Recent results of Daya Bay

Rupert Leitner, Charles University, Prague on behalf of the Daya Bay collaboration

- 1. Daya Bay experiment
- 2. Results on θ_{13} and Δ mee
- 3. Searches for light sterile neutrinos
- 4. Precise measurement of reactor neutrino spectra
- 5. Importance of Daya Bay results
- 6. Summary

Daya Bay Collaboration

256 collaborators from 42 institutions:

Europe (2) Charles University, JINR Dubna

North America (16)

Brookhaven Nat'l Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Nat'l Lab, Princeton, Rensselaer Polytechnic, Siena College, Temple Univ., UC Berkeley, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William &

Mary, Yale

Asia (23)

Beijing Normal Univ., CNGPG, CIAE, Chongqing Univ., Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xi'an Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univer National Taiwan Univ., National United University

South America (1) Catholic Univ. of Chile

Neutrino mixing - 3 flavors x 3 mass case:

Canonical representation of Pontecorvo-Magi-Nakagawa-Sakata mixing matrix is done by ordered product of 12, 13 and 23 rotations, one Dirac CP violating phase δ connected to the smallest mixing angle θ_{13} and two Majorana phases $\alpha_{1,2}$:

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{23}) & \sin(\theta_{23}) \\ 0 & -\sin(\theta_{23}) & \cos(\theta_{23}) \end{pmatrix} \begin{pmatrix} \cos(\theta_{13}) & 0 & \sin(\theta_{13}) \cdot e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin(\theta_{13}) \cdot e^{i\delta} & 0 & \cos(\theta_{13}) \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta_{12}) & \sin(\theta_{12}) & 0 \\ -\sin(\theta_{12}) & \cos(\theta_{12}) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Majorana phases α are irrelevant for oscillations.

11.6.2016

Anti-neutrino detectors

Assembly of Anti-neutrino detectors

Antineutrino detectors are immersed in instrumented water pools and covered by RPC detectors from the top

- Outer layer of water Čerenkov RPCs. detector (on sides and bottom) is 1m thick, inner layer >1.5m. Water extends 2.5m above ADs
 - 288 8" PMTs in each near hall
 - 384 8" PMTs in Far Hall
- 4-layer **RPC modules** above pool
 - 54 modules in each near hall
 - 81 modules in Far Hall

•

Near Hall (EH1) Installation

Detection of antineutrinos: Inverse Beta Decay (IBD) V_e

$v_e + p \rightarrow n + e^+$

$$E_{v,THR} = \frac{(m_n + m_e)^2 - m_p^2}{2m_p} = \frac{m_n + m_p + m_e}{2m_p} (m_n - m_p + m_e)$$

$$\approx m_n - m_p + m_e = 1.83 MeV$$

Only antineutrinos with energies larger than 1.8 MeV interact.

Detected energy spectrum is the product of reactor neutrino Flux and IBD cross section and it reaches the maximum around 4 MeV \rightarrow the first oscillation minimum is at 0.5 km/MeV \rightarrow 2 km for 4MeV

Detection of antineutrinos via Inverse Beta Decay (IBD) is performed by the coincidence of prompt signal from positron and delayed signal of neutron capture on Gd (or H).

Neutron capture on Gadollinium

$n + {}_{64}^{A}Gd \rightarrow {}_{64}^{A+1}Gd^* \rightarrow {}_{64}^{A+1}Gd + E_{\gamma}$										
$A = 152 \left(\xrightarrow{\alpha} 148 Sm \right)$	$\sigma_{n+{}^{A}_{64}\text{Gd}^{A+1}_{64}\text{Gd}^{*}}[b]$ 735	Abund.[%] 0.20	B[MeV/A] 8.233399							
A = 154	85	2.18	8.224794							
A = 155 $A = 156$	1.8	20.47	8.215320							
A = 157 A = 158	254000	15.65	8.203501 8.201817							
$A = 138$ $A = 160 \left(\underbrace{-2\beta}_{66} D_{y} \right)$	1.4	24.84	8.183010							

$$\sum_{\gamma} E_{\gamma} \left(n + {}^{155}_{64}Gd \right) = 8.536 MeV$$
$$\sum_{\gamma} E_{\gamma} \left(n + {}^{157}_{64}Gd \right) = 7.937 MeV$$

