

Ewa Rondio, on behalf of the T2K Collaboration

National Centre for Nuclear Research

Warsaw, Poland

Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics – FPCapri2016

AnaCapri, June 10-13, 2016

T2K

- Neutrino oscillation was a surprise in 90's,
- now it is well-established phenomenon and a lot of efforts are made to determine its parameters
- In future it can be a tool for
 - beyond SM effects
 - CP-violation mechanism
 - Understanding matter-antimatter asymmetry

Neutrino oscillations - 3 flavours 3 picture as of today Pontecorvo-Maki-Nakagava-Sakata (PMNS)mixing matrix **FLAVOR** MASS $\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{+i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ "solar" "atmospheric" CHOOZ, SK, K2K, T2K, MINOS SNO, KamLand, DayaBay, SK, Borexino Nova Reno, DblChooz, $\Delta m_{31}^2 = \frac{2.47 \pm 0.06}{-2.34 \pm 0.06}$ $\times 10^{-3} eV^{2}$ $\Delta m_{21}^2 = (7.54_{-0.22}^{+0.26}) \times 10^{-5} eV^2$ T2K $\sin^2 \theta_{12} = 0.308 \pm 0.017$ +0.033+0.0020 $\sin^2 \theta_{23} (\Delta m^2 > 0) = 0.437^{\circ}$ $\sin^2 \theta_{13} (\Delta m^2 > 0) = 0.0234$ -0.023-0.0019 +0.039 $\sin^2 \theta_{23}(\Delta m^2 < 0) = 0.455$ +0.0019 $\sin^2 \theta_{13} (\Delta m^2 < 0) = 0.0240$ -0.031-0.0022 $\Delta m_{ii}^2 = m_i^2 - m_i^2$ Two free parameters for the three $\Delta m^{2'}s$. Based on PDG2014 $(\Delta m_{31}^2 = \Delta m_{21}^2 + \Delta m_{32}^2)$

Mass hierarchy and matter effects

- Δm² gives no information about absolute scale and on mass ordering
- In the Sun oscillations happen in dense matter
- Mikheyev–Smirnov–Wolfenstein (MSW) effect matter influence effect of electron density → effective mass of electron neutrino is changing
 - is raised for neutrino
 - is lowered for anti-neutrino
- Resonance enhancement appears at specific energies
- It depends on Δm² and electron density
- For Sun we observe resonance around 10 MeV
- From that we know that m₁ < m₂
- position of m₃ is not known
 - \rightarrow open question

T2K experiment

- Tokai-2-Kamioka: long-baseline experiment with narrow-band beam
- Muon neutrinos produced in
- J-PARC laboratory in Tokai
- (30 GeV protons on graphite)
- Near detector station 280 m from the production point measures non-oscillated beam
- Far detector (295 km away) Super-Kamiokande, water-Cherenkov detector in

Main goal: neutrino oscillation studies
muon (anti-)neutrino disappearance
electron (anti-)neutrino appearance

The T2K Collaboration

... and ways of measuring θ_{13}

disappearance -> reactor experiments

$$P_{\rm sur} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.267 \Delta m_{31}^2 L/E),$$

Energy ~ a few MeV Distance ~ km 6

 appearance -> long-baseline experiments with v_u beam

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27\Delta m_{23}^{2}L/E\right)$$

Second order terms depend on δ and mass hierarchy

Energy ~ GeV Distance ~ a few hundred km

Experimental set-up dedicated to measurements of oscillations with Δm^2_{23}

 θ_{23} and θ_{13}

Data collection, result publication

POT = Protons On Target

- 7.0·10²⁰ POT delivered in v mode, 4.04·10²⁰ POT in antiv mode (till June 1, 2015)
- Goal: 7.8·10²¹ POT

This year

- Maximum beam power achieved so far: 421 kW
- On May 27'th we achieved

 $v / \overline{v} = 50\% / 50\%$

Near detectors: INGRID and ND280

Detector on the beam axis beam intensity and direction → stability control Precision of direction measurement [mrad]

 $\bar{\theta}_X^{\text{beam}} = 0.030 \pm 0.011 (\text{stat}) \pm 0.095$

 $\bar{ heta}_Y^{
m beam} = 0.011 \pm 0.012 ({
m stat}) \pm 0.105$

Ratio of events: observed/predicted

Near detector - ND280

- Off-axis near detector
- v_µ and v_e flux measurement (constraints for oscillation measurements)
- Cross-section measurements (carbon, oxygen)

