

Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016

11-13 June 2016 Villa Orlandi, Anacapri, Capri Island, Italy

Recent Results on Flavor

Physics by CMS

Martino Margoni

Universita' di Padova and INFN

on behalf of the CMS Collaboration

- Production cross sections:
 - B+ & Quarkonium (13 TeV), Y(15)Y(15) (8 TeV)
- FCNC Measurements & CPV:
 - B → K* I*I-
 - Single $t + \gamma$, $t \rightarrow Zq & t \rightarrow Hq$, CPV in tt events

Capri 2016, 11-13 June 2016

Production Cross Sections

Preliminary Results @ 13 TeV:

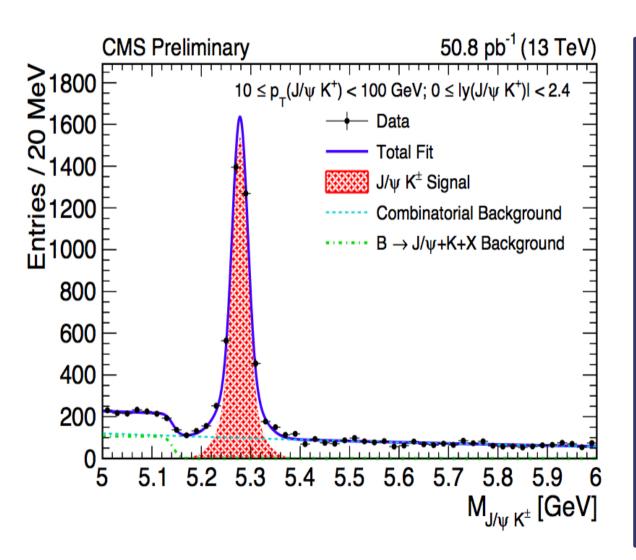
- "Measurement of the B+ hadronic production cross section in pp collisions at 13 TeV" [$L=50.8 \text{ pb}^{-1}$]
- "Quarkonium production cross section in pp collisions at 13 TeV" [L=2.7 fb-1]

Preliminary Results @ 8 TeV:

• "Observation of Y (1S) pair production at CMS" [L=20.7 fb-1]

 Measurements of b-hadron production cross sections at the highest energy provide crucial test of QCD calculations

Strategy:

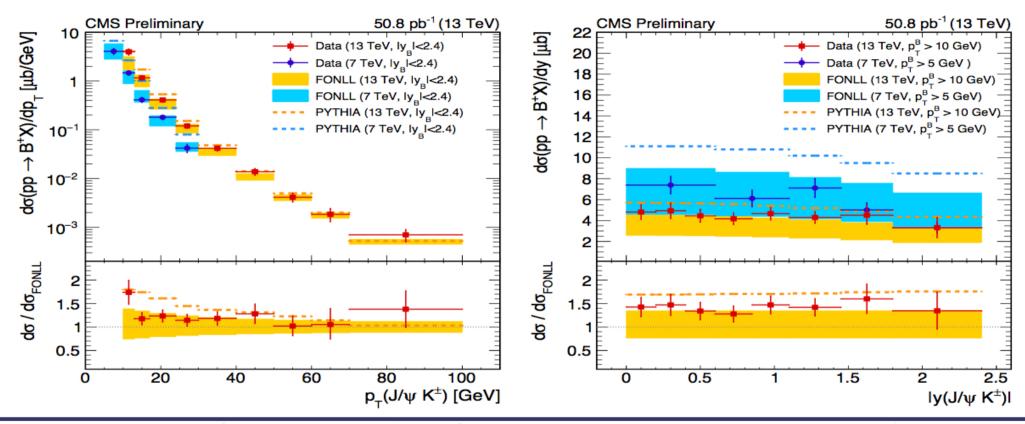

- ♣ Reconstruct $B^+ \rightarrow J/\psi K^+$, $(J/\psi \rightarrow \mu\mu \& K^+$ from the same vertex)
- ♣ Measure differential cross sections as a function of P_{T}^{B} and y^{B} in the range 10 GeV < P_{T}^{B} < 100 GeV; $|y^{B}|$ < 2.4

$$\frac{\mathrm{d}\sigma(\mathrm{pp}\to\mathrm{B}^+X)}{\mathrm{d}p_{\mathrm{T}}^\mathrm{B}} = \frac{n_{\mathrm{sig}}(p_{\mathrm{T}}^\mathrm{B})}{2\,\textcolor{red}{A}\cdot\textcolor{blue}{\varepsilon(p_{\mathrm{T}}^\mathrm{B})}\,\textcolor{blue}{B}\,\textcolor{blue}{\mathcal{L}}\,\Delta p_{\mathrm{T}}^\mathrm{B}}\,\,,\quad \frac{\mathrm{d}\sigma(\mathrm{pp}\to\mathrm{B}^+X)}{\mathrm{d}y^\mathrm{B}} = \frac{n_{\mathrm{sig}}(|y^\mathrm{B}|)}{2\,\textcolor{blue}{A}\cdot\textcolor{blue}{\varepsilon(|y^\mathrm{B}|)}\,\textcolor{blue}{B}\,\textcolor{blue}{\mathcal{L}}\,\Delta y^\mathrm{B}}$$

- → Acceptance x Efficiency jointly evaluated from simulated B⁺ sample
- ullet Trigger & Muon efficiencies from data inclusive $J/\psi o \mu\mu$ decays

$\sigma(pp \rightarrow B^+X)$ @ 13 TeV

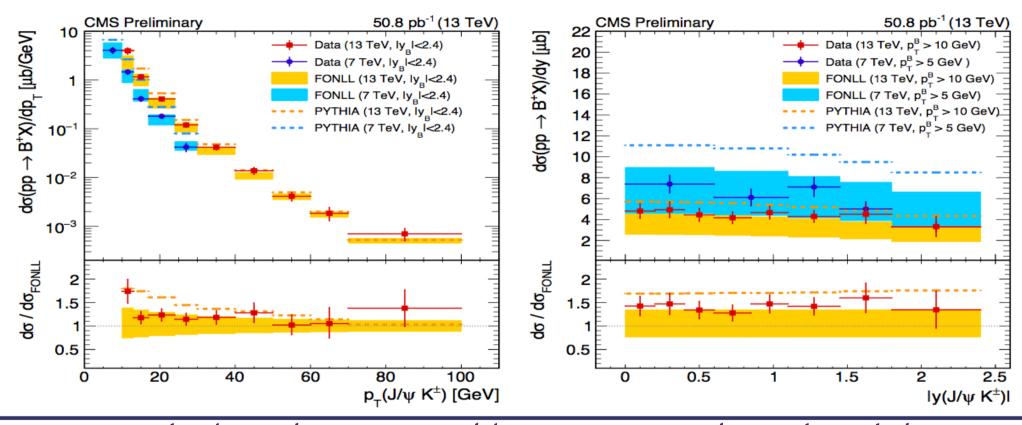
 \bullet Signal yields extracted in the different bins from a m(J/ ψ K⁺) fit



$m(J/\psi K^{+}) PDF$:

- Signal: sum of two Gaussians (relative fraction from MC)
- Combinatorial: Exponential function (from inclusive J/ψ)
- ♣ Mis-reconstructed B → J/ΨKX: Error function
- → Negligible contribution from $B^+ \rightarrow J/\psi \pi^+$

$\sigma(pp \rightarrow B^+X)$ @ 13 TeV


• Differential cross sections:

• Systematics from muon identification & reconstruction, signal & BKG PDFs, P^{B}_{T} & y^{B} resolution, track reconstruction, luminosity and $BR(B^{+} \rightarrow J/\psi K^{+} \rightarrow \mu \mu K^{+})$

$\sigma(pp \rightarrow B^+X)$ @ 13 TeV

• Differential cross sections:

• Measured values show reasonable agreement with predicted shapes and normalizations by PYTHIA [Comput. Phys. Commun. 178, 852 (2008)] & FONLL [JHEP 0103, 006 (2001)]

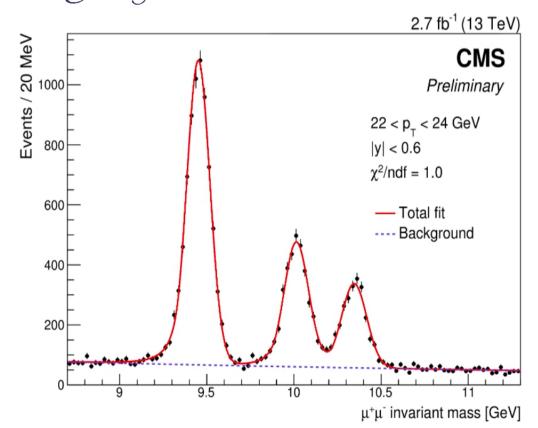
- Quarkonium production described by Non-Relativistic QCD using factorization of perturbative & hadonization processes
 - Comparison of cross sections at 7 TeV and 13 TeV provides a test of the factorization hypotheses
- Measure pp \rightarrow J/ ψ , ψ (2S), Y(nS) double differential cross sections as a function of transverse momentum and rapidity in the range $P_{\tau} > 20$ GeV; |y| < 1.2:

$$BR(q\overline{q} \to \mu^{+}\mu^{-}) \times \frac{d^{2}\sigma^{q\overline{q}}}{dp_{T}dy} = \frac{N^{q\overline{q}}(p_{T},y)}{\mathcal{L}\Delta y \Delta p_{T}} \cdot \left\langle \begin{array}{c} 1 \\ \epsilon(p_{T},y) \end{array} \right\rangle$$

♣ Acceptance evaluated event-by-event using a simulated sample with flat rapidity and realistic P_T distribution assuming no polarization

- Quarkonium production described by Non-Relativistic QCD using factorization of perturbative & hadonization processes
 - → Comparison of cross sections at 7 TeV and 13 TeV provides a test of the factorization hypotheses
- Measure pp \rightarrow J/ ψ , ψ (2S), Y(nS) double differential cross sections as a function of transverse momentum and rapidity in the range $P_{\tau} > 20$ GeV; |y| < 1.2:

$$BR(q\overline{q} \to \mu^{+}\mu^{-}) \times \frac{d^{2}\sigma^{q\overline{q}}}{dp_{T}dy} = \frac{N^{q\overline{q}}(p_{T},y)}{\mathcal{L}\Delta y \Delta p_{T}} \cdot \langle \frac{1}{\epsilon(p_{T},y)} \mathcal{A}(p_{T},y) \rangle$$