6th Workshop, Capri, 11-13 May

Prompt .vs. Delayed Signal

6th Workshop, Capri, 11-13 May

In presented nGd analysis more than 1 milion inverse beta decays have been detected in near halls and more than 150 thousands inverse beta decays have been detected in far hall

>

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates <	304 459	309 354	287 098	190 046	40.956	41 203	40 677	27 419
DAQ live time (days)	565.436	565.436	568.03	378.407	562.451	562.451	562.451	372.685
ε_{μ}	0.8248	0.8218	0.8575	0.8577	0.9811	0.9811	0.9808	0.9811
ε_m	0.9744	0.9748	0.9758	0.9756	0.9756	0.9754	0.9751	0.9758
Accidentals (per day)	8.92 ± 0.09	8.94 ± 0.09	6.76 ± 0.07	6.86 ± 0.07	1.70 ± 0.02	1.59 ± 0.02	1.57 ± 0.02	1.26 ± 0.01
Fast neutron (per AD per day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
⁹ Li/ ⁸ He (per AD per day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14			
Am-C correlated 6-AD (per day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12		0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.09	
Am-C correlated 8-AD (per day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.03
$^{13}C(\alpha, n)^{16}O$ (per day)	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate (per day)	657.18 ± 1.94	670.14 ± 1.95	594.78 ± 1.46	590.81 ± 1.66	73.90 ± 0.41	74.49 ± 0.41	73.58 ± 0.40	75.15 ± 0.49

Daily rate is ~2500 IBD events in near halls and ~300 IBD events in far hall.

IBD event rates follow reactor powers.

Due to oscillations **measured rates** in the FAR hall (EH3) are lower than **expected**.

11.6.2016

Prompt-delayed coincidence:

- Prompt positron: 0.7 MeV < E_p < 12 MeV Delayed neutron: 6.0 MeV < E_d < 12 MeV
- Capture Time: 1 μ s < Δ t < 200 μ s

Multiplicity:

- No signal 200 µs around IBD

Muon Veto:

Pool muon (muon detected in water pool): veto following 0.6 ms Muon signal (> 20 MeV) detected in AD: veto following 1 ms High energy muon signal (AD shower muon >2.5 GeV): veto following 1 s (that is >5 T_{1/2} of ⁹Li / ⁸He isotopes)

⁹Li and ⁸He isotopes background

These isotopes are products of photonuclear interactions of cosmic muons on C nuclei

$${}^{9}_{3}Li \xrightarrow{T_{1/2}=178ms\,50\%} {}^{8}_{4}Be + e^{-} + \overline{\nu}_{e} + n \quad Q = 1$$

$${}^{8}_{4}Be \rightarrow \alpha + \alpha$$

$${}^{9}_{3}Li \xrightarrow{T_{1/2}=178ms\,50\%} {}^{9}_{4}Be + e^{-} + \overline{\nu}_{e}$$

3.607 *MeV* Electron produces prompt signal. Due to lare Q value it spans whole spectrum. Together with released neutron it fully mimic the signature of antineutrino signal.

$${}^{8}_{2}He \xrightarrow{T_{1/2}=119ms16\%}{}^{7}_{3}Li + e^{-}_{7} + \overline{\nu}_{e} + n \qquad Q = 10.651 \, MeV$$

$${}^{8}_{2}He \xrightarrow{T_{1/2}=119ms84\%}{}^{8}_{3}Li^{*} + e^{-}_{7} + \overline{\nu}_{e}$$

$${}^{8}_{3}Li^{*} \rightarrow {}^{8}_{3}Li + 0.98 \, MeV\gamma$$

$${}^{8}_{3}Li \xrightarrow{T_{1/2}=840ms}{}^{8}_{4}Be + e^{-}_{7} + \overline{\nu}_{e}$$

$${}^{8}_{4}Be \rightarrow \alpha + \alpha$$

6th Workshop, Capri, 11-13 May

RATE ANALYSIS

SPECTRAL ANALYSIS Spectral analysis measures θ13 and Δmee² and provides unambiguous proof of oscillations