Data on event display (CC 2 track):

Same beam angle as for far detector – SK Constraints on flux, cross-section and syst. for predictions at SK

Here goal is to tune MC parameters as well as detector description to get good agreement for data and $MC \rightarrow$ fit model param. and systematics

 Data in ND280 – selecting Charged-Current interactions
 → 3 categories (topology, not interaction type): CC0π, CC1π⁺, CC-other
 and knowing how interaction types contribute
 → type parameters, including fractions

Systematic uncertainties on expected 14 number of interactions in SK 2014 ∇ 2015 $\overline{\nabla}$

T2K oscillation systematic (fractional) errors		ν _µ sample 2014	ν _e sample 2014	ν _µ sample 2015	v _e sample 2015
v flux		16%	11%	7.1%	8%
v flux and cross section	without ND280 constraint	21.7%	26.0%	9.2%	9.4%
	WITH ND280 constraint	2.7%	3.2%	3.4%	3.0%
independent cross sections (different nuclear targets)		5.0%	4.7%	* 10%	* 9.8 %
Final State Interaction / Secondary Interaction at Super-K		3.0%	2.5%	2.1%	2.2%
Super-K detector		4.0%	2.7%	3.8%	3.0%
Total	without ND280 constraints	23.5%	26.8%	14.4%	13.5%
	WITH ND280 constraints	7.7%	6.8%	*11.6%	*11.0%

including uncertainties on effects of multi-nucleon interactions (MEC)

Far detector -

50 kton of water, 22.5 kton fiducial volume

beam events selected based on time correlation

Single ring – candidate for lepton from CC interaction
If track contained in SK (FC)
→ energy measured
→ assuming CCQE one can calculate v energy

FC events within beam spill window accidentals < 1%

Observation in Super-Kamiokande

μ-like

- Single reconstructed muon-like ring
- P_{_} > 200 MeV/c
- · One or less decay electrons

e-like

Single reconstructed

E_{visible} > 100 MeV

electron-like ring, with

Event displays from Monte Carlo

Selecting candidates for CC v_{μ} and CC v_{e}

- \rightarrow decay electron could signal invisible π \rightarrow not π^0 – like
 - dedicated tools used to search for π^0 's between e-like single ring events \rightarrow to reduce contribution from NC v_{μ} with π^0 production where one ring is not reconstructed or overlaps

Important improvement in purity of v_e selected sample

- predictions are done for normal and inverted mass hierarchy
- analysis can be done using v reconstructed energy or charged lepton momentum and angle with respect to the beam direction.
- for best precision constraint from reactor experiments on $sin^2\theta_{13}$ is used

Summary of the results for 2-3 and 1-3 sectors from global fits

18

replace δ by $-\delta$ and a by -a for $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$

Long Baseline Future

Long term ie. after/around 2025

Summary:

- $\theta_{23} = 45.8 \pm 3.2^{\circ}$ $\theta_{12} = 33.46 \pm 0.85^{\circ}$ $\theta_{13} = 8.51 \pm 0.23^{\circ}$
- $\Delta m_{21}^{2} = (7.53 \pm 0.18) \cdot 10^{-5} \text{ eV}^{2}$ $|\Delta m_{32}^{2}| = (2.44 \pm 0.06) \cdot 10^{-3} \text{ eV}^{2}$ $\delta_{CP} = \text{ some hints}$

PLEASE CONTINUE TO ENJOY NEUTRINO OSCILLATIONS precision measurements of to get better knowledge on ... Probability (per $\pi/50$) favored Normal Hierarchy **Inverted Hierarchy** Marginalized over MH 68% Credible int. 20 90% Credible int. 15 T2K phase II and Hyper-K welcome excluded new, enthusiastic collaborators ...

and more....

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 δ_{CP}/π

Improvements require better knowledge of interactions, better cross section measurements to test models

Measurement of the inclusive ν_{μ} charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam

Observation of all expected transitions ²⁵

observed (2013):

28 events

7.3 σ significance for non-zero θ_{13}

Remember that v_{μ} appearance was "visible" in SNO via NC interactions, but not direct observation

20 30 40 p___(GeV/c) Sum of momenta of charged part

0.3

0.2

and gammas

Reconstructed neutrino energy