

LHCb upgrade: Plans and physics potential

U. Marconi INFN Bologna (Italy) On behalf of the LHCb Collaboration

FPCapri2016, June 13, 2016

LHCb upgrade

• The upgrade of the LHCb detector and DAQ system aims to enable the collaboration to run the experiment at a luminosities 5 times greater than presently:

 $L_1 = 4. \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow L_2 = 2. \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

- Goals:
 - Double the present yield: collect 5 fb⁻¹/y in run 3 and run 4
 - Improve considerably the trigger efficiency on hadronic channels ($B_s \rightarrow \varphi \varphi$) and on rare decays.
 - Expand the scope to the lepton flavor sector, electroweak physics, QCD and exotics searches.
- The upgrade (phase I) will take place during the LS2, foreseen in the years 2019 2020.

Single arm forward spectrometer

Covering about 4% of the solid angle the detector captures 40% of the beauty and charm cross-sections.

- LHCb measured $\sigma_{\text{beauty}} = 75 \ \mu\text{b}$ at $\sqrt{s} = 7 \ \text{TeV}$ in acceptance.
- Charm cross section is ~20 times more.
- Cross sections scale linearly with Vs.

Acceptance $2 < \eta < 5$

3

FPCapri2016

Present detector performance

"The LHCb Detector at CERN"; The LHCb Collaboration, JINST 3, S08005 (2008)

Luminosity

• Constant luminosity: stable running conditions and selection criteria

- LHCb was designed to operate with a single collision per bunch crossing, running at 2. × 10³² cm⁻² s⁻¹, with 25 ns bunch spacing and 2700 circulating bunches.
- We run at 4. × 10³² cm⁻² s⁻¹, with 1262 colliding bunches, and 50 ns time spacing: 4 times more collisions per crossing than planned in the detector design.

Trigger evolution

LHCb 2015 Trigger Diagram

The 1 MHz readout rate limitation

- Due to the available bandwidth and the limited discrimination power of the hadronic L0 trigger, LHCb experiences the saturation of the trigger yield on hadronic channels around 4. ×10³² cm⁻²s⁻¹
- Increasing the first level trigger rate considerably increases the efficiency on the hadronic channels.

7

Upgrade main concepts

Requirements

- Readout the whole detector at 40 MHz.
- Event selection performed by means of the HLT software trigger only.
- Luminosity of 2. $\times 10^{33}$ cm⁻²s⁻¹
 - pp interaction rate: 27 MHz
 - Average visible interactions: $\mu = 5.2$ Poisson mean: v = 7.6

Consequences

- The detector front-end electronics has to be entirely rebuilt because of the new readout requirement.
- New HLT farm and network new LAN technologies and need of powerful many-core processors.
- Rebuild the trackers finer detector granularity to reduce channel's occupancy.
- Consolidate sub-detectors Let them stand the foreseen higher luminosity.

DAQ Upgrade: 40 MHz PCIe based readout

HLT output rate

Effective input rate: 30 MHz, event size = 100 kB

MB events	<i>b</i> -hadrons	c-hadrons	light, long-lived hadron	IS	Candidates which had
Reconstructed yield	0.032 ± 0.001	0.118 ± 0.001	0.406 ± 0.002	<	at least two tracks from
$\epsilon(p_{\rm T} > 2 { m GeV}/c)$	$85.6\pm0.6\%$	$51.8\pm0.5\%$	$2.3\pm0.1\%$	-	produced.
$\epsilon(au > 0.2 ~{ m ps})$	$88.1\pm0.6\%$	$63.1\pm0.5\%$	$99.5\pm0.1\%$		
$\epsilon(p_{\rm T}) \times \epsilon(\tau) \times \epsilon({\rm LHCb})$	$27.9\pm0.3\%$	$22.6\pm0.3\%$	$2.2\pm0.1\%$	_	
Output rate	$27~\mathrm{GBs^{-1}}$	$80 \mathrm{~GBs^{-1}}$	$26~{ m GBs^{-1}}$	←	Challenge

Rates as a function of pT cut for part. reco. candidates

How to limit the HLT output rate? downscale signals, reduce the event size.

