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1. Colored, Non colored particles bounds and
possible search strategies, cascade decays, VBF,
monojet etc.

2. Lepton Flavor Violation and Sources in Models

3. Establishing LFV at the LHC



LHC status...

= Higgs search results, m,: 126 GeV

e in the tight MSSM window <135 GeV

’< Mz (1st gen.) ~M52z 1.7 TeV >

> fl produced from ( , m-ﬂ >700 GeV
> '[1 produced directly, m't'l 2 660 GeV (special case)

-> 5/[1 excluded between 110 and 280 GeV for a mass-less )?lo or for
a mass difference >100 GeV, small AM is associated with small
missing energy

= Y, masses betvggen 109 and 600 GeV are excluded
for mass-less 1, for y. or for the mass difference >40 GeV
decaying into e/p




Standard SUSY searches

(or I*l-, T+1-) _ _
h (or Z) q High P jet
[mass difference is large]

DM i
Colored particles can be
produced and they
decay into the weakly
interacting stable particle

The p; of jets and leptons
depend on the sparticle
masses which are given by
models

R-parity conserving
High P jet 4 h (or Z) (orI'l’, T4+1-)

The signal :

jets + leptons+ t's +W’s+Z’s+H’s + missing E;
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Non-colored I1n cascade
!

g Cuts to reduce the SM backgrounds (W+jets, ...)
\ U E,"= > 180 GeV, N(jet)>2 with E, > 100 GeV
~ A E, ™+ EJ1+ E 2 > 600 GeV; N(1) > 2 with P, > 40,20 GeV
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Non-Colored sector: LHC

Challenge:

» How can we probe the colorless SUSY sector if
the first two generations are heavy?

» Not so large AM(= m; — mj?(l))-) Smaller Missing energy

 VBF topology: Tagging VBF jets
forward tagging jets

T
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N1 |@
-
decay products
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d ISR+ missing E+ + e, u, 1, b, t etc.



Monojet+Leptons: Sleptons

Left-handed sleptons
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FIG. 5. The statistical significance (S/v/B) after all cuts, as a function of the slepton mass, for three mass
splittings (denoted Am). An integrated luminosity of 100 fb=! at LHC 14 is assumed. Left: left-handed
slepton; right: right-handed slepton. Two generations of sleptons (selectons and smuons) of degenerate

masses are included.

Han, Liu, 2015



TABLE III: Summary of the effective cross-section (fb) and significances, with 3000 fb™* after all cuts for different SUSY points
at LHC14. The effective cross-section of total standard model background after all cuts is 0.0020 fb for “exactly 2-muon final

state analysis”, and 0.0189 fb for “exactly 1-muon final state analysis®. The significances presented are caleulated by means of

VBF: Sleptons

both “cut and count (CC)” and “shape analysis” methods.

2-muon final state

|-muon final state

Cross-section Significance Signiflcance

Cross-section Sigmuficance Significance

Combined

Significance

GeV b CC Shape b CC Shape | CC Shape
2 135 1101 0.0014 1.3 | 8 0.0021 0.8 1.3 16 23
15 135 1201 0.0021 2 26 0.0029 1.0 |5 2E 23
0 135 125] 00019 2 29 0.0044 1.8 29 29 435
5 135 1301 00004 0.3 0.5 0.0036 f 2.2 15 21
15 125 1101 0.004 24 3.1 0.0035 1.3 | 8 30 38
0 125 115] 00018 20 28 0.0043 1.8 28 20 438
5 125 1200  0.0006 0.6 |0 0.0046 1.9 1] 21 319
5 115 100 00027 28 .1 0.0043 1.0 | 35 40
10 115 105 0.0021 23 34 0.0050 2.0 W. 33 Al
9 113 11U 0.0007 0.0 ] (.0058 2.4 il 25 40

Dutta, Ghosh, Gurrola, Kamon, Sheldon, Sinha, Wang, Wu, 2015



Monojet+Leptons: Higgsinos

Higgsino type x‘l’ , (cosmologically interesting):
The mass difference between x? and %9, x3: 10 GeV

ISR+missing E-+Leptons
2" leptons+1(0 b-)jets at LHC14

|m 16 L 1‘\‘I l‘l I I l“‘l I I I [ I I I I I I I | I I I | I I I I I

. R Seay m m,,=800GeV

(7)) - . ! i ! .
“r- N\ . & m m,=1000GeV

12

10

=

0 1 | | | | ] | | | 1 | I | | ] I L | | | | | | | — | I | ]
100 120 140 160 180 200 220 240
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LFV INn SUSY Models

= LFV can be quite natural in SUSY models

' Borzumati, Masiero (1986)

Neutrino flavor N e Hall, Kostelecky, Raby (1986)
Oscillations have been oA N6 Hisano. Moroi. Tobe.
observed / i _
‘ ~ — - > Yamaguchie (1995)
M B €

= The grand unified models, e.g., SU(5), SO(10),
Intermediate scale models can provide LFV even when
the flavor diagonal masses are assumed at high scale

= LFV can be radiatively induced by flavor violating

terms in the slepton masses arising from CKM and
MNSP.
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LFV and Neutrino

Seesaw mechanism naturally explains small v-mass.

