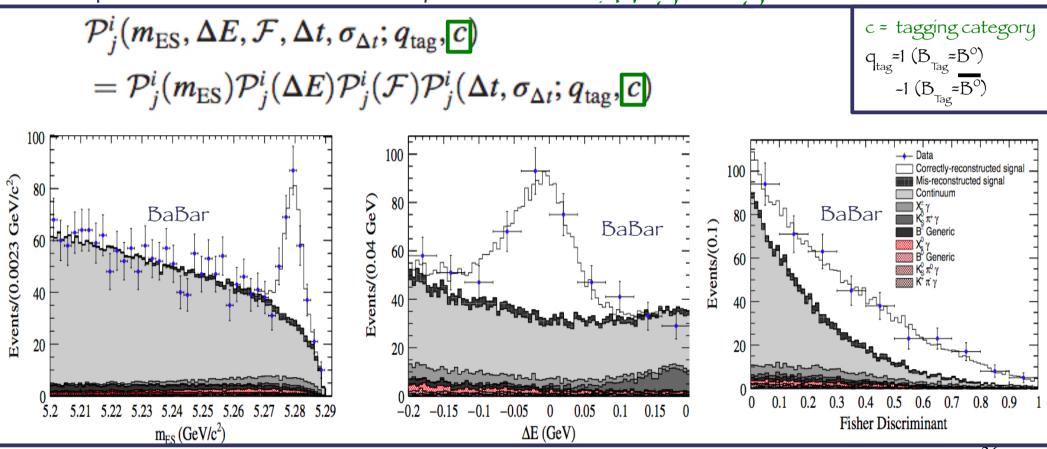
Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times \\ \mathcal{B}(K_{\text{res}} \to K^+ \pi^+ \pi^-) \times 10^{-6}$	$\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$	Previous world average [18] (×10 ⁻⁶)
$ \begin{array}{c} R^{+} \to K^{+}\pi^{+}\pi^{-}\gamma \\ K_{1}(1270)^{+}\gamma \\ K_{1}(1400)^{+}\gamma \\ K^{*}(1410)^{+}\gamma \\ K_{2}^{*}(1430)^{+}\gamma \\ K^{*}(1680)^{+}\gamma \end{array} $	$14.5^{+2.1}_{-1.4}^{+1.2} 4.1^{+1.9}_{-1.2}^{+1.2} 4.1^{+1.9}_{-1.2}^{+1.0} 11.0^{+2.2}_{-2.0}^{+2.1} 1.2^{+1.0}_{-0.7}^{+1.2} 15.9^{+2.2}_{-1.9}^{+3.2} 15.9^{-2.4}$	$24.5 \pm 0.9 \pm 1.2$ $44.1^{+6.3+3.6}_{-4.4-3.6} \pm 4.6$ $9.7^{+4.6+2.8}_{-2.9-2.3} \pm 0.6$ $27.1^{+5.4+5.2}_{-4.8-2.6} \pm 2.7$ $8.7^{+7.0+8.7}_{-5.3-10.4} \pm 0.4$ $66.7^{+9.3+13.3}_{-7.8-10.0} \pm 5.4$	27.6 ± 2.2 43 ± 13 <15 at 90% C.L. n/a 14 ± 4 <1900 at 90% C.L.

$\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma$ Analysis

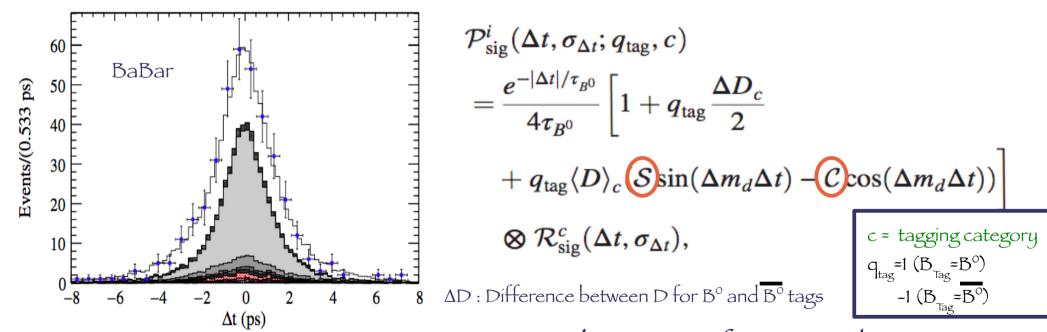

- Extraction of the dilution from amplitudes of intermediate states decaying to $K\pi$ and $\pi\pi$
- Full amplitude analysis in the $m(K\pi)$ - $m(\pi\pi)$ not possible due to small statistics
 - Perform a 1D fit to $m(K\pi)$ using as inputs the BRs obtained from the $m(K\pi\pi)$ fit