Upgrade of the tracking system

FPCapri2016

VELO upgrade

- Silicon pixels for higher granularity and improved resolution
 - $\,$ Pixels of surface area 55 \times 55 μm^2
- Reduced material budget:
 - Sensor thickness: 300 μ m \rightarrow 200 μ m
 - − Aluminum foil: $300 \ \mu m \rightarrow \leq 250 \ \mu m$
- Enlarged acceptance:
 - − Edge of detector closer to beam 8.2 mm \rightarrow 5.1 mm
 - 26×2 modules, in two retractable halves.
- New readout chip VeloPix with CMOS 130 nm technology
 - Sustain ~400 MRad
 - Close to beam ~10¹⁶ n_{eq} cm⁻² for 50 fb⁻¹
- Cooling
 - Cool to -10°C to -15°C to prevent thermal runaway, by using micro-channel CO₂ cooling

One of the retractable halves

VELO module

FPCapri2016

Velo Upgrade (II)

Velo halves in running position

VELO upgrade performance

current: current technology with upgrade condition

FPCapri2016

Upstream Tracker

- **Reconstruct downstream tracks** of particles decaying after the VELO ($K_S \rightarrow \pi^+\pi^-, \Lambda \rightarrow p\pi$, etc.)
- **Reconstruct upstream tracks**: slow momentum particles that bend out of the acceptance.
- Improve momentum resolution and signal purity of long tracks.
- p_T estimate of charged tracks for fast trigger tracking

 $-\sigma(p_T)/p_T$ ~15% in the p_T range of 0.5-10 GeV/c.

mass resolution improves by about 25%

FPCapri2016

Upstream Tracker (II)

SciFi: the Downstream Tracker_{modules}

- Scintillating Fibre Trackers covering the full acceptance: 5 × 6 m²
- A SciFi detector module is made of multiple layers of 2.5 m long scintillating fibres of 250 µm diameter.
- Very light and uniform material distribution: $X/X_0 = 2.6\%$ per station.
- The fibres are read by SiPM.
 - The SiPMs need to be cooled to -40°C to mitigate radiation damages.
- Expected 60 100 μm spatial resolution.

Tracking performance

RICH detector

- The overall structure of RICH-1 and RICH-2 unchanged.
- HPD photon detectors will be replaced with MaPMT
 - 1920 MaPMT in RICH-1 and 2560 in RICH 2
- The optical layout of RICH 1 has to be modified to reduce the hit occupancy.
 - Increasing the focal length of the spherical mirrors halving the occupancy.
- Remove the Aerogel radiator in RICH-1.
 - ~3.5% of X₀
 - -~ The K and π threshold in C_4F_{10} are 9.3 GeV/c and 2.6 GeV/c .

PDM size of $116 \times 116 \text{ mm}^2$

R11265 MaPMT from Hamamatsu.

RICH PID performance

Running the full simulation and reconstruction chain in $B_s \rightarrow \varphi \varphi$

MUON system

Anode-pad triple-GEM detectors for the R1 regions, MWPCs for the external regions.

- M1 will be removed: currently used by the L0 trigger.
- High particle flux in the innermost regions of station M2.
 Shielding will be installed around the beam-pipe, behind the HCAL, to reduce the occupancy in these regions.

MUON ID Performance

- The upgrade and current performance are obtained from a simulated sample of $B_s \rightarrow \mu^+\mu^-$ events and are evaluated for single muon.
- $DLL_{\mu\pi}$ variable: is based on the distance of matching hits from the extrapolated track in the muon stations, combined with the information coming from RICH and calorimeter detectors.

Calorimeters

- The scintillating pad detector (SPD) and the pre-shower (PS) will be removed.
- Very little effect for the higher electron momentum: p > 10 GeV/c
- A reduction of 10 to 15% in the efficiency is expected at a fixed background retention for lower momenta.

