

LHCb Searches for New Physics in Heavy Flavour

Franz Muheim University of Edinburgh

On behalf of the LHCb collaboration

urgh Cb collaboration

FPCapri2016, 11/06/2016

LHCb

Outline

Introduction

- Motivation
- LHCb experiment

• Rare Decays

- Observation of
 - $B_s \rightarrow \mu + \mu -$
- Angular analysis in $B^0 \to K^{\star 0} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

• Lepton Flavour Universality

- $B^+ \rightarrow K^+ \mu^+ \mu^-$ vs $B^+ \rightarrow K^+ e^+ e^-$
- $B \rightarrow D^{\star} \tau^{-} \nu$
- CP violation
 - ϕ_s in $B_s \rightarrow J/\psi \phi(KK)$
 - ϕ_s in $B_s \rightarrow \phi \phi$
 - A_{sl} CPV in mixing
 - B_slifetimes

• Unitarity Triangle

- CKM angle gamma
- V_{ub}

• Exotic Spectroscopy

- Pentaquarks
- Tetraquarks
- X(5568)?
- X(4140)
- Conclusion
- See also Umberto Marconi
 - LHCb upgrade plans and physics potential

Heavy Flavour & New Physics

How to search for New Physics in Heavy Flavour?

- Sensitive to NP appearing as virtual particles in loop processes
- Observable deviations from SM expectations in CP violation (21) and rare decays
- CKM mechanism
 - Based on only 4 parameters makes many precise SM predictions
 - Only source of \mathscr{P} in Standard Model

$$\mathbf{V} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - \underline{i\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - \underline{i\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- Flavour changing neutral currents (FCNC) suppressed in SM
- When you have eliminated the impossible, whatever remains, however improbable, must be the truth? Sherlock Holmes

FPCapri2016, 11/06/2016

New Physics Flavour Problem

FPCapri2016, 11/06/2016

LHC and experiments

FPCapri2016, 11/06/2016

Franz Muheim

4

LHCb Experiment

• LHC is a flavour factory

- beauty quark cross section $\sigma_{bb} \sim 300 (500) \ \mu b$ at $\sqrt{s} = 7 (13) \ TeV$,
- Very large charm cross section $\sigma_{cc} \sim 20 \sigma_{bb}$

• LHCb

- dedicated experiment for heavy flavour physics

LHCb Performance

Int. J. Mod. Phys. A 30, 1530022 (2015)

Very successful Run-1

- LHCb operated at luminosities up to
 L = 4x10³² cm⁻² s⁻¹
 - 2x design luminosity
- Average # of visible interactions/ crossing μ = 1.4 (nominal 0.4)
- Integrated $\int Ldt \sim 3 fb^{-1}$ on tape
- 91% data taking efficiency

22h

00h

02h

04h

06h

08h

10h

- ~ 5 kHz of physics data to tape

14h

12h

ATLAS

ALICE

LHCb

FPCapri2016, 11/06/2016

Franz Muheim

7

Decay highly suppressed in SM

- CKM and helicity suppressed
- Predicted SM branching ratio
- BR ($B_s \rightarrow \mu + \mu -$) = (3.66 ± 0.23) × 10⁻⁹
- BR (B⁰ \rightarrow µ+µ-) = (1.06 ± 0.09) × 10⁻¹⁰
 - C. Bobeth et al., PRL 112, 101801 (2014)
- Very sensitive to new physics
 - Strongly enhanced in MSSM models
 - Rate $\propto \tan^6\beta/M_H$

FPCapri2016, 11/06/2016

10

 $\mathcal{B}(\mathsf{B}^0$

Observation of $B_{\mu} \rightarrow \mu^{+}\mu^{-}$

LHCb and CMS joint paper

- Observe $B_s \rightarrow \mu^+\mu^-$ at 6.2 σ significance
- BR(B_c $\rightarrow \mu^{+}\mu^{-}$) = (2.8 +0.7-0.6) x 10⁻⁹
- Implications

