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Outline

1. Colored, Non colored particles bounds and 
possible search strategies, cascade decays, VBF, 
monojet etc.

2. Lepton Flavor Violation and Sources in Models

3. Establishing LFV at the LHC
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 Higgs search results, mh : 126 GeV

LHC status…

• in the tight  MSSM window <135 GeV

 (1st gen.) ~       ≥  1.7 TeV

 produced from      ,                  ≥ 700  GeV

 produced directly, ≥ 660  GeV (special case)

 excluded between 110 and 280 GeV for a mass-less        or for   
a mass difference >100 GeV, small M is associated with small   
missing energy

 masses between 100 and 600 GeV are excluded 
for mass-less       for         or for the mass difference >40 GeV 
decaying into e/
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The signal : 
jets + leptons+ t’s +W’s+Z’s+H’s + missing ET

Standard SUSY searches

(or l+l-, )
DM

DM
Colored particles can be 
produced  and they 
decay into the weakly 
interacting stable particle

High PT jet

High PT jet

[mass difference is large]

The pT of jets and leptons
depend on the sparticle
masses which are given by 
models

R-parity conserving

(or l+l-, )
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Non-colored in cascade

 = 50%, ffake = 1% for pT
vis > 20 GeV
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Arnowitt, Dutta, Gurrola, Kamon, 
Krislock and Toback’06,07,08,09



6

Non-Colored sector: LHC

 How can we probe the colorless SUSY sector if  
the first two generations are heavy?

 Not so large M(≡ ሚ࢒࢓ െ࢓෥࣑૚
૙) Smaller Missing energy

 VBF topology: Tagging VBF jets

Challenge:

 ISR+ missing ET + e, b, t etc.
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Monojet+Leptons: Sleptons

Han, Liu, 2015



VBF: Sleptons

8

Dutta, Ghosh, Gurrola, Kamon, Sheldon, Sinha, Wang, Wu, 2015



Monojet+Leptons: Higgsinos
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Higgsino type ૚,૛
૙ (cosmologically interesting): 

The mass difference between ૚
૙ and ૛

૙, ૚
േ: 10 GeV

Baer, Mustafayev, Tata, Phys.Rev. D90 (2014), 115007

ISR+missing ET+Leptons



LFV in SUSY Models
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 LFV can be quite natural in SUSY models

 The grand unified models, e.g., SU(5), SO(10), 
intermediate scale models can provide LFV even when 
the flavor diagonal masses are assumed at  high scale

 LFV can be radiatively induced by flavor violating 
terms in the slepton masses arising from CKM and 
MNSP.

⇒Neutrino flavor 
Oscillations have been  
observed

Borzumati, Masiero (1986)

Hall, Kostelecky, Raby (1986)

Hisano, Moroi, Tobe, 

Yamaguchie (1995)



LFV and Neutrino
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Seesaw mechanism naturally explains small -mass.

Flavor change in the charged 
slepton sector

௅ ஽ ோ ோ
்

ோ ோ

Flavor Change in the neutrino sector to explain the data

Current Neutrino data suggest

ோ
ଵଶ ଵହ

Minkowski (1977)
Yanagida (1979)
Gell-Mann, Ramond, 
Slansky (1979)
Mohapatra, Senjanovic
(1980)



LFV in SUSY Models
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LFV using neutrino couplings:

Flavor violation may reside entirely in f and/or entirely in Y

One can express the RGE induced off-diagonal elements of 
SUSY breaking in terms of  f and Y

௖ ௖

Where  < > = vB-L



LFV in SUSY Models
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 When flavor violation occurs only in f (Majorana LFV)

 When flavor violation occurs only in Dirac Yukawa Y

(with mSUGRA)



LFV in SUSY Models

14

Dashed line: Dirac
Solid line Majorana

Babu, Dutta, Mohapatra, 2002



LFV in SUSY Models
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Barbieri, Hall, Strumia, 1995
Hisano et al, 1997

LFV also occurs without neutrino couplings in SUSY GUTS

Top quarks and anti-tau leptons are group together in SU(5)

ࡾ෤ࢋ
૛

࢐࢏ ૛ ૜࢏ ૜࢐
∗

࢚
૛

૙
૛

૙
૛ ࡼ

ࡳ



LFV in SUSY Models
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The charged slepton mass matrix: 6x6

ሻࡾࡾሺࡸࡸ
૛ : 3x3 matrix for the left(right) sleptons soft masses

ࡾࡸ
૛ : 3x3 matrix for the soft masses: ࢒( tan࢒

In mSUGRA/CMSSM                                                 , ௟=0

The off –diagonal elements  arising from the radiative corrections
produce flavor violation

• Constraints from ࣎ → ,ࢽࣆ ࣆ → ࢉ࢚ࢋ	ࢽࢋ



LFV at the LHC
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 Direct production of ෥࣑૛૙ is also possible

 We need to have the following subsystem presence in the signal

We need to produce charged sleptons at the LHC to 
measure LFV
 Charged slepton production  cross sections are small 

 We use the neutralinos and their decays, 

૛
૙ ∗ േ ∓

૚
૙ where l=e, 

 Neutralinos can arise fron the squark deacys:

૛
૙

૚
૙

ࡸ ૛
૙ q ∗ േ ∓

૚
૙



LFV at the LHC
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૛
૙ ∗ േ ∓

૚
૙ where l=e, 

In the non-LFV scenario

In the LFV scenario, we have in addition

૛
૙

૚
૙

We consider a nonzero 2-3 element and we define

This LFV will enter into ෥࣑૛૙ ሚ࢒ , decay modes and ࣎ → ࢽࣆ amplitudes

Allahverdi, Dutta, Kamon, 2012

ࢂࡲࡸ,ࡾࡾࢾ ൌ
ሾगࡾࡾ

૛ ሿ૛૜
ሾगࡾࡾ

૛ ሿ૜૜



LFV at the LHC
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~ 0.1 pb at 13 TeV LHC

Analysis:

 The final states are characterized by LS and OS tau pair 
 We perform OS-LS to remove background

The whole analysis can be scaled by 
 However, the technique remains the same

Masses in GeV

࣌ሺࢗ෥ࡸ, ,ࡸ෥ࢗ෥ሻऌሺࢍ ෥ࢍ → ෥࣑૛૙ሻ

࣌ሺࢗ෥ࡸ, ,ࡸ෥ࢗ෥ሻऌሺࢍ ෥ࢍ → ෥࣑૛૙ሻ
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࣎࣎࢓
࢞ࢇ࢓ ൌ ෥࣑૚࢓,෤࣎૚࢓ሺࢌ

૙,࢓෥࣑૛
૙ሻ

࢙࢏ሻ࢜ࢎࢍ࢏ࢎሺ࣎,ࢀ࢖ሺࢋ࢖࢕࢒࢙ ሻ ൌ ෥࣑૚࢓,෤࣎૚࢓૛ሺࢌ
૙,࢓෥࣑૛

૙ሻ
ሻ࢙࢏࢜࣎,ࢀ࢖ሺࢋ࢖࢕࢒࢙ ൌ ૜ࢌ ෥࣑૚࢓,෤࣎૚࢓

૙,࢓෥࣑૛
૙ which include the average 

of low and high ࢙࢏࢜࣎,ࢀ࢖ሻ
ሻ࢙࢏ା࢜,ࢀ࢖ሺࢋ࢖࢕࢒࢙ ൌ ෥࣑૚࢓૝ሺࢌ

૙,࢓෥࣑૛
૙ሻ: slope of transverse momentum

sum distribution
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Using the observables, we solve for the masses.

 Two solutions due to non-linear equations

Mass measurements for the chosen benchmark point:
૙࢓ ൌ ૛૞૙	۵࢓,܄܍૚/૛ ൌ ૜૞૙	۵܄܍, ૙࡭ ൌ ૙, ࢼ࢔ࢇ࢚ ൌ ૝૙, ࣆ ൐ ૙. 

 The statistical uncertainties are for ࣦ ൌ ૚૙૙૙ ૜૙૙ ૚ି࢈ࢌ	

 The systematic uncertainties are due to a jet energy scale 
mismeasurement of 3%
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We now investigate the effect of ࢂࡲࡸ,ࡾࡾࢾ

The presence of this term allows:

෥࣑૛૙ → ,෪	૚࢒ 			 ሚ૚࢒ → ෥࣑૚૙ࣆ

 ෥࣑૛૙ → ෥࣑	ഥmissing ET, where missing ET :ࣆ ૚૙

So the final states contain muons

 However the tau decays also contain muons: ࣎ ࣆ
෥࣑૛૙ → ࣎ത࣎ ෥࣑૚૙ → ෥࣑	ഥmissing ET,         ET :ࣆ ૚૙, ࣇ࣎ࣇഥࣆ
 Missing ET in the background

 We need to separate these extra muons from the tau decays
 complicated analysis
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T܍ܐ	ܜ܋܍܎܎܍	܎ܗ		ࢂࡲࡸ,ࡾࡾࢾ on our benchmark points 

• The change in the stau mass is very small

 The values of 	ࢂࡲࡸ,ࡾࡾࢾ larger than 15% violate the 
B(࣎ → ൑ (ࢽࣆ ૝. ૝ ൈ	૚૙ିૡfor our benchmark point
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Analysis plan:
 Take one of the mass points

 Determine the 	෥߯ଶ଴. ߬̃ଵ, ෤߯ଵ଴ masses by using various observables

 Generate the m distribution from m
by using a transfer function

 Subtract the determined m and from the observed m
distributions

 Determine the amount of flavor violation
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Transfer function for both masses

 The  (left) and  (right)invariant mass distribution for the LHC
simulated 	0=ࢂࡲࡸ,ࡾࡾࢾ point (first solution)

 The distribution is for an integrated luminosity of 1000 fb-1
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 The  mass distribution for 
 .ோோ,௅ி௏=0.15ߜ	

 Dashed is the second solution

 Comparison of the 
determined m with 
true m

 Use the transfer function to transform the ࣎࣎࢓
܄۴ۺି࢔࢕ࡺ distribution 

into a ࣆ࣎࢓
shape܄۴ۺି࢔࢕ࡺ

 Subtract the distribution from the  ࣎࣎࢓
distributionࢇ࢚ࢇࢊ
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Keeping                                      same:  

For more than 2significance

࣌ሺࢗ෥ࡸ, ,ࡸ෥ࢗ෥ሻऌሺࢍ ෥ࢍ → ෥࣑૛૙ሻ
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Conclusion
 Search for LFV requires the production of non-colored particles

 If the colored particles are within reach then the non colored 
particles can be probed from the cascade decays

When colored particles are heavy, the non-colored states 
need to be produced directly, VBF, ISR + missing ET +X 

 SUSY models have many sources to produce LFV

 Establishing LFV at the LHC can be possible