 $_{\bullet}$ Efficiency from data-driven studies using Tag & Probe technique on inclusive J/ $\psi \to \mu \mu$ decays

Strategy:

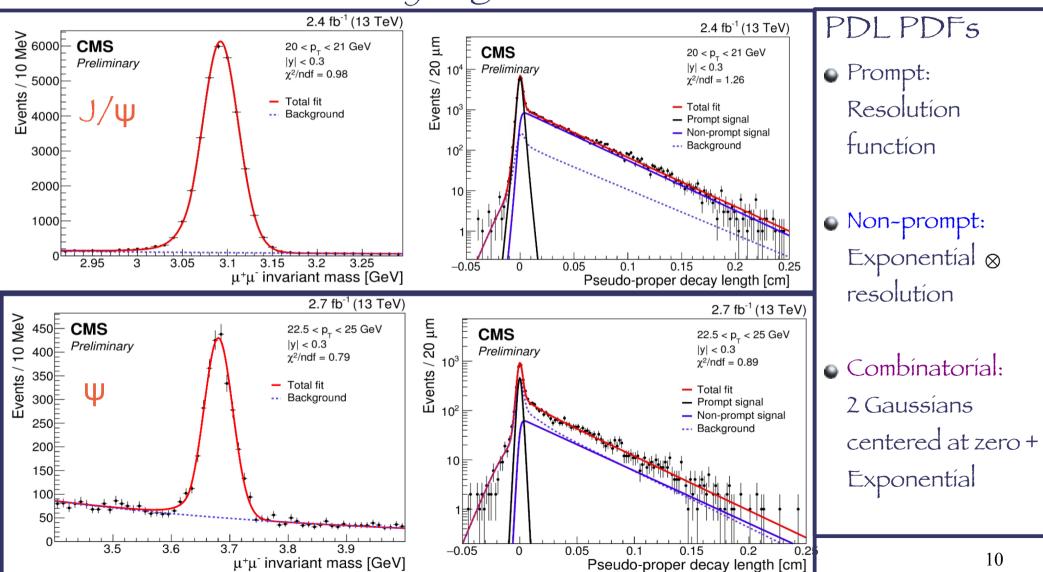
→ Vertex of opposite charge muons fitted in high acceptance region $P_{_{T}}(\mu)>4.5$ GeV for $|\eta(\mu)|<0.3$

 $P_{T}(\mu) > 4.0 \text{ GeV for } 0.3 < |\eta(\mu)| < 1.4$

• Signal yields extracted in the different bins from invariant mass fit

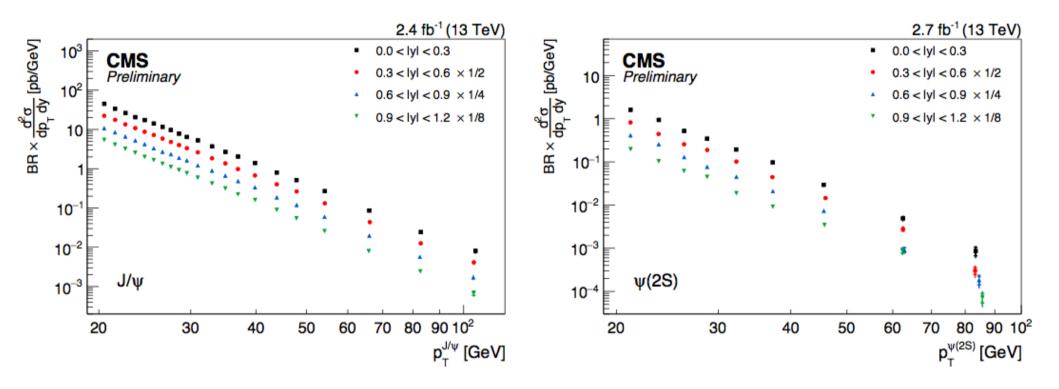
Mass PDFs:

Signal:

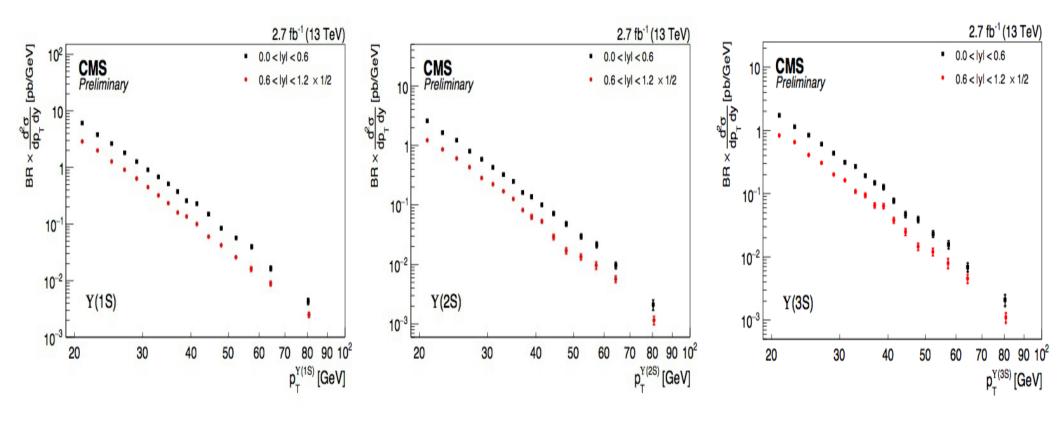

→ ψ(2S), Y: Crystal Ball

➡ J/ψ: Crystal Ball+Gaussían

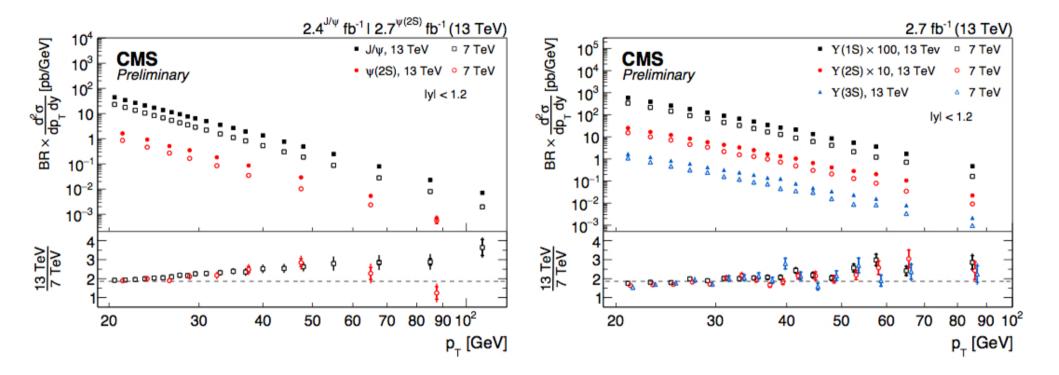
Combinatorial:


→ Exponential function

Non-prompt charmonium fraction from B decays extracted from a simultaneous 2D (m, decay length) fit:


Capri 2016, 11-13 June 2016

• Double differential charmonium cross sections:


• Systematics include: Signal & BKG PDFs, resolution function, muon efficiency, limited MC statistics, non-prompt fraction (primary vertex choice, decay lenght PDFs)

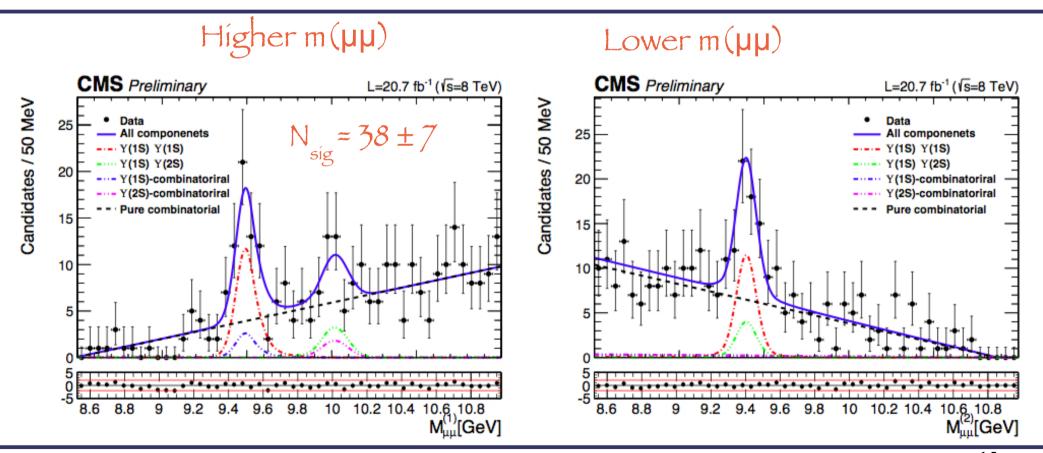
• Double differential bottomonium cross sections:

• Systematics include: Signal & BKG PDFs, resolution function, muon efficiency, limited MC statistics

• Comparison between different energies:

Y(15) pair production

- Quarkonía paír productíon measurements provide important tests of single (double)-parton-scattering mechanisms and tetra-quark states decays
 - → Measure pp → Y(1S) Y(1S) total cross section in the range $P_{_{\rm T}}$ (Y) < 50 GeV; |y| (Y) | < 2.0 :


$$\sigma(pp \to YY) = \frac{N^{YY}}{BR(Y \to \mu\mu)^2 \cdot \mathcal{L}} \cdot \underbrace{1}_{\epsilon \cdot \mathcal{A}}$$

- Efficiency and Acceptance computed event-by-event on a MC sample using the measured Y and muon momenta
- ullet Y pairs candidates reconstructed in events with four muons with total zero charge from the same vertex (P $_{_{
 m T}}$ (μ) > 3.5 GeV; |y (μ) | < 2.4)

Y(15) pair production

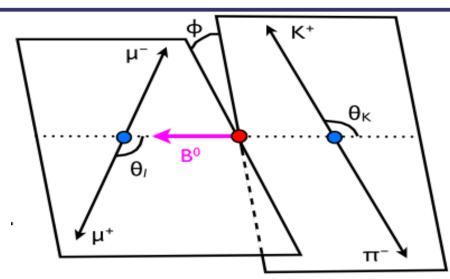
- $_{\bullet}$ Signal yields extracted from 2D (m(µµ) $_{\text{High}},$ m(µµ) $_{\text{Low}})$ invariant mass fit
- Five components considered:

Y(15) Y(15), Y(15) Y(25), Y(15) BKG, Y(25) BKG, Pure BKG

Y(15) pair production

Result:

$$\sigma_{\text{Tot}} = 68.8 \pm 12.7 \pm 7.4 \pm 2.8 \text{ (BR}_{Y \to \mu\mu}) \text{ pb}$$

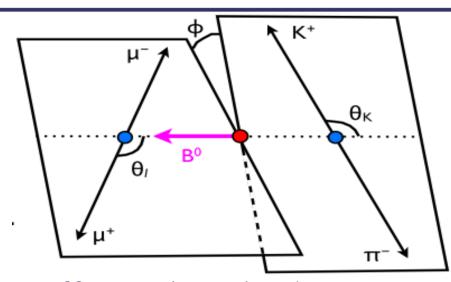

- Systematics from: signal & BKG PDF shapes, muon efficiency & acceptance, luminosity
- Acceptance sensitivity on Y decay angular distribution checked for extreme scenarios of 100% longitudinal (transverse) Y polarization
 Total cross section variation fom -38% to +36%

FCNC in B Decays

$B^{\circ} \rightarrow K^*\mu\mu$:

• "Angular analysis of the decay $B^{\circ} \rightarrow K^{*\circ}\mu\mu$ from pp collisions at $\sqrt{s} \approx 8$ TeV" [L=20.5 fb⁻¹] Phys. Lett. B753, 424 (2016)

$\mathcal{B} \rightarrow \mathcal{K}^* \mu^+ \mu^-$



• Differential Amplitude:

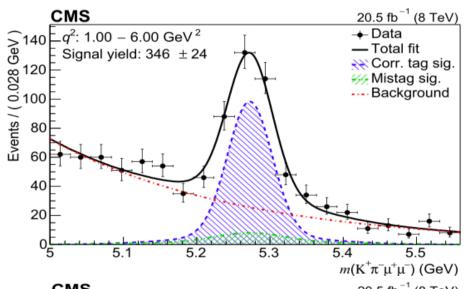
$$\begin{split} &\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\theta_{K} d\cos\theta_{l} dq^{2}} \\ &= \frac{9}{16} \bigg\{ \bigg[\frac{2}{3} F_{S} + \frac{4}{3} A_{S} \cos\theta_{K} \bigg] \big(1 - \cos^{2}\theta_{l} \big) \\ &+ (1 - F_{S}) \bigg[2 F_{L} \cos^{2}\theta_{K} \big(1 - \cos^{2}\theta_{l} \big) \\ &+ \frac{1}{2} (1 - F_{L}) \big(1 - \cos^{2}\theta_{K} \big) \big(1 + \cos^{2}\theta_{l} \big) \\ &+ \frac{4}{3} A_{FB} \big(1 - \cos^{2}\theta_{K} \big) \cos\theta_{l} \bigg] \bigg\}. \end{split}$$

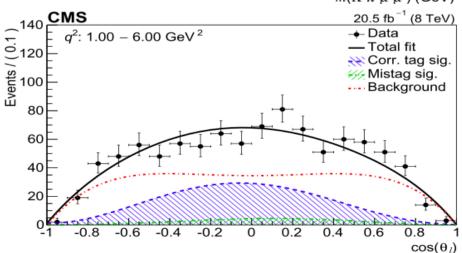
- Kinematics of the decay $B \rightarrow V \mu^{+} \mu^{-}$ ($V \approx K^{*}$, φ , ρ) determined by three angles:
 - \bullet θ_{l} , θ_{K} , ϕ
- Event Yields reconstructed in bins of $q^2 = m^2(\mu^+\mu^-)$
- \$\phi\$ integrated out in the current analysis
- Observables Include:
 - Differential Branching Ratio dB/dq²
 - → A_{FB} (forward-backward muon asymmetry)
 - F_L (fraction of longitudinally polarized K*)

$\mathcal{B} \rightarrow \mathcal{K}^* \mu^{\dagger} \mu^{\dagger}$

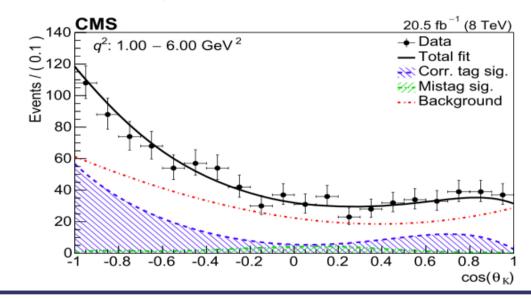
• Differential Amplitude:

$$\begin{split} &\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\theta_{K} d\cos\theta_{l} dq^{2}} \\ &= \frac{9}{16} \bigg\{ \bigg[\frac{2}{3} F_{S} + \frac{4}{3} A_{S} \cos\theta_{K} \bigg] (1 - \cos^{2}\theta_{l}) \\ &+ (1 - F_{S}) \bigg[2F_{L} \cos^{2}\theta_{K} (1 - \cos^{2}\theta_{l}) \\ &+ \frac{1}{2} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 + \cos^{2}\theta_{l}) \\ &+ \frac{4}{3} A_{FB} (1 - \cos^{2}\theta_{K}) \cos\theta_{l} \bigg] \bigg\}. \end{split}$$


- Kinematics of the decay $B \to V \mu^+ \mu^-$ ($V \approx K^*$, φ , ρ) determined by three angles:
 - \bullet θ_{l} , θ_{K} , ϕ
- Event Yields reconstructed in bins of $q^2 = m^2 (\mu^+ \mu^-)$
- \$\phi\$ integrated out in the current analysis
- F_s Fraction of spinless $K\pi$ (S-wave) combination
- A_s: Interference amplitude between S-wave and P-wave decays
- Small contributions (F_s < 0.03,


 $A_s \approx -0.3/0.3$ depending on the q^2 bin)

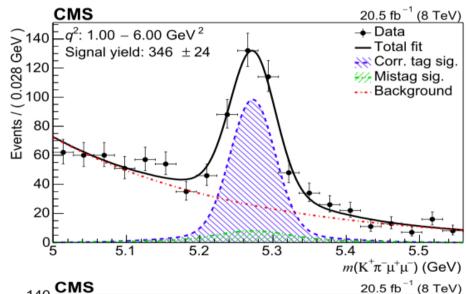
$\mathcal{B} \rightarrow \mathcal{K}^* \mu^+ \mu^-$

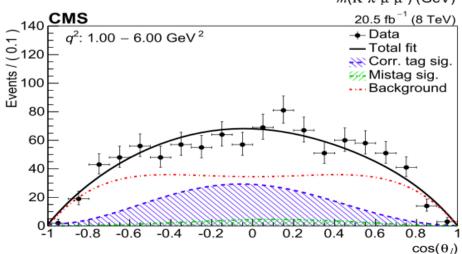

Strategy:

Measure event yield A_{FB} and F_L from an unbinned simultaneous fit to $M(K\pi\mu\mu)$, $cos(\theta_K)$ and $cos(\theta_L)$ in bins of q^2

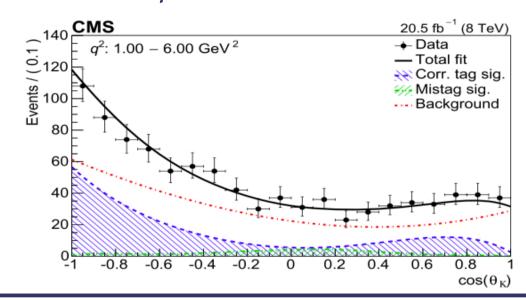
Capri 2016, 11-13 June 2016

Example: $1 < q^2 < 6 \text{ GeV}^2$

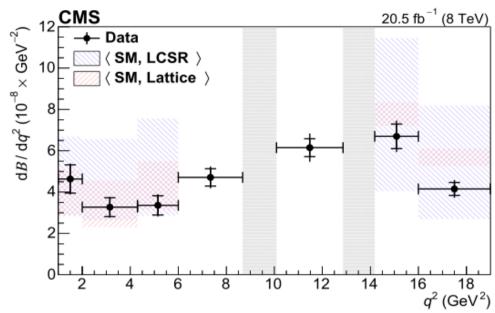

 q^2 perturbative window with theory error under good control, away from $q^2 \rightarrow 0$ photon pole and $c\overline{c}$ resonances at higher q^2

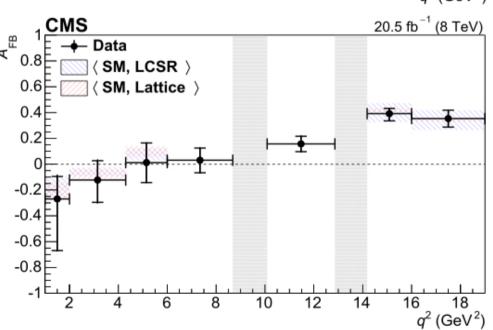

20

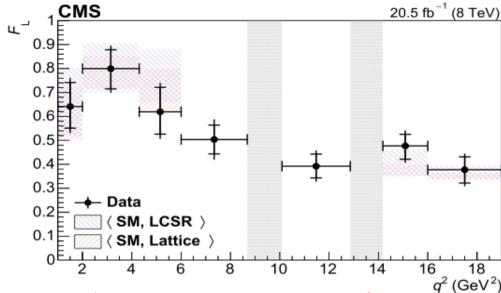
$\mathcal{B} \rightarrow \mathcal{K}^* \mu^+ \mu^-$


Strategy:

Measure event yield A_{FB} and F_L from an unbinned simultaneous fit to $M(K\pi\mu\mu)$, $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2

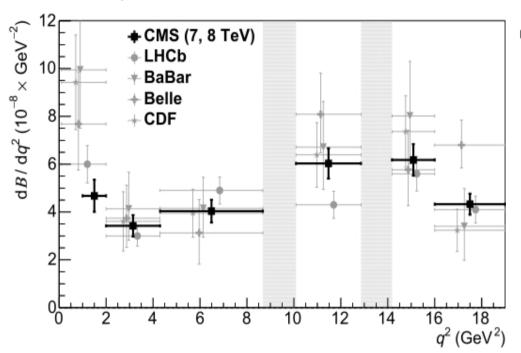


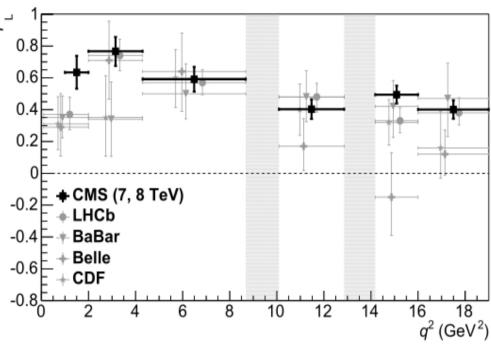

Capri 2016, 11-13 June 2016

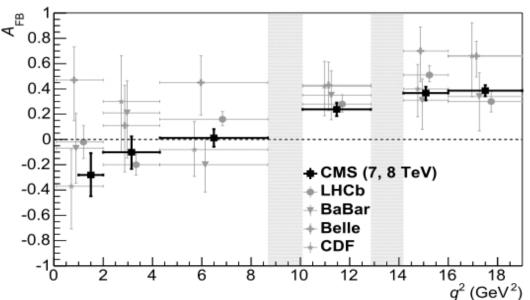


- → Total of ~1400 signal evts reconstructed
- NO PID:
 - → B flavor tagging from best m(Kπ)
 - → Mistag fraction = 12-14% from MC
- → BKG PDFs from Data Side Bands 21