LHCb: Phys. Rev. Lett. 111 (2013) 101805 CMS: Phys. Rev. Lett. 111 (2013) 101804 Nature (2015) 522, 68-72

FPCapri2016, 11/06/2016

ATLAS measurement

- BR(B_s $\rightarrow \mu^{+}\mu^{-}$) = (0.9 +1.1-0.8) x 10⁻⁹
- $BR(B_d \rightarrow \mu^+\mu^-) < 4.2 \times 10^{-10} @ 95\% C.L.$
- Consistent with SM prediction at 2σ

ATLAS: arXiv:1604.04263 Submitted to EPJC

Observation of $B_s \rightarrow \mu^*\mu^-$

$\frac{HCb}{KC} \text{ Angular Analysis in } B^0 \rightarrow K^{*0}\mu^+\mu^-$

Many angular observables

- P→ VV' decay described by
 q² = m² (μμ) invariant mass
 and 3 helicity angles
- Forward Backward Asymmetry A_{FB}
- K*⁰ longitudinal polarisation F_L
- Asymmetries S_i
- Differential decay rate

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ & + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \end{split}$$

+ $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

LHCb measurements

- of all independent observables
- Shown are A_{FB} and F_L

LHCb-PAPER-2015-051, arXiv: 1512.04442 JHEP 02 (2016) 104

FPCapri2016, 11/06/2016

$\frac{LHCb}{KK} \text{ Angular Analysis in } \mathbb{B}^0 \to \mathbb{K}^* \mathbb{P}_{\mu^*} \mathbb{P}^*$

New observable basis

 $P'_{i=4,5,6,8} = \frac{S_{i=4,5,6,8}}{\sqrt{F_{I}(1-F_{I})}}$

form factor independent

Descotes et al, arXiv:1307.5683

• LHCb anomaly

- Tension in P_5' first seen in 1 fb⁻¹ remains in 3 fb⁻¹
- Fit to all observables
 has 3.5 σ discrepancy
 to SM

LHCb-PAPER-2015-051, arXiv: 1512.04442

JHEP 02 (2016) 104

- New Physics contribution to Wilson coeff. C₉ or QCD?

Lepton universality in SM

- Couplings identical for $b \to s \ l^+l^-$
- Expect unity for branching ratio R(K)

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-2})$$

- LHCb measusrement
 - $R(K) = 0.745 \pm 0.090 \pm 0.036$
 - 2.60 deviation
- Interpretation
 - Statistical fluctuation or new physics in b \rightarrow sµ⁺µ⁻?
 - Related to 2.4 excess in H $\rightarrow \tau \mu$ at CMS ?
- Future plans
 - Measure $R(K^*)$, $R(\phi)$, $R(\Lambda)$

LHCb-PAPER-2014-024, PRL 113,151601 (2014)

FPCapri2016, 11/06/2016

Challenge at hadron collider

- No mass peak and large background
- Use $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ final state
- Missing mass squared and muon energy in B rest frame
- Use superb LHCb tracking to remove backgrounds
- Same final state for signal and normalisation

 $R_{D^*} = \frac{\mathcal{B}(\overline{B^0} \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B^0} \to D^{*+} \mu^- \overline{\nu}_{\mu})}$

- LHCb Measurement
 - $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
 - 2.1 σ deviation from SM

LHCb-PAPER-2015-025, arXiv:1506.08614 Phys. Rev. Lett. 115 (2015) 111803

FPCapri2016, 11/06/2016

LHCb

Excess by Belle and Babar

 Cannot be explained by Higgs doublet model

• Current Status

- Measurement by LHCb in 2015
- Update by Belle in 2016
- Average is
 4.0 σ deviation from SM

• Plans

- LHCb is also measuring hadronic tau final states
- Belle-II

FPCapri2016, 11/06/2016

FPCapri2016, 11/06/2016

LHCb

3 fb⁻¹, LHCb-PAPER-2014-059 PRL 114, 041801 (2015)