Momentum	SPD/PS	no SPD/PS	
$({ m GeV}/c)$	u = 7.6	u = 7.6	
Selection efficiency 80%			
0	3.2	9.0	
p > 10	0.29	0.32	
Selection efficiency 90%			
0	12	18	
p > 10	1.3	1.4	

Signal efficiency

Upgrade milestone evolution

FPCapri2016

LHCb upgrade beyond 2023

- Upgrade phase Ib: Run 4, 2027 2030
 - Run still at 2. × 10^{33} cm⁻²s⁻¹, with an improved detector.
- Upgrade phase II: Run 5, beyond 2031
 - Run at 2. × 10^{34} cm⁻²s⁻¹, v~40 to collect ~300 fb⁻¹
 - Implies a radical change of the detector.
 - 4D tracking with timing pixel
- "Beyond the LHCb phase 1 upgrade" <u>Theater of Dreams</u>, Manchester 6-7 April 2016

Phenomenological and Theoretical Contributions

Physics benchmarks beyond LS4	Vincenzo Vagnoni 🗎
Bragg Lecture Theatre, Schuster Laboratory, University of Manchester	09:00 - 09:20
Searches for NP in CP violation	Luca Silvestrini 🗎
Bragg Lecture Theatre, Schuster Laboratory, University of Manchester	09:25 - 09:55
Searches for NP in rare decays	Gino Isidori 🗎
Bragg Lecture Theatre, Schuster Laboratory, University of Manchester	10:00 - 10:30

Sensitivity prospects

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.068	0.035	0.012	~ 0.01
	$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
$\mathbf{triangle}$	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$eta(B^0 o J/\psi K_{ m S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	-
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	-

LHCb-PUB-2014-040

- Before the upgrade (8 fb⁻¹)
- After the upgrade (50 fb⁻¹)
- Theory uncertainty (as far as we know today)

The extrapolations assume:

- Precisions scale as VL.
- Gain ×2 on fully hadronic decays
- HLT and analysis performance as in Run I
- Backgrounds as in Run I.

γ from trees

• Combining several independent decay modes is the key to achieve the ultimate precision.

LHCb measurement	Type/ Dataset	Reference
B⁺→DK⁺ D→2h,4h	ADS/(q-)GLW (3fb ⁻¹)	arXiv:1603.08993
В ⁰ → DKπ	Dalitz (3fb ⁻¹)	arXiv: 1602.03455
B⁰→DK* D→Ksππ	GGSZ MD (3fb ⁻¹)	arXiv: 1605.01082
B⁺→DK⁺ D→hhπ⁰	ADS/q-GLW (3fb ⁻¹)	PRD 91(2015) 112014
B⁺→DKππ, D→2h	ADS/GLW (3fb ⁻¹)	PRD 92 (2015) 112005
B⁰→DK* D→2h	ADS (3fb ⁻¹)	PRD 90 (2014) 112002
B⁺→DK D→K₅hh	GGSZ MI (3fb ⁻¹)	JHEP 10 (2014) 097
B ⁺ →DK, D→KsKπ	ADS (3fb ⁻¹)	PLB 733 (2014) 36
$B_s \rightarrow D_s K, D_s \rightarrow hhh$	Time dep (1fb ⁻¹)	JHEP 11 (2014) 060

LHCb combined result

LHCb: $\gamma = (70.9^{+7.1}_{-8.5})^{\circ}$

BaBar: $\gamma = (69^{+17}_{-16})^{\circ}$ PRD 87 (2013) 052015 Belle: $\gamma = (73^{+15}_{-14})^{\circ}$ arXiv:1301.2033

CP violation induced by B_s mixing: ϕ_s

- LHCb results with 3 fb⁻¹
- $\mathbf{B}_{s} \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{K}^{+}\mathbf{K}^{-}, \ \mathbf{\varphi}_{s} = -58 \pm 49 \pm 6 \text{ mrad}$
 - Phys. Rev. Lett. **114** (2015) 041801
- B_s→J/ψπ⁺π⁻, φ_s = 70 ± 68 ± 8 mrad
 Phys. Lett. B736 (2014) 186
- B_s→D⁺_sD⁻_s = 20 ± 170 ± 20 mrad
 Phys. Rev. Lett. 113 (2014) 211801

LHCb average: $\phi_s = -10 \pm 40$ mrad

CP violation in $B_s \rightarrow \phi \phi$

Interference between B_s - $\underline{B_s}$ mixing and the loop-induced decay amplitude.