Mode	$\mathcal{B}(B^+ o ext{Mode}) imes \ \mathcal{B}(R o h\pi) imes 10^{-6}$	$\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$	Previous world average [18] (×10 ⁻⁶)
$K^*(892)^0\pi^+\gamma$	$15.6 \pm 0.6 \pm 0.5$	$23.4 \pm 0.9^{+0.8}_{-0.7}$	20^{+7}_{-6}
$K^+ ho(770)^0\gamma$	$8.1 \pm 0.4^{+0.8}_{-0.7}$	$8.2 \pm 0.4 \pm 0.8 \pm 0.02$	<20 at 90% CL
$(K\pi)_0^{*0}\pi^+\gamma$	$10.3^{+0.7}_{-0.8}{}^{+1.5}_{-2.0}$		n/a
$K\pi_0^0\pi^+\gamma$ (NR)	• • •	$9.9 \pm 0.7^{+1.5}_{-1.9}$	< 9.2 at 90% CL
$K_0^*(1430)^0\pi^+\gamma$	$0.82 \pm 0.06^{+0.12}_{-0.16}$	$1.32^{+0.09}_{-0.10}{}^{+0.20}_{-0.26}\pm0.14$	n/a 33

$\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma$ Analysis


- Extraction of the dilution from amplitudes of intermediate states decaying to $K\pi$ and $\pi\pi$
- Full amplitude analysis in the $m(K\pi)-m(\pi\pi)$ not possible due to small statistics
 - \blacksquare Perform a 1D fit to m(K π) using as inputs the BRs obtained from the m($K\pi\pi$) fit

$$\mathcal{D}_{K_{S}^{0}\rho\gamma} = F(A_{\rho}, A_{K^{*}}, A_{(K\pi)S-wave}) = -0.78^{+0.19}_{-0.17}$$


Measurement of A in BO - Kpy

- Time-dependent analysis of $B^{\circ} \rightarrow K_{\varrho} p \gamma$ decays
- Event yield and CP parameters C and S extracted from a fit to m_{ES}, ΔE , Fisher and Δt
- Sample divided in 6 mutually exclusive tagging categories c

Measurement of A in Bo - K py

- Time-dependent analysis of $B^{\circ} \to K_s \rho \gamma$ decays
- \bullet Event yield and CP parameters C and S extracted from a fit to m $_{\text{ES}},$ $\Delta \text{E},$ Fisher and Δt
- Sample divided in 6 mutually exclusive tagging categories c

• Tagging impertection D, Δ D & Δ t Resolution R from quarkonium sin (2 β) analysis [PRL 99, 171803 (2007)]

Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$

Results:

BF(B°
$$\rightarrow K_{\epsilon} \pi \pi \gamma$$
) = (20.5±2.0^{+2.6}_{-2.2})10⁻⁶

$$S_{KS\pi\pi V} = 0.14 \pm 0.25 \pm 0.03$$

$$C_{Ks\pi\pi\gamma} \approx -0.39 \pm 0.20^{+0.03}_{-0.02}$$

- ullet After correcting for $\mathcal{D}_{K^0_S
 ho\gamma}:$
 - $S_{Kspy} \approx -0.18 \pm 0.32^{+0.06}_{-0.05}$