- Weak phase ϕ_s
 - Small SM prediction $\phi_s = -36.3 \pm 1.3$ mrad
 - Sensitive to NP in B_s mixing and decay
- LHCb golden mode $B_s \rightarrow J/\psi \phi(KK)$

- 1 fb⁻¹, PRD 87, 112010 (2013)
- 0.37 fb⁻¹, PRL 108, 101803 (2012)
- J. Charles et al., PRD 84 (2011) 033005
- fit to B_s mass, decay time and angular distributions

$$\begin{split} \varphi_{s} &= -0.058 \pm 0.049 \pm 0.006 \text{ rad} \\ |\lambda| &= 0.964 \pm 0.019 \pm 0.007 \\ \Delta \ \Gamma_{s} &= 0.0805 \pm 0.0091 \pm 0.0015 \text{ ps}^{-1} \\ \Gamma_{s} &= 0.6603 \pm 0.0027 \pm 0.0033 \text{ ps}^{-1} \end{split}$$

Additional
 LHCb modes
 B_s→J/ψπ⁺π⁻
 B_s→D_s⁺D_s⁻

FPCapri2016, 11/06/2016

CP Violation in $B_s \rightarrow J/\psi$

Franz Muheim

Weak phase φ_s status

- Early measurements by CDF & D0
 (in 2009) 2.3σ discrepancy with SM
- ATLAS, CMS and LHCb results in 2015
- LHCb dominates world average
- φ_s = -0.034 ± 0.033 rad
 ΔΓ_s = 0.082 ± 0.006 ps⁻¹
- No New Physics >> SM

LHCb Plans

- Quadruple data set in run 2
- LHCb upgrade after 2020

CP Violation in B_s Mixing

Semileptonic asymmetry

- measures CPV in mixing
- very small in SM

• a_{sl} at LHCb

- Time-integrated asymmetry in $B_s \rightarrow D_s^-\mu^+\nu$, new 3/fb

 $A = \frac{\Gamma(D_s^- \mu^+) - \Gamma(D_s^+ \mu^-)}{\Gamma(D_s^- \mu^+) + \Gamma(D_s^+ \mu^-)}$ $= \frac{a_{sl}^s}{2} + \left(a_p - \frac{a_{sl}^s}{2}\right) \frac{\int \exp(-\Gamma_s t) \cos(\Delta m_s t) \varepsilon(t) dt}{\int \exp(-\Gamma_s t) \cos(\Delta \Gamma_s / 2 \cdot t) \varepsilon(t) dt}$

- $a_{sl}^{s} = (0.39 \pm 0.26 \pm 0.20)\%$
- Time-dependent asymmetry in $B_d \rightarrow D^{(*)}\mu^+\nu$
- $a_{sl}^d = (-0.02 \pm 0.19 \pm 0.30)\%$
- $\sim 3.0 \sigma$ deviation by DO

Lenz, Nierste, arXiv:1205.1444

$$a_{sl} = 1 - \left|\frac{q}{p}\right|^2 = \frac{|\Gamma_{12}|}{|M_{12}|}\sin\phi_{12}$$

$$a_{sl}^{d} = (-4.1 \pm 0.6) \cdot 10^{-4}$$

 $a_{sl}^{s} = (+1.9 \pm 0.3) \cdot 10^{-5}$

New: LHCb-PAPER-2016-013, arXiv:1605.09768

LHCb-PAPER-2014-053, PRL 114 (2015) 041601

FPCapri2016, 11/06/2016

• Measurements of B_s lifetimes consistent with SM prediction

- $B_s \rightarrow J/\psi \phi(KK)$ most precise
- Flavour specific decays, $B_s \rightarrow D_s^- \mu^+ v X$
- Pure CP even or CP odd eigenstates

FPCapri2016, 11/06/2016

B_s→J/ψη(→γγ)