• FCNC gluonic b→sss penguin

- Provides an excellent probe of new heavy particles entering the penguin quantum loops.
- LHCb result with full Run 1 data set (3fb⁻¹), with approximately 4000 events:

 ϕ_s = (- 170 ± 150 ± 30) mrad

- Overall precision comparable to golden b→ccs modes.
- No sign of discrepancy.

29

Significance of $B_s \rightarrow \mu \mu$ at 6.2 σ

– First observation

 $\mu^+\mu^-$

- Compatibility with the SM at 1.2σ
- $B^0 \rightarrow \mu \mu$ hypothesis:
- Excess of events at the 3σ level observed with respect to background.
- Compatible with SM at 2.2σ

By the end of Run 4 measurements will still be dominated by experimental uncertainty. Uncertainty <10% on the ratio BR(Bd)/BR(Bs) is at reach with 300 fb⁻¹ **New observables**: effective lifetime,... 30

Conclusions

• LHCb has performed very well in Run 1

Confirming to date the Standard Model predictions.

Improvements of LHCb results are expected in Run 2
 Additional 5-6 fb⁻¹ expected by 2018, to be collected with the present
 detector, with improved trigger capabilities.

• The LHCb upgraded detector shall start taking data in 2020

New PCIe based read out and full HLT software trigger at 40 MHz. Optimized tracking system and still good PID. **The preparation of the upgrade is progressing well.**

LHCb prospects look excellent

Heavy flavour physics has still large room for improvements. Key measurements are far from being limited by systematic uncertainties. LHCb has great potential of discovering indirect evidence of NP in future measurements.

The End

Present 1 MHz DAQ system

Push-protocol with centralized flow-control

34

Trigger in Run1

• L0 Trigger: 40 MHz \rightarrow 1MHz

- ECAL, HCAL and MUON detectors read out at 40 MHz
- 20% to disk: deferred processing

• HLT: $1MHz \rightarrow 5 kHz$

- Reconstruct VELO tracks and primary vertices
- Select events with at least one track matching p, p_T, impact parameter and track quality cuts.
- At around **100 kHz** performs inclusive or exclusive selections of the events.
- Full track reconstruction, without particle-identification.
 - Total accept rate to disk for
 offline analysis is around 5 kHz.

Trigger evolution in Run2

- LHC stable beams during 30% of the running ٠ **period**: 70% of the time the CPU of the HLT farm would be idle.
- **Real-time HLT1** •

HLT1 selects events that are temporarily stored on 5.2 PB of the farm servers.

- Buffer 10 days of continuous data taking.
- Staging after the HLT1 filter occurs at a rate of about 100 kHz instead of 1 MHz.
- HLT1 time budget ~50 ms

Deferred HLT2 ۲

Performs the final event filtering, relying on up-to-date calibration constants, with offline quality.

- HLT2 time budget: ~800 ms < _
- Trigger algorithm: ~350 trigger lines _
- Output rate ~12.5 kHz.
- 2.5 kHz processed as Turbo Stream (no more raw data recorded)

stable beam 30% of the time in average

With the increased time allowed trigger's reconstruction can be brought into line with the quality achieved offline

Upgrade phase Ib

- Spectroscopy and CP-violation studies are increasingly focused on high multiplicity final states
- Extend the tracking acceptance of the tracking stations by instrumenting the internal sides of the magnet, and possibly outside the magnet.

- Improve RICH performance: replace part of the MaPMT with SiPM to increase the granularity to 1 mm from the present 3 mm.
- Performance with π^0 and γ are still far behind analyses with charged tracks
 - $B \rightarrow D K \rightarrow (K \pi \pi^0)_D K$
- Neutral reconstruction will be even worse at 2x10³³ cm⁻²s⁻¹: Baseline is to replace the innermost part of ECAL, above 20 fb⁻¹ Think to different ECAL technology?
 - Scintillator-W based ECAL
 - CALICE-type ECAL