L=V, MnVo +—=vIMovo + h.cC. Minkowski (1977)
LTDR 2 RTRTR Yanagida (1979)
_ —1A,T Gell-Mann, Ramond,
My, = _MDMR MD Slansky (1979)
Mohapatra, Senjanovic
Current Neutrino data suggest (1980)

Mp~(1012 — 101%) GeV

Flavor Change in the neutrino sector to explain the data

' Flavor change in the charged
slepton sector
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LFV INn SUSY Models

LFV using neutrino couplings:

Dirac neutrino coupling (Y, fv°H,). Mp = Yy vy
Majorana neutrino coupling : fv¢v©A

Mp = JUB—L  Where <4> = VgL

Flavor violation may reside entirely in £ and/or entirely in Y,

One can express the RGE induced off-diagonal elements of
SUSY breaking in terms of fand Y,
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LFV In SUSY Models

» When flavor violation occurs only in f(Majorana LFV)

—3(mi + A2)

Amg;(1# j) =~ YY1 f + 1YY, i ((” — )

3274 Mp_y.
; : _: g, cillies i L i e . g i J[[)l .
Apii(i1# J) >~ = AY'Y, T f+ fTfYTY )i | {n

» When flavor violation occurs only in Dirac Yukawa Y,
(with mSUGRA)
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Aot 2. 3 % o Vs 2 nvivy (o Pl
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LFV 1N SUSY Models

B(1—->uy)
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LFV INn SUSY Models

LFV also occurs without neutrino couplings in SUSY GUTS

(m )l] 811'2 V31V3]|Yt| (3m0 + |AO|2)ln(_)

Top quarks and anti-tau leptons are group together in SU(5)

Barbieri, Hall, Strumia, 1995
Hisano et al, 1997
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LFV 1N SUSY Models

The charged slepton mass matrix: 6x6

{ AAZ L44 \
Y811 FLA W

.‘1% | - F o ‘\.ll. ]
- ; \ \'T? I .\T;“" /

M%L(RR) : 3x3 matrix for the left(right) sleptons soft masses
M4, - 3x3 matrix for the soft masses: m;(4;+u tanp)

100
In MSUGRA/CMSSM M2, = My, = m? (.. 1 ..) - A,=0

0 o 1

The off —diagonal elements arising from the radiative corrections
produce flavor violation

e Constraints fromt — uy,u — ey etc
16



LFV at the LHC

We need to produce charged sleptons at the LHC to
measure LFV

= Charged slepton production cross sections are small

= We use the neutralinos and their decays,
Yo = Ul - IX1T%) where l=¢, p, 1
» Neutralinos can arise fron the squark deacys:
d. ~ qx; — ql'l - qI*U' ]

> Direct production of ¥ is also possible

* We need to have the following subsystem presence in the signal

17



LFV at the LHC

In the non-LFV scenario
Yo — U1 - 1217 %] where l=e, p, 1

In the LFV scenario, we have in addition

¥ -t e te + ¥

We consider a nonzero 2-3 element and we define

This LFV will enter into ¥ , I decay modes and T — py amplitudes

Allahverdi, Dutta, Kamon, 2012 18



LFV at the LHC

-0 = ~0 C) 415 Masses in GeV
X2-71-X] v 258

The whole analysis can be scaled by a(q,, 9)B(G,, G = ¥2)
= However, the technique remains the same

0(q., 9)B(qL, g > X3) ~0.1pbat13TeV LHC

. o ot loast tu '}“”_:rl -If.l'--iH}' L ,L“'m; tau 1:1{:1:1:-‘ with
Analysis: 5 - 15 CeV 10,

e at loast two ] ts. where the 1'.'?')%“1:.‘ two jets have
= 100 GeV.

e missing transverse energy, ¥r > 200 GeV, and

e scalar sum, hq Fr Pr jetl + PT ;2 - GO0 GeV.
» The final states are characterized by LS and OS tau pair
= We perform OS-LS to remove background 19