- CP odd eigenstate
- Measure lifetime τ_L of $B_{s,light}$

New: LHCb-PAPER-2016-017, to be submitted

 $\tau_{\rm eff} = 1.479 \pm 0.034 \text{ (stat)} \pm 0.011 \text{ (syst) ps.}$

In agreement with SM precition

New Physics in B_s Mixing

Implications

- Use parameterisation $M_{12} = M_{12}^{SM} \Delta_s$
- ϕ_s and ϕ_d (aka ϕ_1 or sin2 β) limit NP (to ~30% at 3 σ for ϕ_s)
- Need to control hadronic uncertainties (penguin pollutions)
- More data required

FPCapri2016, 11/06/2016

FPCapri2016, 11/06/2016

$|V_{ub}|$ with $\Lambda_b \rightarrow p\mu\nu$

• LHC is a Λ_b factory

- $B^0: B_s^0: \Lambda_b \sim 4:1:2$ in LHCb acceptance
- Large $\Lambda_{\rm b}$ production cross section

LHCb method

- $\Lambda_b \rightarrow p \mu \nu$ is cleaner than $B^0 \rightarrow \pi \mu \nu$
- Challenge ist to separate $b \rightarrow u\mu\nu$ from $b \rightarrow c\mu\nu$ with isolation BDT

Corrected mass

 Minimum mass consistent compatible with B-hadron flight direction

$$m_{\rm corr} = \sqrt{m^2 + p_\perp^2 + p_\perp}$$

FPCapri2016, 11/06/2016

Nature Physics 10 (2015) 1038

Meinel, Wingate, arXiv:1503.01421]

LHCb measurement

- Measure ratio $|V_{ub}|^2 / |V_{cb}|^2$
- Many systematic uncertainties cancel
- Need Lattice calculation for form factor

 $|V_{ub}| = (3.27 \pm 0.15(stat) \pm 0.17(syst) \pm 0.06(theory)) \times 10^{-3}$

FPCapri2016, 11/06/2016

Lнср

Vub discrepancy remains

- Exclusive LHCb measurement is 3.5σ from inclusive
- Systematic uncertainty limited by lattice calculation
- $\Lambda_b \to p \mu \nu$ has different sensitivities on right handed currents than B $\to \pi \mu \nu$
- Right-handed currents disfavoured by combination

FPCapri2016, 11/06/2016

155

FPCapri2016, 11/06/2016

Mixing in $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$

LHCb result

HCh

- First observation of D⁰-D⁰ Mixing in $D^0 \rightarrow K^- \pi^+ \pi \pi^+$ decays
- $R_{D}^{K3\pi} y' = (0.3 \pm 1.8) \times 10^{-3}$
- useful input for γ measurement
- $R_{D}^{K3\pi} = (5.67 \pm 0.12) \times 10^{-2}$

New: LHCb-PAPER-2015-057, arXiv:1602.07224

 $\times 10$

LHCb

42.5 k

9Ē

6

155

Fit

Background

150

150

 $\Delta m \left[\text{MeV}/c^2 \right]$

 $\Delta m [MeV/c^2]$

CP violation in $D^0 \rightarrow K^-K^+$, $\pi^-\pi^+$

New: LHCb-PAPER 2015-055, PRL 116 (2016) 191601

- No evidence for CP violation
 - In charm system- whether in mixing, decay or mixing-decay interference
 - New: ΔA_{CP} = (-0.10 ±0.08 (stat.) ±0.03 (syst.))% prompt D*
 - $\Delta A_{CP} = (0.14 \pm 0.16 \text{ (stat.)} \pm 0.08 \text{ (syst.)})\%$
 - Both full run-1 data 3fb⁻¹