Consistent with SM

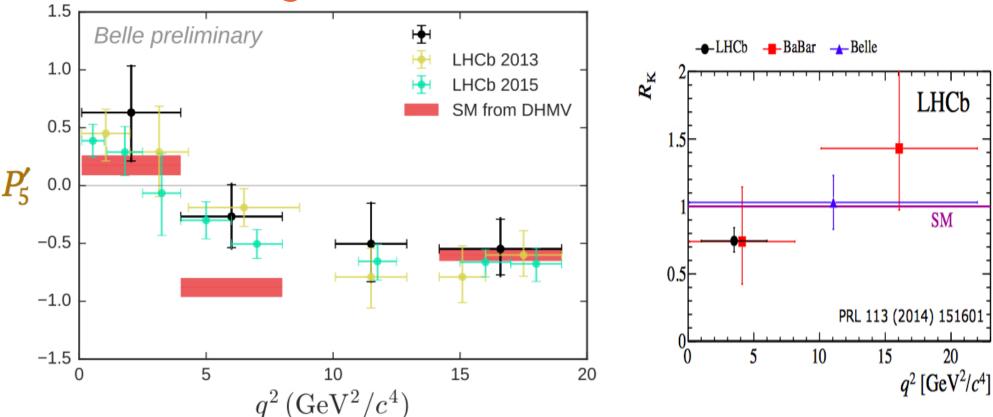
- $_{\bullet}$ Systematics from resonance modelling and $\Delta E,$ $m_{_{ES}}$ and Fisher distributions shape
- Results consistent with Belle [PRL 101, 251601 (2008)]

Conclusions

Conclusions

- Rare B decays are an excellent laboratory for the search for physics beyond the SM
- In the last few years several new measurements from LHC & B-Factories experiments released with impressive experimental precision
- Almost all the results are in agreement with expectations but some tension is present in some sectors: BaBar F_L for B⁺ \rightarrow K*+|+|- (shown today), B \rightarrow K(*)µµ (P5', BR(B \rightarrow Kµµ)/BR(B \rightarrow Kee)), (but also B \rightarrow D(*) $\tau v/B \rightarrow$ D(*)µv)
- Strong constraints on NP models from flavor measurements
- •Rich program of measurements is expected from LHC/Belle II experiments in the coming years
 - Chances to discover/understand NP in the flavor sector in the near future?

Backup

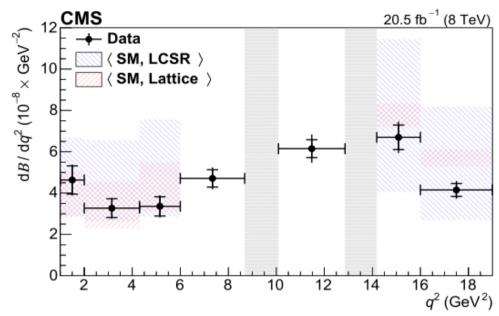

• Event Yields:

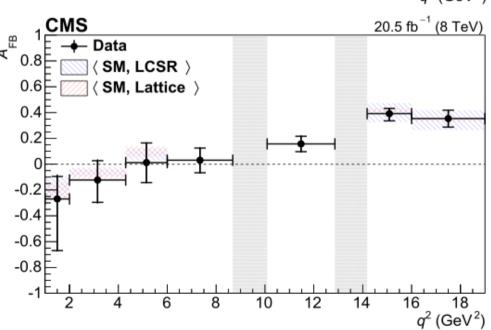
Mode	q_0^2	q_1^2	q_2^2	q_3^{2}	q_4^2	q_5^2
$B o K^* \ell^+ \ell^-$	40.8 ± 8.4	31.7 ± 7.1	11.9 ± 5.5	21.3 ± 8.5	31.9 ± 9.2	33.2 ± 7.8
$B^+ o K^{*+}\ell^+\ell^-$	17.7 ± 5.2	8.7 ± 4.1	3.8 ± 4.0	7.7 ± 5.6	9.0 ± 4.8	9.4 ± 4.2
$B^0 o K^{*0} \ell^+ \ell^-$	23.1 ± 6.6	22.9 ± 5.8	8.1 ± 3.8	13.7 ± 6.4	22.8 ± 7.8	23.8 ± 6.6

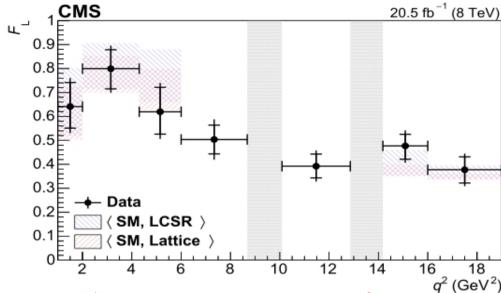
Systematics:

- PDF shapes and parameter statistical error
- F_L statistical error progated in A_{FB} fit
- · Modeling of BKG PDF shape and Signal efficiency
- Signal crossfeed
- Fit bias
- Stability vs cuts