LFV at the LHC

3000 T T T T T
- n'lr' ¢

FIC. 1: The mym irn"x:.'n.t mass distnbution for our bench
mark point, shown m Table 1. A hinear fit finds th ipe 1r!
{ the :i,-trii-l.fl-wfl 'I s r‘f ution represents an integra
luminosty l."l 1. Hu‘ er, we also report th itustion
for a lower luminosty of 300 ﬂ ' mn ‘.h.:. paper.

o | My = f(mrl, 20 M50)
o .
VLS —
g slope(Pr;(hign)) = fz(mfl;m~0:m~0)
vis\ _ -
§ -~ slope(pr;) =13 (mfl,mﬂ,m}?g) which include the average
o
-

of low and high p”‘s
slope(p}’ffr = f4(mxo,m~o) slope of transverse momentum
- sum distribution 20




LFV at the LHC

Using the observables, we solve for the masses.

Mass measurements for the chosen benchmark point:
my = 250 GeV,m4,, = 350 GeV, 4y = 0,tanf = 40,u > 0.

Particle mass Solution one Solution two
Ty : 186.7 181.54+3.7(5.1) 4.1 205.84+5.9(6.1) £5.7
{|1 - 141.5 1406 +£5.4(6.5) +£6.2 151.44+6.4(8.6) +6.3
Yo : 265.8 265.3+6.2(8.5)+7.3 278.9+9.2(11.7) £ 9.0

= The statistical uncertainties are for £ = 1000(300) fb~1

* The systematic uncertainties are due to a jet energy scale
mismeasurement of 3%

= Two solutions due to non-linear equations

21



LFV at the LHC

We now Investigate the effect of ézg py

The presence of this term allows:
78 — i:’t, 11 — ”72
=> %3 — ft + missing Eq, where missing E+: 73

So the final states contain muons
= However the tau decays also contain muons: T = vV,

X2 - TT+¥1 - mr+missing B E: %} v, v
=>» Missing E; in the background

U

* \We need to separate these extra muons from the tau decays

=» complicated analysis
22



LFV at LHC

The effect of 6zg ry ON our benchmark points

SnpLrv(Th) m; [GeV) Bl — pyy)
0 1567 0
2 1863 10w 10"
5 1560 31 =107
. 185.1 1.2 w10~
g 1B3.5 26w 10~

= The values of 8gg py larger than 15% violate the
B(t — uy) < 4.4 x 10~3for our benchmark point

e The change In the stau mass is very small

23



LFV at the LHC

Analysis plan:
» Take one of the mass points

Particle mass Solution one Solution two
T : 186.7 181.5+3.7(5.1) £4.1 2058 +5.9(6.1) £5.7
v0: 1415 140.6 +£5.4(6.5) £ 6.2 151.4 + 6.4(8.6) + 6.3
vo 1 265.8 265.3+6.2(8.5)+7.3 278.9+9.2(11.7) £ 9.0

i3

= Determine the ¥3. %, ¥ masses by using various observables

= Generate the m_, distribution from m_,
by using a transfer function

Subtract the determined m_, and from the observed m_,
distributions

= Determine the amount of flavor violation
24



LFV at the LHC
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= The 1t (left) and tp (right)invariant mass distribution for the LHC
simulated égg ry=0 point (first solution)

= The distribution is for an integrated luminosity of 1000 fb-!
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LFV at LHC

= Use the transfer function to transform the mYo"~1¥V distribution
into a mYon-LFVshape

u
= Subtract the distribution from the mé&tedistribution
5000 ! L ' T T T
._:_-!---- : = mOs-Ls L ST VP
40001 | i ;'L-:*- _mtzansfer a 1500} nmy, -
; i = 2 —mrLfV
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= e - .
#2000 - B _
g S 3 500 |} L eph b -t
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il ki) ]
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m,, (GeV) 20 30 40 50 mb._S(G;Q/) 80 90 100 110
= The t—u mass distribution for ) Cdlompal_rlsodn of the i
Orr Lry=0.15. tetermlne m,,, wit
» Dashed is the second solution ruem,,
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LFV at the LHC

Keeping ¢(q,, 9)B(q.. g — X2) Same:

i | .r_:‘ ;v ’ 1.'_;: - ﬂ,'
; 1x10™ 830
1.2 x 1] 217

0 26 x 1 1)

2 1 X 1U 6l

15 2x 10 s

For more than 2o significance
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Conclusion

» Search for LFV requires the production of non-colored particles

» |If the colored particles are within reach then the non colored
particles can be probed from the cascade decays

» When colored particles are heavy, the non-colored states
need to be produced directly, VBF, ISR + missing E+ +X

» SUSY models have many sources to produce LFV

» Establishing LFV at the LHC can be possible
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