Agreement with no CP violation at $CL = 6.5 \times 10^{-2}$

LHCb-PAPER 2014-069, JHEP 04 (2015) 043

- $B \rightarrow D^0 \mu^{\pm} X$

FPCapri2016, 11/06/2016

Exotic Spectroscopy

FPCapri2016, 11/06/2016

Franz Muheim

32

LHCb-PAPER-2015-029, arXiv:1507.03414 Phys. Rev. Lett. 115 (2015) 072001

Pentaquarks

- First suggested by Gell-Mann in seminal quark paper (1964)
- QCD allows existence of Pentaquarks
- Status 2014
 - ~2004 several previous "observations" of pentaquark states
 - All claims refuted
 - Could Pentaquark be produced in B-baryon decays?
- $\Lambda_b \rightarrow J/\psi K^- p$ decay
 - First looked for as backgrnd in $B_s{\rightarrow}J/\psi\varphi$
 - Large signal found
 - Used to measure $\Lambda_{\rm b}$ lifetime
 - Dalitz plot shows unusual feature

Pentaquarks

 $P_{c}(4450)^{+}$

 $\frac{5}{2}$ +

 $4449.8 \pm 1.7 \pm 2.5$

 $39 \pm 5 \pm 19$

 12σ

Argand diagrams

Two Pentaguark states observed in $\Lambda_b \rightarrow J/\psi K^- p$ decay

- 6-dim Fit to sum of amplitudes
- Fit to $\Lambda^* \rightarrow K^-p$ resonances only not sufficient to describe data
- Two P_c states (c cbar u u d) required

 $P_{c}(4380)^{+}$

 $4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$

 9σ

Pc(4380)

(b)

Re AP

 $\frac{\overline{3}}{2}$

LHCb-PAPER-2015-029, arXiv:1507.03414 Phys. Rev. Lett. 115 (2015) 072001

FPCapri2016, 11/06/2016

 J^P

A E

0.05

-0.05

-0.1Ē

-0.15E

-0.2

-0.25 F

Mass $[MeV/c^2]$ Width $[MeV/c^2]$

P_c(4450)

LHCb

Significance

Franz Muheim

→ Breit-Wigner resonances

Pentaquarks

Two Pentaquark states observed in Λ_b→ J/ψK⁻p decay

- confirmed by model independent analysis
- no assumption on Λ^* resonances
- Λ^* not sufficient to describe data
- Search for Pentaquark states in $\Lambda_b {\rightarrow}~J/\psi p \pi^-$ decays
 - Observation of same two P_c states would confirm exotic nature
 - Two decay diagrams will interfere

FPCapri2016, 11/06/2016

Franz Muheim

New: LHCb-PAPER-2016-009, arXiv:1604.05708 Submitted to PRL

Lнср

Pentaquarks

New: LHCb-PAPER-2016-015, To be submitted to PRL

Evidence for Pentaquark states in $\Lambda_b \rightarrow J/\psi p\pi^-$ decays

- Fit to $N^{\star} \rightarrow \pi^{\text{-}} p$ resonances only not sufficient to describe data
- Model with two P_c states gives good fit
- 3.3σ evidence for both P_c states
- Possible Z_c (4200) tetraquark \rightarrow Combined evidence for two P_c states and Zc(4200) reduces to 3.1 $\sigma \rightarrow$ more data required

Tetraquark candidate X(5568)

- D0@Tevatron claims 5.1 σ evidence for X(5568)⁺ \rightarrow B_s π^+
- Rate R = $(8.6\pm1.9\pm1.4)$ % of B_s production
- LHCb New: LHCb-CONF-2016-004, arXiv:1507.03414
 - 20 times larger data set

- Sees nothing, R < 0.01 @ 95% C.L.