$B \rightarrow K^* \mu^{\dagger} \mu^{\dagger}$: Results




Results consistent with SM


- Systematics from BKG PDF shapes, efficiency, simulation mismodeling and fit bias.
- Theoretical predictions:
 - Light-cone sum rules at low q² and extrapolation at high q²
 [JHEP 09 089 (2010), JHEP 02 010 (2013)]
 - ♣ Lattice [Phys. Rev. D89 094501 (2014)]

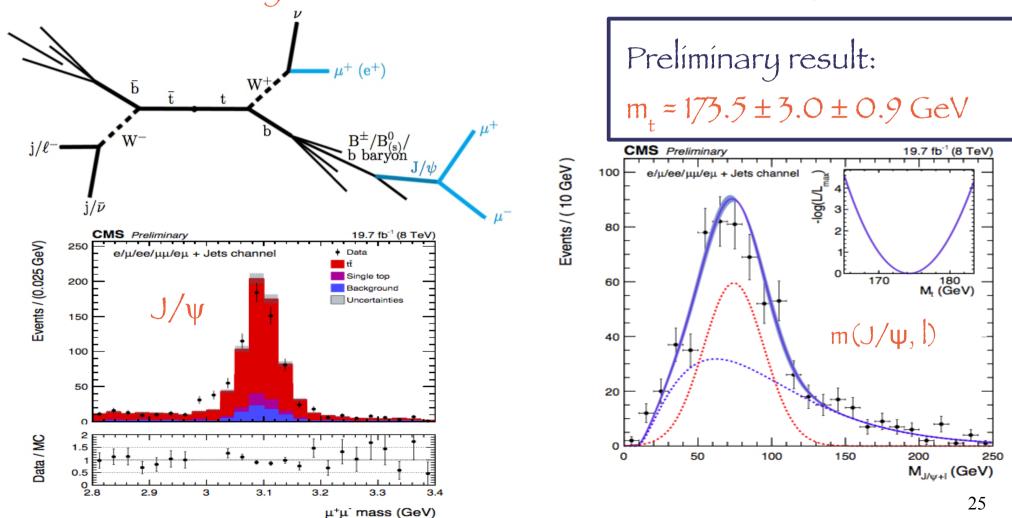
Capri 2016, 11-13 June 2016

Comparison with other experiments

Expected soon:

- Result using variable P5' with reduced Form-Factor dependence
- **▶** $B^+ \rightarrow K^+ \mu \mu$, $K^{*+} \mu \mu$ angular analyses

From B to Top Physics: m_t measurement


- "Measurement of the top quark mass in tt events with a J/ ψ from pp collisions at 8 TeV" [L=19.7 fb-1] Preliminary
- "Measurement of the top quark mass using charged particles in pp collisions at $\sqrt{s} \approx 8$ TeV" [L=19.7 fb⁻¹] Phys. Rev. D93, 092006 (2016)

From B to Top: m, measurement

- m_t measurements using jets limited by hadronization modeling
 - $_{\bullet}$ Use cleaner observables sensitive to $m_{_t}$: J/ψ -lepton invariant mass

in $t \rightarrow blv$ decays:

$$(BR(tt \rightarrow Wb (W \rightarrow | v) (b \rightarrow J/\psi X)) = 3.210^{-4})$$

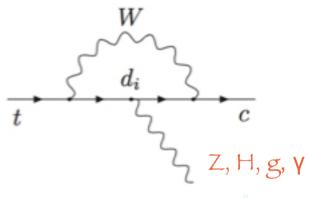
Capri 2016, 11-13 June 2016

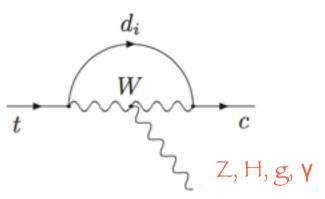
M.Margoni Universita` di Padova & INFN

FCNC in Top Couplings Singlet+Y:

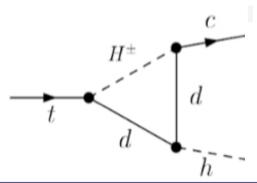
• "Search for anomalous single top quark production in association with a photon in pp collisions at $\sqrt{s} \approx 8$ TeV" [L=19.8 fb⁻¹] JHEP 04, 035 (2016)

$t \rightarrow Zq$:


• "Search for Flavor-Changing Neutral Currents in Top-Quark Decays t → Zq in pp Collisions at $\sqrt{s} \approx 8$ TeV" [L≈19.7 fb⁻¹] Phys. Rev. L. 112, 171802 (2014)

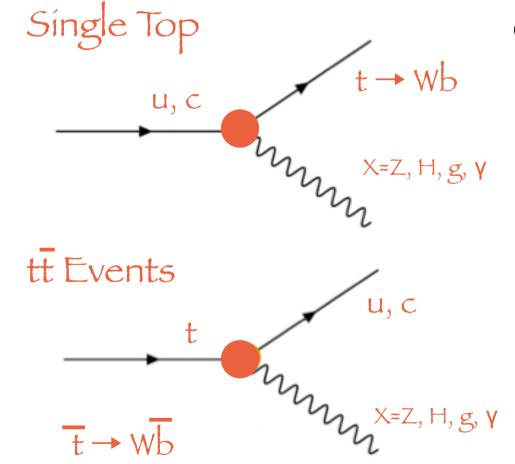

t → Hq:

- "Search for top quark decays via Higgs-boson-mediated flavor changing neutral currents in pp collisions at $\sqrt{s} = 8$ TeV" [L=19.7 fb⁻¹] Preliminary
- "Search for top quark decays $t \rightarrow qH$ with $H \rightarrow \gamma\gamma$ in pp collisions at $\sqrt{s} \approx 8$ TeV" [L=19.7 fb-1] Preliminary
- "Search for the Flavor-Changing Neutral Current Decay $t \rightarrow qH$ where the Higgs decays to bb Pairs at $\sqrt{s} = 8$ TeV" [L=19.8 fb-1] Preliminary


Capri 2016, 11-13 June 2016

FCNC in Top Couplings

FCNC process forbidden at tree level, BR~10⁻¹²-10⁻¹⁷: Probe the SM!

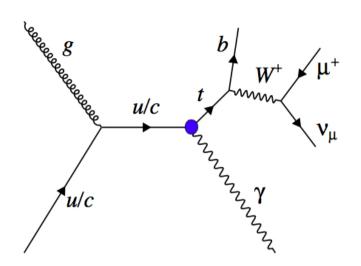


 Large sensitivity to New Physics due to large couplings with new heavy particles in the loops ■ BSM processes could enhance BRs up to 10⁻⁴ [arXív:1311.2028]:

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	_	_ '	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}	-	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

FCNC in Top Couplings

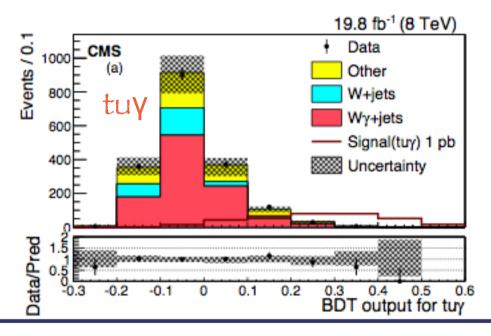
• FCNC searched at production level in Single top events and at the decay level in tt events: Similar final states.

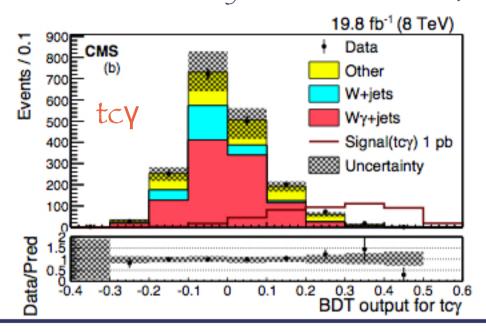

• In the following:

- FCNC in top production:
 - → Single top + γ

• FCNC in top decays:

• t → Zq (Z →
$$|+|-$$
)
• t → Hq (H → $\gamma\gamma$, WW, ZZ,
TT, $b\overline{b}$)


Single t + Y

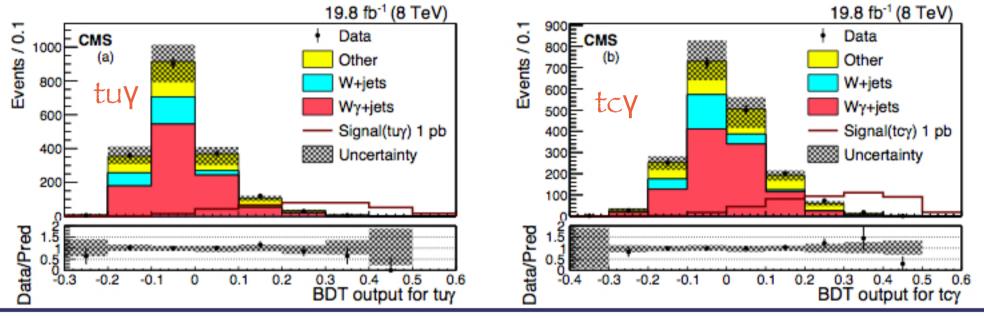


- $t \rightarrow bW$ ($\rightarrow \mu \nu$) decays selected in events with one high P_{τ} isolated photon, one b-tagged jet ($\epsilon = 70\%$) and significant missing P_{τ}
- \bullet Top decay kinematics from missing $P_{\scriptscriptstyle T}$, muon and b-jet four momenta
- Dominant BKG from Wy + jets (57%) & W + jets (16%) estimated from data by means of Neural Network (NN) using photon & jets variables (e.g. P_T , θ (W, γ), hadronic/e.m. Energy in a cone around γ)