6th Workshop, Capri, 11-13 May

Result of spectral analyses is simultaneous fit of (almost uncorrelated) values of θ 13 and mass splitting Δm^2 ee

6th Workshop, Capri, 11-13 May

DAYA BAY nH RESULTS

PHYSICAL REVIEW D 90, 071101(R) (2014)

Independent measurement of the neutrino mixing angle θ_{13} via neutron capture on hydrogen at Daya Bay

 $\sin^2 2\theta_{13} = 0.083 \pm 0.018$

PHYSICAL REVIEW D 93, 072011 (2016)

New measurement of θ_{13} via neutron capture on hydrogen at Daya Bay

 $\sin^2 2\theta_{13} = 0.071 \pm 0.011$

15.5% precision

This results has the same precision as recently published updates measurement of RENO Experiment.

6th Workshop, Capri, 11-13 May

Importance of precise measurement of θ 13 $\sin^2 2\theta_{13} = 0.082 \pm 0.004$

1. We know precisely the electron neutrino content in the m3 mass eigenstate:

$$|U_{e3}|^2 \equiv \sin^2 \theta_{13} = (2.09 \pm 0.10)\%$$

2. θ13 is also measured via an appearance of electron (anti)neutrinos in muon (anti)neutrino beams in T2K, MINOS and NOvA. Measured appearance probability in these experiments is the function of θ13 but also of yet unknown CP violating phase, neutrino mass hierarchy and the octant of θ23. Comparison of reactor and accelerator measurements will shed a light on yet unknown variables of neutrino mixing.

$$\sin^2 2\theta_{13}^{REACTOR} \qquad \sin^2 2\theta_{13}^{ACC} \left(\delta, NH / IH, \theta_{23} < 45^o / \theta_{23} > 45^o\right)$$

3. The effect of CP violation in neutrino oscillations is proportional to θ_{13} : $\cos(\theta_{13})\sin(2\theta_{13}) \cong 0.28$

$$P_{\nu\mu\to\nu e}^{-}(L/E) - P_{\nu\mu\to\nu e}^{-}(L/E) = 2\sin(\delta)\cos(\theta_{13})\sin(2\theta_{13})\sin(2\theta_{12})\sin(2\theta_{23})$$

$$\times \sin\left(\frac{\Delta m_{21}^2}{4\hbar c}\frac{L}{E}\right) \sin\left(\frac{\Delta m_{31}^2}{4\hbar c}\frac{L}{E}\right) \sin\left(\frac{\Delta m_{32}^2}{4\hbar c}\frac{L}{E}\right)$$

11.6.2016

CP and **T** violation in lepton sector can be investigated with neutrino oscillations

With current experiments we can probe CP symmetry:

$$P_{\nu\mu} \to ve^{-(L/E) - P_{\nu\mu} \to ve^{-(L/E)}}$$

To measure T violation, sources of electron neutrinos with GeV energies will be needed.

$$P_{\nu\mu \to \nu e}(L/E) - P_{\nu e \to \nu\mu}(L/E)$$

Importance of Δm_{ee}^2 measurement $\Delta m_{32}^2 (NH) = (2.37 \pm 0.11) \cdot 10^{-3} eV^2$ $|\Delta m_{ee}^2| = (2.42 \pm 0.11) \times 10^{-3} eV^2$ $\Delta m_{32}^2 (IH) = -(2.47 \pm 0.11) \cdot 10^{-3} eV^2$

Uncertainties are compatible to those measured by muon neutrinos disappearance experiments MINOS and T2K.