інср

• X(4140)

- J/ψφ structure in
 B⁻ → J/ψφ K⁻ decays
- Seen (first by CDF) or not seen by several experiments

New LHCb measurement

- 4 visible Breit-Wigner structures required
- Lowest state fits best
 with D_s D_s* cusp
- Also consistent with wide X(4140)

FPCapri2016, 11/06/2016

інср

LHCb Run 2

• LHC restarted in 2015

- Operated successfully at √s = 13 TeV
- 2016 plan is collect data

LHCb restarted in 2015

- All detectors fully operational
- Deployed new trigger scheme
- 2016 plan is collect data

• 2015 data

- Dimuon mass spectrum
- b and charm quark production published

LHCb-PAPER-2015-037, JHEP 10 (2015) 172 LHCb-PAPER-2015-041, JHEP 03 (2016) 159

• 2016 data

 $D^0 \rightarrow K^- \pi^+$ with turbo trigger

FPCapri2016, 11/06/2016

Conclusions

LHCb and Flavour physics at the LHC are a huge success

- Unprecented data samples allow measurements in new areas, e.g. B_s and baryon
- Precision measurements of CP violation and rare decays
- Large NP ruled out in many flavour physics observables
- A few deviations to SM at 2σ to 3σ (4σ when including B factories)
- NP or statistical fluctuations? \rightarrow more data is required
- LHCb Highlights include
 - Observation of $B_s \rightarrow \mu \mu$
 - 3σ discrepancy in angular analysis of $B^0 \rightarrow K^{*0}\mu\mu$ (B⁺ \rightarrow KII)
 - Measurement of V_{ub} in $\Lambda_b{\rightarrow}p\mu\nu$
 - Most precise measurement of φ_s in $B_s{\rightarrow}J/\psi\varphi$
 - ~2.4\sigma and 2.1\sigma evidence for LFU Violation in $B^{\scriptscriptstyle +}{\rightarrow} KII$ and $B \rightarrow D^{{\star}{\scriptscriptstyle +}} \tau^{\scriptscriptstyle -} \nu$
 - Observation of pentaquark states

FPCapri2016, 11/06/2016

FPCapri2016, 11/06/2016

Franz Muheim

$B_s \rightarrow \phi \phi$ is golden mode for upgrade

CP Violation in B_s-

- probe CP violating weak phase ϕ_s in hadronic B_s penguin decays
- Sensitive to new physics in decay amplitude
- Prediction for ϕ_s very close to zero
- LHCb results on $B_s \rightarrow \phi \phi$
 - φ_s = -170 ± 150 ± 30 mrad
- LHCb upgrade
 - Sensitivity $\sigma(\phi_s) \sim 0.02$
 - Comp. to $\sigma(\phi_s, \text{ theory}) \leq 0.02$
 - Non zero ϕ_s result \rightarrow New Physics

M. Raidal, arXiv:hep-ph/0209091 M. Bartsch et al., arXiv:0810.0249

Phys. Rev. D 90 (2014) 052011

Z(4430)⁻ Resonance

- $Z(4430)^- \rightarrow \psi(2S)\pi^-$ observed by Belle in B⁰ $\rightarrow \psi(2S) K^+\pi^-$ decays
- not seen by BaBar
- charged state, not described by quarkonia model
- quark content ccud?

PRD88 (2013) 074026

PRD79 (2009) 112001

FPCapri2016, 11/06/2016

Z(4430)⁻ Resonance

LHCb confirms Z(4430)⁻

LHCb-PAPER-2014-014, arXiv:1404.1903 Phys. Rev. Lett. 112 (2014) 222002

- Observation of the resonant character of the Z(4430)⁻ state

• Measurement based on 4-dim amplitude fit

- highly significant Z(4430)⁻ state is required
- spin-parity is unambiguosly 1⁺
- Consistent with a **tetraquark** state

LHCb

LHC & LHCb - Run 2

• LHC restarted in 2015

- Operated successfully at √s = 13 TeV
- 25 ns bunch crossing,
- 2244 bunches

• LHCb restarted in 2015

- All detectors fully operational
- Deployed new trigger scheme

- Online calibration and alignment
- Offline reconstruction in High Level Trigger!

FPCapri2016, 11/06/2016

- Cross sections agree with expectations

FPCapri2016, 11/06/2016