Single t + Y

• Signal extracted using two different Boosted Decision Trees (BDT) for tuy & tcy using several distributions from W(γ)+jets control samples

No excess found: upper limits computed @ 95% CL:


$$\sigma_{tuy}$$
 BR(t \rightarrow blv) < 26 fb \rightarrow BR(t \rightarrow uy) < 1.3 10⁻⁴

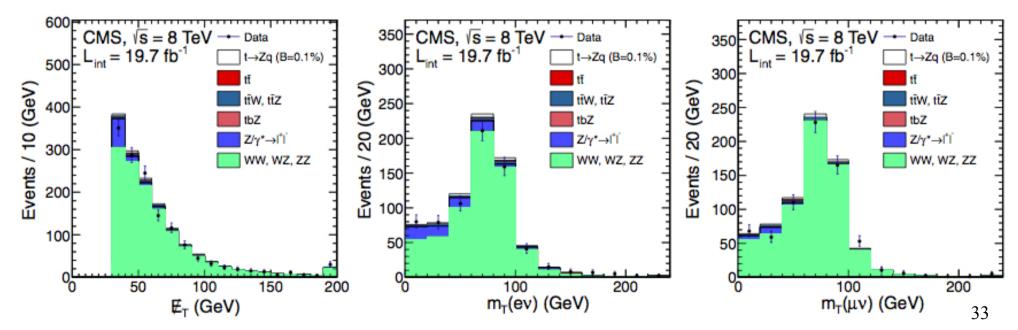
$$\sigma_{tcy}$$
 BR(t \rightarrow blv) < 37 fb \rightarrow BR(t \rightarrow cy) < 1.7 10⁻³

Using theoretical expectation from [Acta Phys. Polon. B 35, 2695 (2004)]

Single t + Y

• Signal extracted using two different Boosted Decision Trees (BDT) for tuy & tcy using several distributions from W(γ)+jets control samples

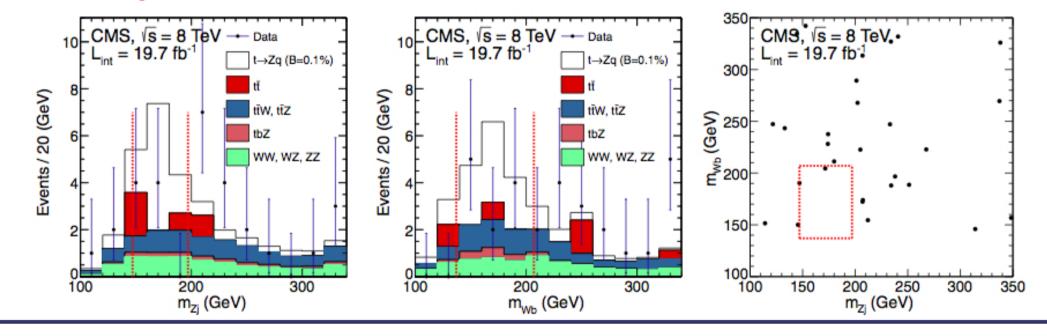
• Systematics from trigger, photon and lepton efficiencies (6.3%), BKG estimation (3.3%), photon energy scale (3.1%), signal efficiency (PDFs, factorization & renormalization scales, m_t) (2.8%), pileup (2.3%)


t > Zg in tt Decays

Strategy:

• tt → qZ(→ lt-) bW(→ lv) ($l \approx e, \mu$)
reconstructed requiring three high P_T isolated leptons & Missing E_T

- ullet W transverse mass from $P_{\scriptscriptstyle T}({\rm lepton}), {\ensuremath{\mathbb{Z}}}_{\scriptscriptstyle T}$ and azimuthal angle between the two
- BKG dominated by diboson WW, WZ & ZZ:

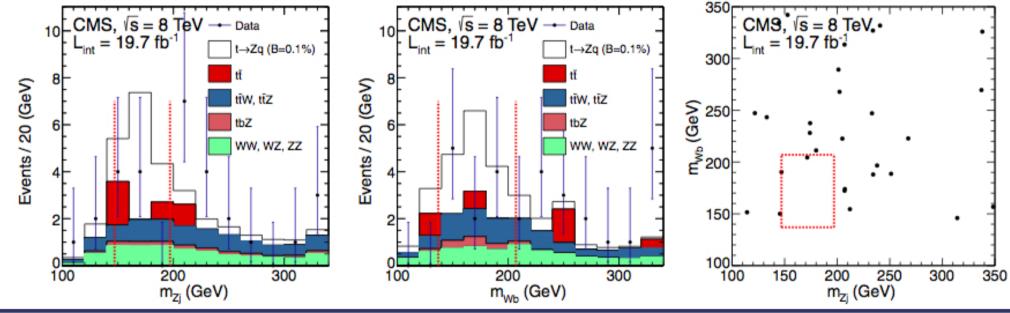


Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

t > Zg in tt Decays

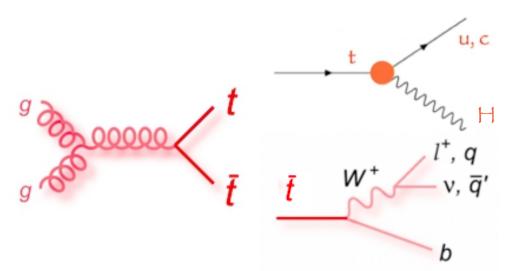
- BKG suppressed requiring ≥ 2 jets with one of them b-tagged
- Signal selected exploiting m(W, b-jet) & m(Z, non-b jet):
 - → BKG yields from dibosons & ttX estimated from data



No excess found:

BR(t \rightarrow Zq)<0.05% (exp. <0.09%) for 7+8 TeV @ 95% CL

t > Zg in tt Decays

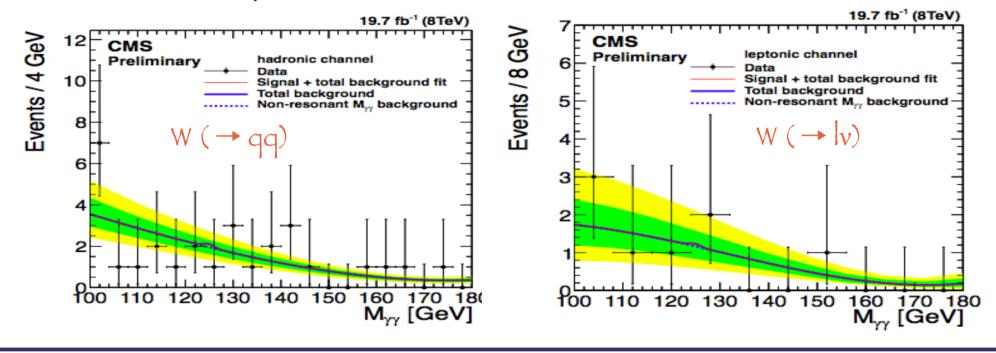

- BKG suppressed requiring ≥ 2 jets with one of them b-tagged
- Signal selected exploiting m(W, b-jet) & m(Z, non-b jet):
 - → BKG yields from dibosons & ttX estimated from data

Systematics:

- → Signal selection acceptance: PDFs & generator parameters (15.1%), trigger, lepton & b-tagging efficiencies (9.3%), tt cross section (7%)
- → BKG evaluation: b-tagging efficiency & m_t requirements (25%)

t + 4g in tt Decays

- tt → qH bW selected where
 - → H → γγ, WW, ZZ, TT, bb
 - $\rightarrow W \rightarrow qq, |v(|ze, \mu)|$

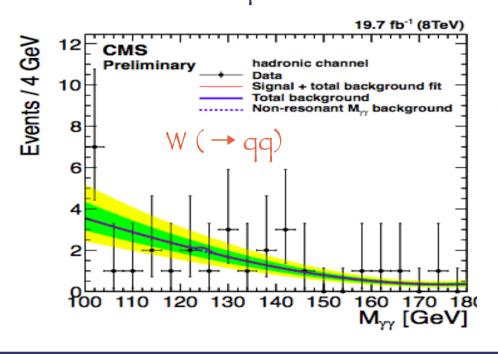

• Event Selection:

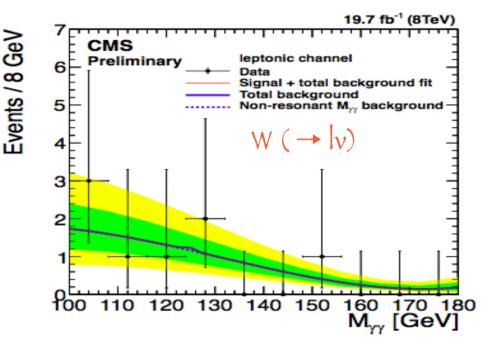
- → H → γγ: two high P_T photons and one b-tagged jet in events with ≥ 4 jets (W → qq) or one isolated lepton (W → lv)
- → H → WW, ZZ, TT: trilepton (WW, ZZ, TT → \parallel ; W → \mid v) or same-sign dilepton events (W⁺, Z⁺, T⁺ → \mid +; W⁻, Z⁻, T → hadrons; W⁺ → \mid +v)

t + 4g in tt Decays

 $\bullet H \rightarrow \gamma \gamma$

• Dominant BKG from resonant $H \rightarrow \gamma\gamma$ decays (estimated on MC) & non-resonant diphoton events (estimated on data)

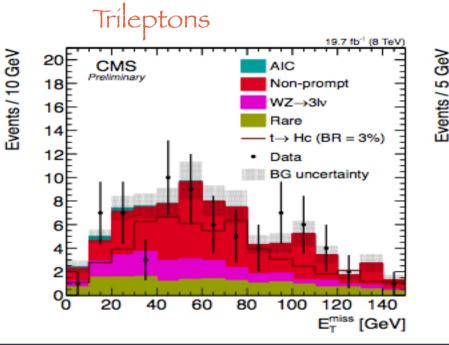


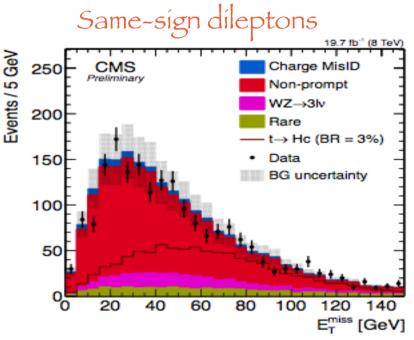

• No excess observed:

 $BR(t \rightarrow Hc) < 0.47\%$, $BR(t \rightarrow Hu) < 0.57\% @ 95\% CL$

 $\bullet H \rightarrow \gamma \gamma$

• Dominant BKG from resonant $H \rightarrow \gamma\gamma$ decays (estimated on MC) & non-resonant diphoton events (estimated on data)

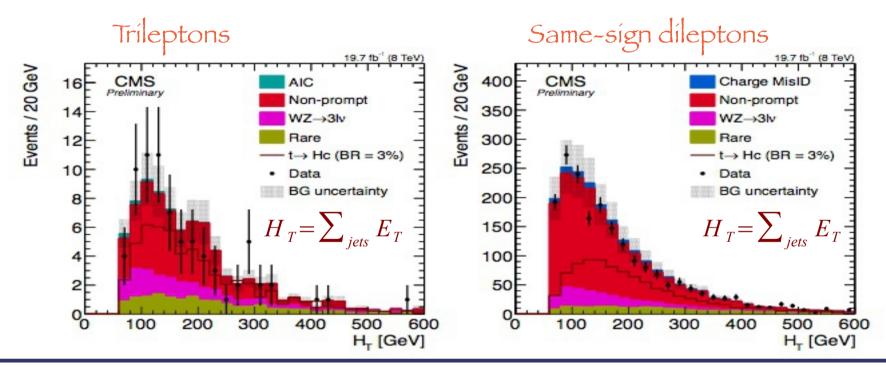




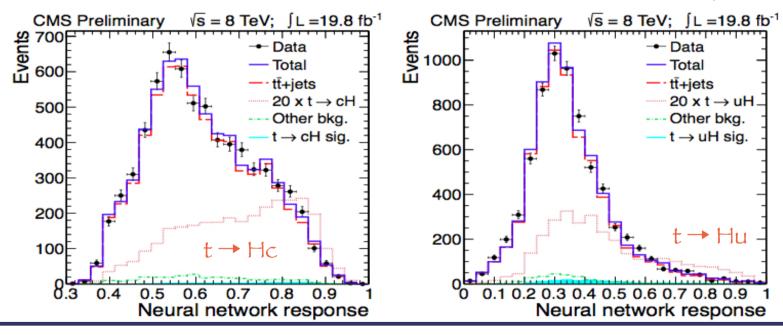
Systematics:

- → Signal yield: PDFs (5.5%), b-tagging efficiency and jet energy resolution (4%)
- → BKG estimation: Higgs production cross section (12.3%)

- H → WW, ZZ, TT
- BKG from W, Z leptonic decays & non-prompt leptons from B decays or misidentified hadrons

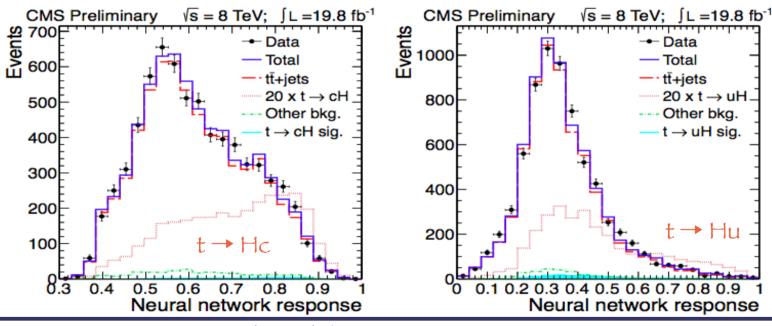


• No excess observed:

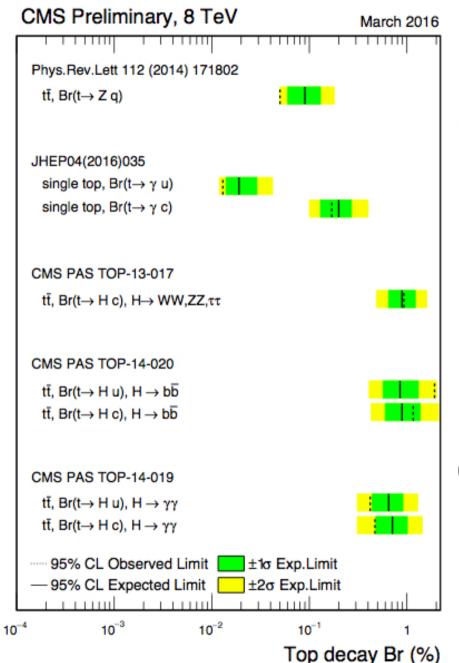

BR(t → Hc)<0.93% @ 95% CL

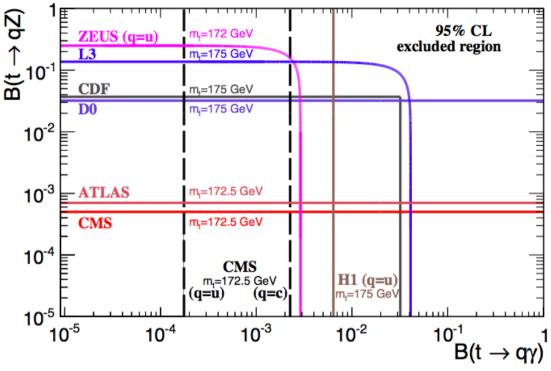
- H → WW, ZZ, TT
- BKG from W, Z leptonic decays & non-prompt leptons from B decays or misidentified hadrons

- Systematics:
 - → Signal yield: trigger and lepton efficiencies (2.8%), luminosity (2.5%)
 - ullet BKG estimation: cross sections (12%), Lepton misidentification (40% e, 30% μ)


- ●H → bb
- BKG dominated by tt → bbww
- Signal extraction from a fit on the output of a NN using m_H & the jets b-tagging discriminants checked on BKG control samples

• No excess observed:


BR(t \rightarrow Hc)<1.16%, BR(t \rightarrow Hu)<1.92% @ 95% CL


- oH→bb
- BKG dominated by tt → bbww
- ullet Signal extraction from a fit on the output of a NN using \mathbf{m}_{H} & the jets b-tagging discriminants checked on BKG control samples

- Systematics on Signal Yield (BKG estimation):
 - → b-jet tagging: 24% (1%), jet energy scale and resolution: 17% (11%), cross sections,
 generator parameters and PDFs: 12% (7%)

FCNC in Top Couplings: Summary

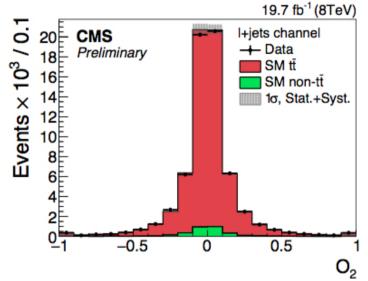
BR limits still above SM prediction,
 but approaching BSM models

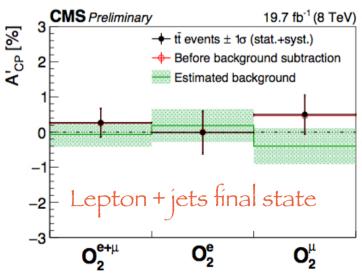
CP Violation in tt Events

• "Search for CP violation in top quark pair production with the lepton + jets final state at $\sqrt{s} = 8$ TeV" [L=19.7 fb⁻¹] Preliminary

First Measurement

CP Violation in tt Events


- CP Violation in top quarks production & decays predicted to be very small in the SM: Sizable effects could be hints of NP
- Four triple-product observables O, odd under CP transformation, defined in terms of final state objects momenta and charges
 - → CPV measured from Asymmetries:


$$A_{CP}\left(O_{i}
ight) = rac{N_{events}\left(O_{i}>0
ight) - N_{events}\left(O_{i}<0
ight)}{N_{events}\left(O_{i}>0
ight) + N_{events}\left(O_{i}<0
ight)}$$

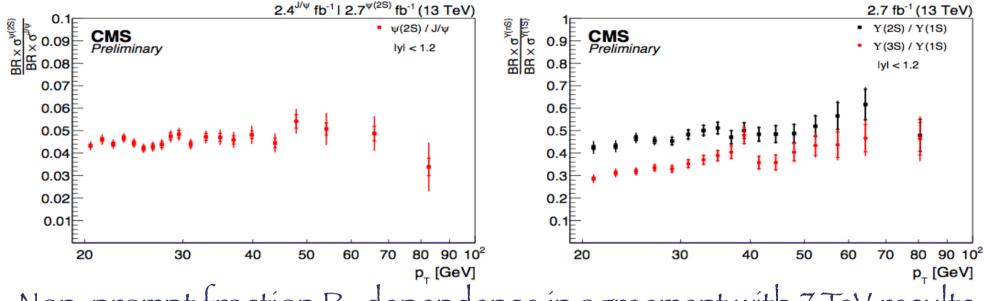
Results in agreement with SM

Systematics dominated by theory

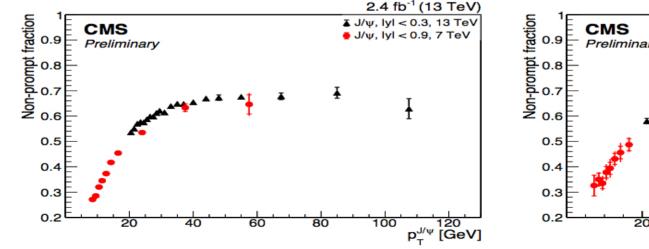
First Measurement

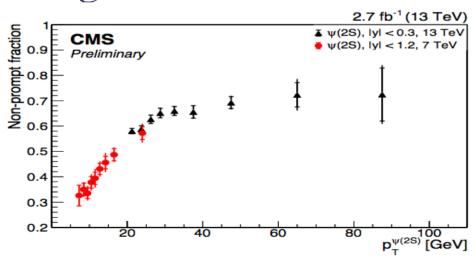
M.Margoni Universita` di Padova & INFN

Conclusions


Conclusions

- Flavor Physics in the B and Top sector is an ideal means of investigating Standard Model and possible New Phenomena
- In the last few years several new measurements both on B mesons production and properties have been released by CMS
- Very precise measurements in the Top production and decays from LHC have significantly improved exclusion limits on FCNC couplings
- LHC Run 2 analyses are ongoing: very important results will be available in the next years