This year we will celebrate 60 years from the discovery of neutrino. Even after 60 years we still do not know absolute values of neutrino masses. **Results of neutrino oscillation experiments provide lower limits of neutrino masses.** Normal hierarchy: $m1 \ge 0, m2 \ge ~8.7 meV, m3 \ge ~50 meV \rightarrow mve \ge ~3 meV; \Sigma mi \ge ~60 meV$

```
Inverse hierarchy:
m3\geq0, m1,m3 \geq~50 meV \rightarrow mve \geq~50 meV; \Sigmami \geq~100meV
```

11.6.2016

Searches for light sterile neutrinos.

Fourth neutrino mass eigenstate imply three additional mixing angles θ_{14} , θ_{24} and θ_{34} (cij = Cos(θ ij), sij = Sin(θ ij)) and two additional CP violating Dirac phases:

$$U^{4x4} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & c34 & s34 \cdot e^{-i\delta34} \\ & & -s34 \cdot e^{+i\delta34} & c34 \end{pmatrix} \begin{pmatrix} 1 & & & & \\ & c24 & s24 \cdot e^{-i\delta24} \\ & & 1 & \\ & & -s34 \cdot e^{+i\delta34} & c24 \end{pmatrix} \begin{pmatrix} c14 & & s14 \\ & 1 & \\ & & 1 & \\ -s14 & & c14 \end{pmatrix} \begin{pmatrix} U^{3x3}_{e1} & U^{3x3}_{e2} & U^{3x3}_{e3} \\ U^{3x3}_{\mu 1} & U^{3x3}_{\mu 2} & U^{3x3}_{\mu 3} \\ U^{3x3}_{\tau 1} & U^{3x3}_{\tau 2} & U^{3x3}_{\tau 3} \\ & & & 1 \end{pmatrix}$$

Electron (anti) neutrino disappearance measurement is described by the Uei terms of the mixing matrix and **is sensitive only to 1-4 mixing**

$$U_{e1}^{4x4} = c14 \cdot U_{e1}^{3x3}$$

$$U_{e2}^{4x4} = c14 \cdot U_{e2}^{3x3}$$

$$U_{e2}^{4x4} = c14 \cdot U_{e3}^{3x3}$$

$$U_{e3}^{4x4} = c14 \cdot U_{e3}^{3x3}$$

$$\Delta m_{4e}^{2} = \frac{|U_{e1}^{3x3}|^{2} \Delta m_{41}^{2} + |U_{e2}^{3x3}|^{2} \Delta m_{42}^{2} + |U_{e3}^{3x3}|^{2} \Delta m_{43}^{2}}{|U_{e1}^{3x3}|^{2} + |U_{e3}^{3x3}|^{2} + |U_{e3}^{3x3}|^{2}} \leq \Delta m_{41}^{2}$$

6th Workshop, Capri, 11-13 May

11.6.2016

Precise measurement of the reactor neutrino flux

PRL 116, 061801 (2016)

PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

Unfolded antineutrino spectrum

Ratio of antineutrino spectrum to Huber-Mueller model

Summary

- The Daya Bay reactor neutrino oscillation experiment measures the value of $\sin^2 2\theta_{13}$ with 6% precision (via nGd). Measurement via nH capture provide an independent measurement with 15.5% precision. The combined result has 5% precision.
- The precision of $|\Delta m_{ee}^2|$ is 4.5 % and it is comparable to the results from accelerator experiments T2K & MINOS.
- Daya Bay provides the most stringent constraints on the content of electron neutrino in hypothetical fourth neutrino mass eigenstate in the region of mass splitting: $10^{-3} eV^2 < |\Delta m^2_{41}| < 0.1 eV^2$
- Measured total flux of reactor neutrinos confirmed the reactor neutrino anomaly. Spectrum of neutrinos exhibit an excess up to 4σ around neutrino energies of 6 MeV.
- Further improvement of the results is expected.

11.6.2016