B - K* II Angular Analysis: Ps' parameter



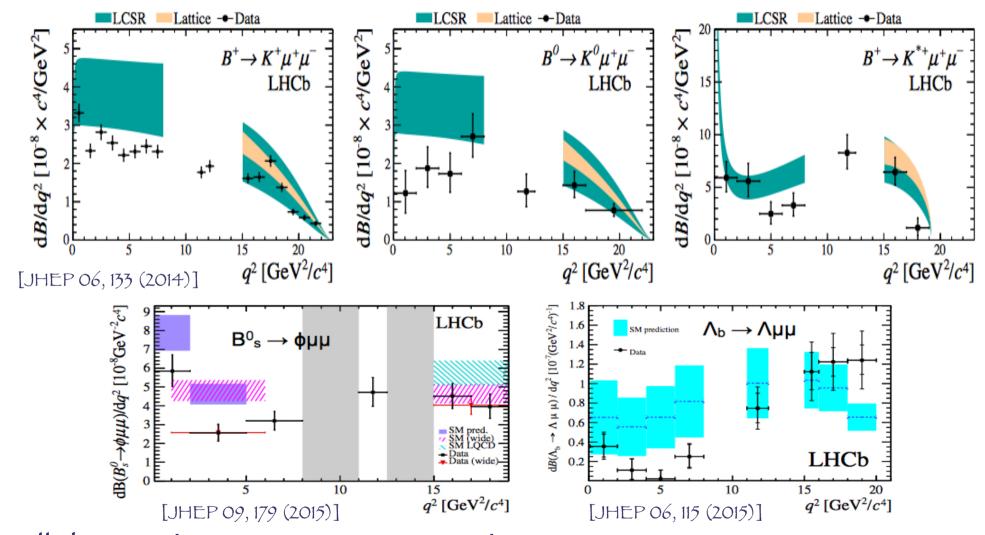

- LHCb full statistics result on P5': discrepancy at 3.4 σ level [JHEP 02, 104 (2016)]
- ullet Belle confirms the tension at 2.1 σ level [arXiv:1604.04042]
- Need to control the charm penguin to disentangle SM from NP in $C_7^{\rm eff}$ and $C_9^{\rm eff}$


Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

$B \rightarrow K^* \mu^{\dagger} \mu^{-}$: CMS Results

Results consistent with SM

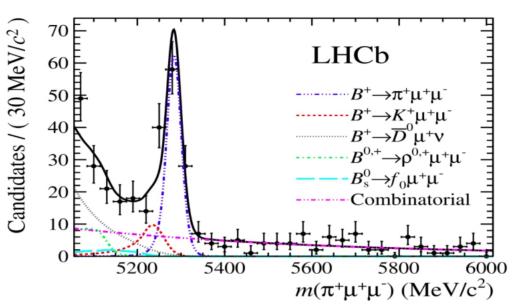

- Systematics from BKG PDF shapes, efficiency, simulation mismodeling and fit bias.
- Theoretical predictions:
 - Light-cone sum rules at low q² and extrapolation at high q² [JHEP 09 089 (2010), JHEP 02 010 (2013)]
 - Lattice [Phys. Rev. D89 094501 (2014)]

M.Margoni Universita` di Padova & INFN

Capri 2016, 11-13 June 2016

B -> K* // Related quantities

•K* μ*μ tension motivates studies of differential BRs


 \bullet All the results are "consistent" with SM at <2.2 σ

•But all of them are lower than the predictions...

45

$\mathcal{B} \to \pi /^+/^-$

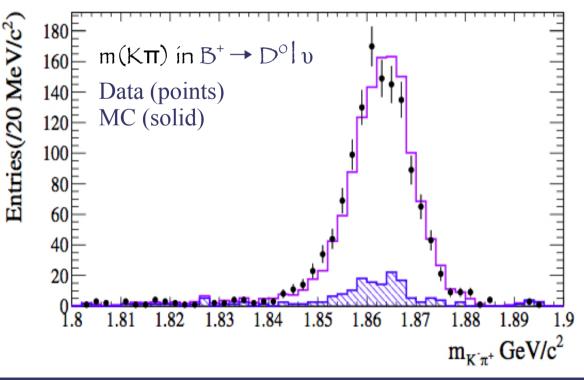
•Measurements of related b → dµµ channels very useful to reveal information on Minimal Flavor Violation nature of New Physics

LHCb [JHEP 10, 034 (2015)]:

BR(B⁺ $\rightarrow \pi^{+}\mu^{+}\mu^{-}) \approx (1.83\pm0.24\pm0.05)10^{-8}$ in agreement with MFV

 $BR(B^+ \to \pi^+ \mu^+ \mu^-)/BR(B^+ \to K^+ \mu^+ \mu^-) \approx 0.037 \pm 0.008 \pm 0.001$

 $|V_{td}|/|V_{ts}| = 0.24^{+0.05}_{-0.04}$ in agreement with box processes $(\Delta m_s/\Delta m_d)$ results


$$\mathcal{B}^{+} \rightarrow K^{+} \tau^{+} \tau^{-}$$

• Signal efficiencies and expected Peaking BKG events (92%) from simulation corrected according to Data/MC ratio before NN cut:

$$\left(\frac{N^{Data}}{N^{MC}}\right)_{BKG} = 0.913 \pm 0.020$$

Expected combinatorial BKG events (8%) from data mEs Side Band

• Data/MC B_{tag} yields cross-checked using $B^+ \rightarrow D^0 | \nu, D^0 \rightarrow K\pi$ (before NN cut)

$$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$$

- Cross checks to understand the excess:
 - $_{\rm e} \rm Excess$ present also in the B $_{\rm tag}$ side band
 - Discriminating variable in the NN:
 - $s_B = \frac{q^2}{m_B^2} = \frac{(p_{B_{\text{sig}}} p_K)^2}{m_B^2}$, m(K⁺|-), K-l angle in the di-tau frame, lepton momentum, missing energy, e.m. energy not associated to B_{tag}
 - •All of them compatible with BKG statistical fluctuation

$\mathcal{B}^{+} \rightarrow \mathcal{K}^{+} \tau^{+} \tau^{-}$

Systematics:

- Theory (signal efficiency): 3% from shape of the q² distribution (Lattice QCD vs light cone sum rules)
- Btag Yield: 1.5% from MC correction using m_{ES} sideband
- PID: 5% from Data/MC comparison
- •π⁰ Veto: 3%
- ■NN cut: 2.6% from Data/MC checked on B⁺ → D⁰ | v (D⁰ → Kπ)

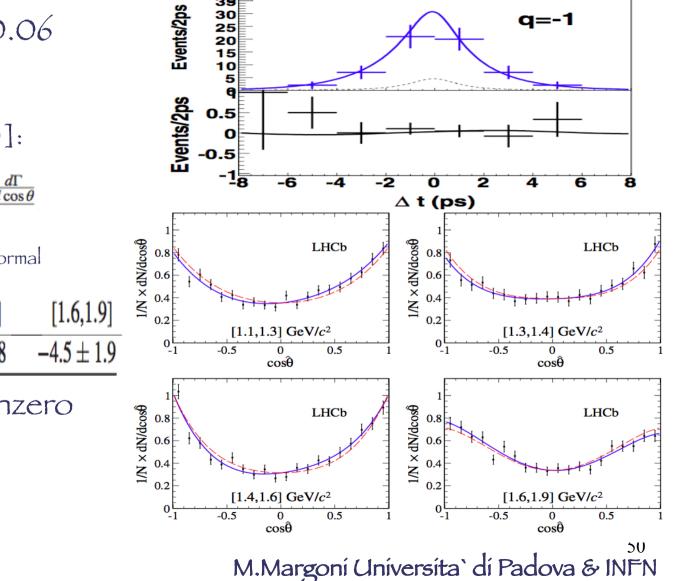
Measurement of A in Bo-Kpy

Belle[PRL 101, 251601 (2008)]:

$$S_{Kspy} = 0.11 \pm 0.33^{+0.05}_{-0.09}$$

 $A_{CP}(direct) = 0.05 \pm 0.18 \pm 0.06$

LHCb[PRL 112, 161901 (2014)]:


$$\mathcal{A}_{\mathrm{ud}} \equiv \frac{\int_0^1 d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^0 d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\Gamma}{d\cos\theta}}$$

 θ =angle between photon and $K\pi\pi$ plane normal

$m_{_{K\pi\pi}}$	[1.1,1.3]	[1.3,1.4]	[1.4,1.6]	[1.6,1.9]
$\overline{\mathcal{A}_{ m ud}}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

5.2 o significance for nonzero up-down asymmetry

First measurement

Belle

q=+1

Capri 2016, 11-13 June 2016