Backup

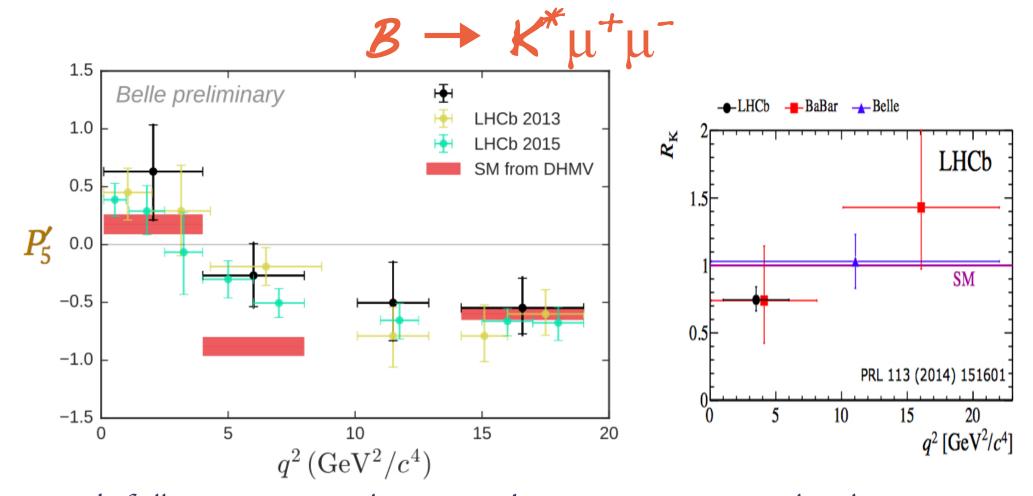

o(pp -> Quarkonium) @ 13 TeV

• Excited vs ground prompt fraction states :

Non-prompt fraction P_T dependence in agreement with 7 TeV results

M.Margoni Universita` di Padova & INFN

Capri 2016, 11-13 June 2016

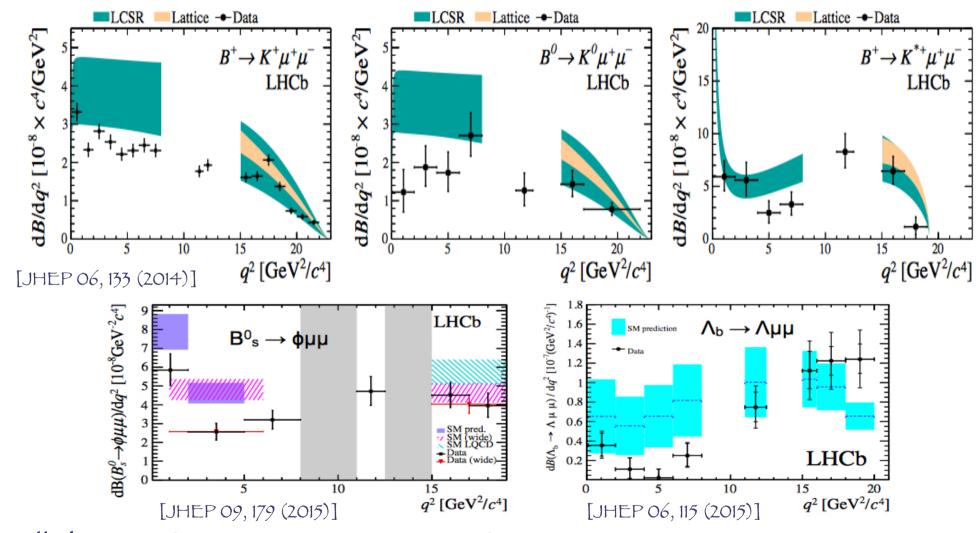

$\mathcal{B} \rightarrow \mathcal{K}^* \mu^+ \mu^-$

Strategy:

• Measure event yield Y_s , A_{FB} and F_L from an unbinned simultaneous fit to M(Kπμμ), $cos(\theta_K)$ and $cos(\theta_I)$ in bins of q^2

$$PDF(m,\theta_{K},\theta_{l}) = Y_{S}^{C} [S^{C}(m)S^{a}(\theta_{K},\theta_{l}) \epsilon^{C}(\theta_{K},\theta_{l}) \qquad \text{Correctly Tagged Signal} \\ + \frac{f^{M}}{1 - f^{M}}S^{M}(m)S^{a}(-\theta_{K},-\theta_{l}) \epsilon^{M}(\theta_{K},\theta_{l})] \qquad \text{Mistagged Signal} \\ + Y_{B}B^{m}(m)B^{\theta_{K}}(\theta_{K})B^{\theta_{l}}(\theta_{l}) \qquad \qquad \text{BKG} \\ Y_{S}^{C},Y_{B} \qquad \qquad \text{Event Yields} \\ f^{M} \qquad \qquad \text{Fraction of mistagged signal events} \\ S^{a}(\theta_{K},\theta_{l}), \epsilon^{C}(\theta_{K},\theta_{l}), \epsilon^{M}(\theta_{K},\theta_{l}) \qquad Signal angular shape and efficiency \\ S^{C}(m),S^{M}(m),B(m) \qquad \qquad \text{Mass PDFs} \\ B(\theta_{K(l)}) \qquad \qquad \text{Angular BKG PDFs from Data Side Bands}$$

 \bullet dB/dq² obtained relative to the normalization channel B° \to K*J/ ψ


- LHCb full statistics result on P5': discrepancy at 3.4 σ level [JHEP 02, 104 (2016)]
- Belle confirms the tension at 2.1 σ level [arXiv:1604.04042]
- $_{\rm e}$ Need to control the charm penguin to disentangle SM from NP in C $_{\rm 7}^{\rm eff}$ and C $_{\rm 9}^{\rm eff}$

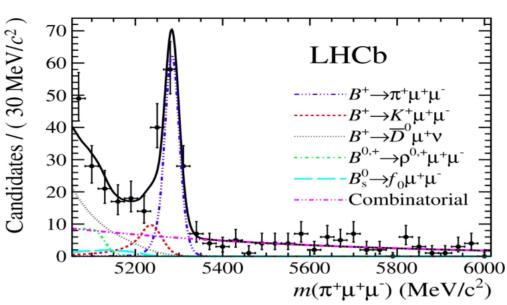
Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

B -> K* // Related quantities

•K* μ*μ tension motivates studies of differential BRs

 \bullet All the results are "consistent" with SM at <2.2 σ


But all of them are lower than the predictions...

Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

$\mathcal{B} \to \pi /^+/^-$

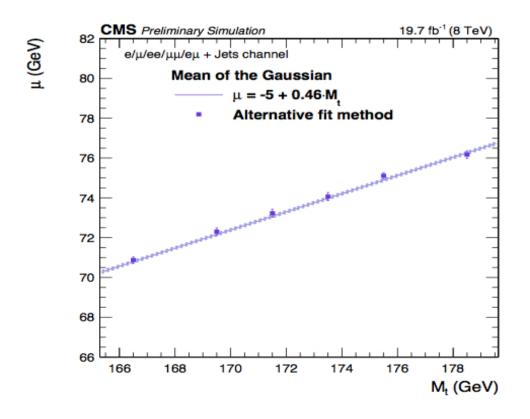
•Measurements of related b → dµµ channels very useful to reveal information on Minimal Flavor Violation nature of New Physics

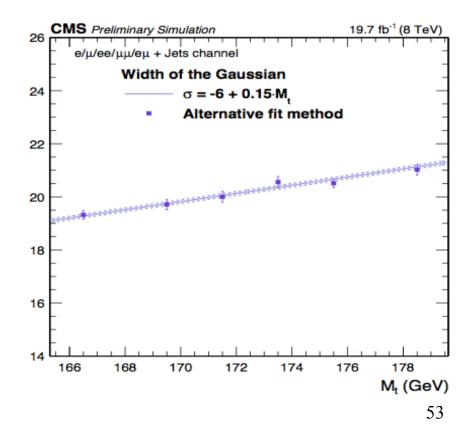
LHCb [JHEP 10, 034 (2015)]:

BR(B⁺ $\rightarrow \pi^{+}\mu^{+}\mu^{-}) \approx (1.83\pm0.24\pm0.05)10^{-8}$ in agreement with MFV

 $BR(B^+ \to \pi^+ \mu^+ \mu^-)/BR(B^+ \to K^+ \mu^+ \mu^-) \approx 0.037 \pm 0.008 \pm 0.001$

 $|V_{td}|/|V_{ts}| \approx 0.24^{+0.05}_{-0.04}$ in agreement with box processes $(\Delta m_s/\Delta m_d)$ results


From B to Top: m, measurement


σ (GeV)

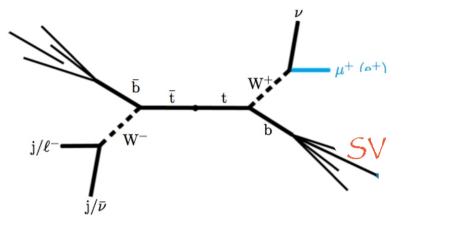
• Fitting function:

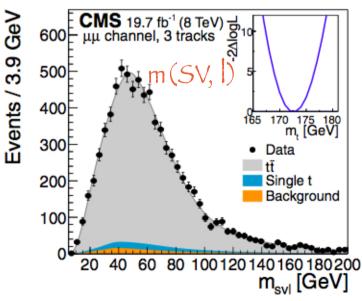
$$\begin{split} P_{\text{sig+bg}}(M_{\text{J/}\psi+\ell}) = & \alpha \frac{1}{\sigma_g \sqrt{2\pi}} \exp\left(-\frac{(M_{\text{J/}\psi+\ell} - \mu_g)^2}{2\sigma_g^2}\right) \\ & + (1 - \alpha) \frac{\beta_{\gamma}^{-\gamma_{\gamma}}}{\Gamma(\gamma_{\gamma})} (M_{\text{J/}\psi+\ell} - \mu_{\gamma})^{\gamma_{\gamma}-1} \exp\left(-\frac{M_{\text{J/}\psi+\ell} - \mu_{\gamma}}{\beta_{\gamma}}\right) \end{split}$$

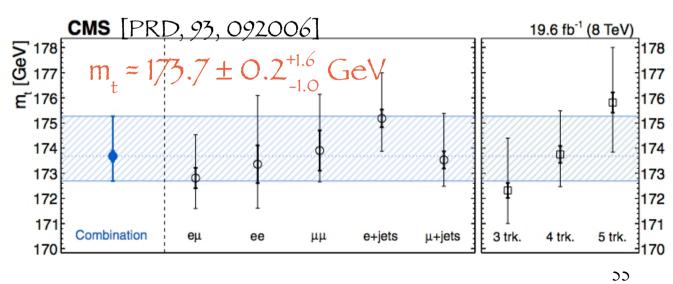
• Parameters dependence on m_t:

M.Margoni Universita` di Padova & INFN

Capri 2016, 11-13 June 2016

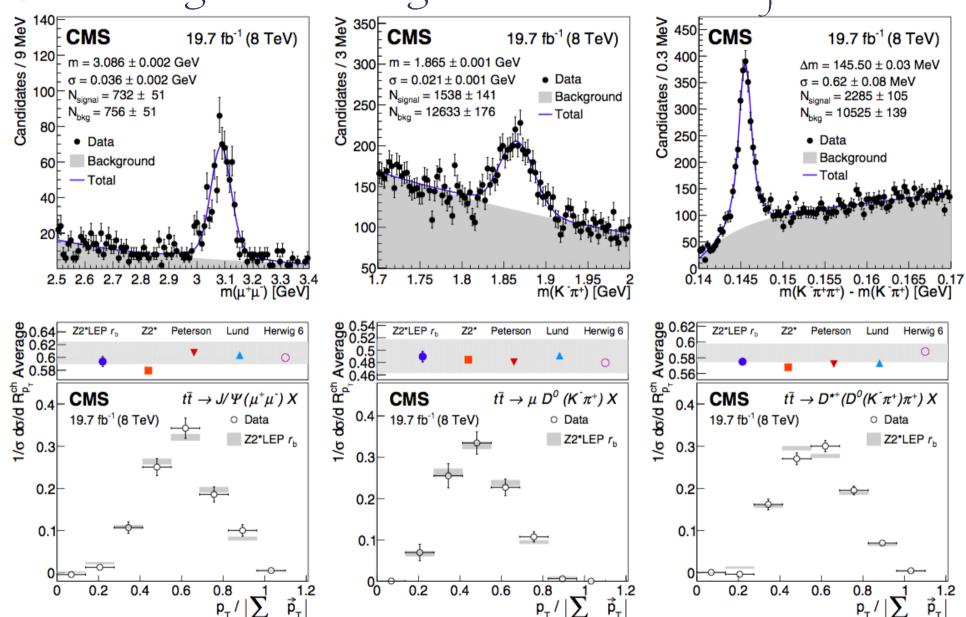

From B to Top: m, measurement


• Systematics:


Source	Value (GeV)			
Experimental uncertainties				
Monte Carlo statistics	± 0.22			
Muon momentum scale	± 0.09			
Electron momentum scale	± 0.11			
Modeling of the J/ ψ candidate mass distribution	+0.09			
Jet energy scale	< 0.01			
Jet energy resolution	< 0.01			
Trigger efficiencies	± 0.02			
Background normalization	± 0.01			
Pileup	± 0.08			
Theoretical uncertainties				
ME generator	-0.37			
Renormalization scale	$\left\{ \substack{+0.12 \\ -0.46} \right\}$			
ME-PS matching threshold	{+0.12 0.50			
top quark transverse momentum	+0.64			
b fragmentation	± 0.30			
Underlying event	± 0.13			
Color reconnection modeling	+0.12			
Parton density functions	{+0.39 -0.11			
Total	$\begin{cases} +0.89 \\ -0.94 \end{cases}$			

From B to Top: m, measurements

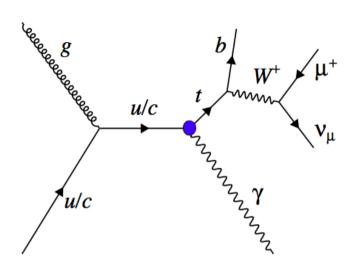
- m_t measurements using jets limited by hadronization modeling:
 - → Use cleaner observables sensitive to m_t : m(SV, l) in $t \rightarrow blv$ decays:



Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN

From B to Top: fragmentation tuning


• Test of fragmentation using charmed mesons inside jets in tt events:

Capri 2016, 11-13 June 2016

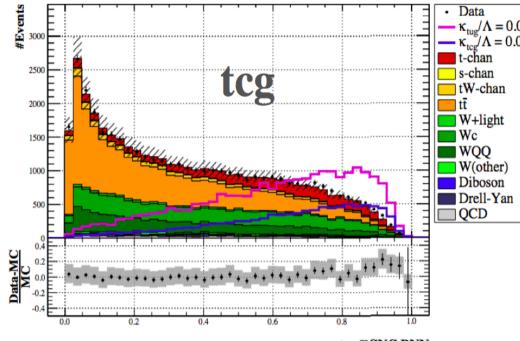
M.Margoni Universita` di Padova & INFN

Single t + Y

- Process sensitive to the anomalous tqy coupling
- Better sensitivity to tuγ than tcγ due to larger up quark parton density in the proton

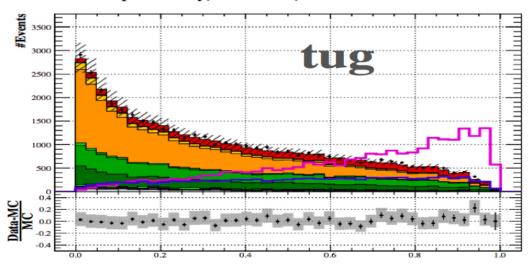
- Asymmetry between tuy and tuy due to different quark & antiquark parton distribution functions.
- No asymmetry for tcγ
 - → Possible to disentangle between tuy & tcy

t > 99 in tt Decays

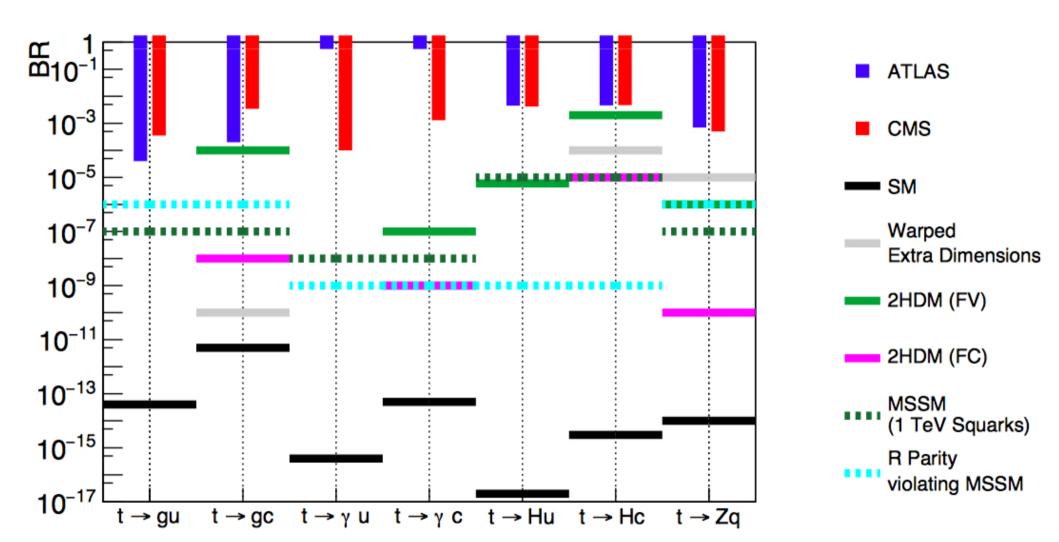

- Signature: one isolated muon, missing E_{τ} , ≥ 1 b-jet and ≥ 1 non b-jet
- QCD BKG estimated on data using a BDT fit
- Signal extracted using a NN

$$BR(t \rightarrow gc) < 0.34\%$$

$$BR(t \rightarrow gu) < 0.036\%$$


@ 95% CL

[CMS Preliminary, L=5 fb-1, 7 TeV] CMS preliminary, $\sqrt{s} = 7 \text{ TeV}$, $L = 5.0 \text{ fb}^{-1}$



tcg FCNC BNN

CMS preliminary, $\sqrt{s} = 7 \text{ TeV}$, $L = 5.0 \text{ fb}^{-1}$

FCNC in Top Couplings: Summary

Still above SM prediction, but approaching BSM models

Andreas Meyer

CP Violation in tt Events

$$A_{CP}\left(O_{i}\right) = \frac{N_{events}\left(O_{i} > 0\right) - N_{events}\left(O_{i} < 0\right)}{N_{events}\left(O_{i} > 0\right) + N_{events}\left(O_{i} < 0\right)}$$

$$O_{2} = \epsilon \left(P, p_{b} + p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{lab} \propto (\vec{p}_{b} + \vec{p}_{\bar{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j1})$$

$$O_{3} = Q_{\ell} \epsilon \left(p_{b}, p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{b\bar{b} CM} \propto Q_{\ell} \vec{p}_{b} \cdot (\vec{p}_{\ell} \times \vec{p}_{j1})$$

$$O_{4} = Q_{\ell} \epsilon \left(P, p_{b} - p_{\bar{b}}, p_{\ell}, p_{j1} \right) \xrightarrow{lab} \propto Q_{\ell} \left(\vec{p}_{b} - \vec{p}_{\bar{b}} \right) \cdot \left(\vec{p}_{\ell} \times \vec{p}_{j1} \right)$$

$$O_{7} = q \cdot (p_{b} - p_{\bar{b}}) \epsilon \left(P, q, p_{b}, p_{\bar{b}} \right) \xrightarrow{lab} \propto (\vec{p}_{b} - \vec{p}_{\bar{b}})_{z} \left(\vec{p}_{b} \times \vec{p}_{\bar{b}} \right)_{z}$$

Observable	O ₂	O ₃	O_4	O ₇
Experimental uncertainties				
Pileup reweight	< 0.01	< 0.01	< 0.01	< 0.01
Jet energy corrections	< 0.01	± 0.01	± 0.01	< 0.01
Lepton ID and isolation	< 0.01	< 0.01	< 0.01	< 0.01
b-tagging scale factor	< 0.01	< 0.01	< 0.01	< 0.01
Theory uncertainties				
Top p _T	< 0.01	± 0.01	± 0.01	< 0.01
ME-PS	< 0.01	< 0.01	< 0.01	< 0.01
μ_R/μ_F	± 0.01	± 0.02	± 0.02	± 0.01
Top mass	< 0.01	± 0.01	± 0.01	< 0.01
Signal modelling	< 0.01	± 0.01	± 0.01	< 0.01
PDF	< 0.01	< 0.01	< 0.01	< 0.01
Total	±0.01	± 0.03	± 0.03	± 0.01