The determination of α_s by <u>ALPHA</u> Collaboration

Rainer Sommer @ FPCapri2016

based on work by

Mattia Bruno, Mattia Dalla Brida, Patrick Fritzsch, Tomasz Korzec, Alberto Ramos, Stefan Schaefer, Hubert Simma, Stefan Sint, RS

and simulations by

Summary

- Connect low energy
 f_π, f_K to g²(μ=100GeV)
 non-perturbatively
- extract Λ⁽³⁾
- connect to $\Lambda^{(5)}$ by PT $\Rightarrow \alpha(m_Z)$

- using two different intermediate renormalization schemes
 - SF scheme
 - GF scheme

Summary

- Connect low energy
 f_π, f_K to g²(μ=100GeV)
 non-perturbatively
- extract Λ⁽³⁾
- connect to $\Lambda^{(5)}$ by PT $\Rightarrow \alpha(m_Z)$

- using two different intermediate renormalization schemes
 - SF scheme

NP β- functions

• GF scheme

PDG 2016

- Individual determinations differ beyond estimated errors
- Iattice most precise
- Here: new very controlled determination

PDG 2016

Individual determinations differ beyond estimated errors

PDG 2016

 Individual determinations differ beyond estimated errors

PDG, lattice: $0.1187\binom{10}{11}$ PDG, pheno: 0.1175(17)FLAG2: 0.1184(12)FLAG3: 0.1181(12) to be confirmed before we compute the QCD coupling

we should define it

... at least when we talk about a non-perturbative computation

Definition of QCD coupling (an example)

$$\alpha_{\rm qq}(\mu) \equiv \frac{3r^2}{4} F_{Q\bar{Q}}(r) \,, \quad \mu = \frac{1}{r}$$

Definition of QCD coupling (an example)

Definition of QCD coupling (an example)

There are many definitions. Equivalent at small α .

Asymptotic freedom

 μ = energy = physical

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi \alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter ($\bar{g} \equiv \bar{g}(\mu)$) = Renormalization Group Invariant = intrinsic scale of QCD = integration constant of RGE

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp \left\{ -\int_0^g dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$
$$\bar{g} \equiv \bar{g}(\mu)$$

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi \alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter ($\bar{g} \equiv \bar{g}(\mu)$) = Renormalization Group Invariant = intrinsic scale of QCD = integration constant of RGE

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp \left\{ -\int_0^g dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

singular behavior

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi \alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter ($\bar{g} \equiv \bar{g}(\mu)$) = Renormalization Group Invariant = intrinsic scale of QCD = integration constant of RGE

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp \left\{ -\int_0^g dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

singular behavior convergent for g -> 0

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi \alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter ($\bar{g} \equiv \bar{g}(\mu)$) = Renormalization Group Invariant = intrinsic scale of QCD = integration constant of RGE

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp \left\{ -\int_0^g \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

g^{2²}

1.6-

1.4-

1.2-

1.0-

0.8-

5

10

15

20

 $\log(\mu)$

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi \alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter ($\overline{g} \equiv \overline{g}(\mu)$) = Renormalization Group Invariant = intrinsic scale of QCD = integration constant of RGE

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} e^{-1/2b_0 \bar{g}^2} \exp \left\{ -\int_0^{\bar{g}} \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

 $g^{2^{2}}$

1.4-

1.2-

1.0

0.8

10

 $\log(\mu)$

 Λ is the goal, relative uncertainty: $k\alpha^n$ for n+1 - loop $\beta(g)$

Perturbative but not short distance?

Perturbative = short distance!

Summary of the principle

Summary of the principle

Compare to phenomenology

Compare to phenomenology

Limitations of lattice computations

Observable with energy/momentum scale µ

 $\mathcal{O}(\mu) \equiv \lim_{a \to 0} \mathcal{O}_{\text{lat}}(a, \mu)$ with μ fixed

avoid finite size and discretization effects

 $L \gg \text{hadron size} \sim \Lambda_{\text{QCD}}^{-1} \quad \text{and} \quad 1/a \gg \mu$

or:

 $L/a \gg \mu/\Lambda_{\rm QCD}$

 $\mu \ll L/a \times \Lambda_{\rm QCD} \sim 5 - 20 \,{\rm GeV}$

 $1 - 3 \,\text{GeV}$ at most, in conflict with a challenge!

FLAG2013

Our Strategy to meet the Challenge

Finite volume: $\mu = 1/L$, with L/a $\gg 1$ get $\mu^2 a^2 \ll 1$ for any μ

• needs $L/a \gg 1$, not more:

 $g^{2}(2L,0)$ continuum

Our Strategy

- Finite volume: μ =1/L, L/a \gg 1 at any μ
- ► step scaling function: $\bar{g}^2(2L) = \sigma(\bar{g}^2(L)) = \lim_{a/L \to 0} \Sigma(2, u, a/L)$

Lüscher, Weisz, Wolff, '91 Lüscher, Narayanan, Weisz, Wolff, '92 Lüscher, Sommer, Weisz, Wolff, '94

ALPHA

 $\overline{g}^2 = u$

Running to (almost) any scale non-perturbatively

Running to (almost) any scale non-perturbatively

Running to (almost) any scale non-perturbatively NIC Т time $\alpha(\mu)$ time 1.2 1.20 SF scheme, $N_{f}=0$ SF space 0.8 -0 $2\beta - \beta$ $\alpha(\mu)$ 0.4 SF scheme, $N_f = 2$ 0.4 -3-loop 250MeV **1∖0**0GeV 0 0 μ/Λ $^{10^3}$ 10² 1**0**2 10° 101 10³ 100 101 $\mu/$ LPHA Collaboration, 2005 LPHA Collaboration, 2001

Now: $N_f=3$ (hadronic world and running) with up, down, strange; others decoupled

two different schemes

Gradient flow 200 MeV ← 8 GeV Schrödinger functional 4 GeV ← 200 GeV

Now: $N_f=3$ (hadronic world and running) with up, down, strange; others decoupled

two different schemes

Gradient flow 200 MeV ← 8 GeV

high precision in MC significant a² effects PT not yet known

Lüscher, 2010 Lüscher, Weisz, 2011 Fritzsch, Ramos, 2013 Schrödinger functional 4 GeV ← 200 GeV

high precision at small g small a-effects

3-loop β -function

2-loop a-effects

Lüscher, Weisz, Wolff, '91 Lüscher, Narayanan, Weisz, Wolff, '92 Lüscher, Sommer, Weisz, Wolff, '93 Sint '93

Continuum limit $\sigma(g^2) = \Sigma(g^2, 0)$ in small g^2 region

- > χ^2 of global fits is good continuum limit is precise
- constant continuum extrapolation has larger errors due to propagation of boundary improvement error

Determination of ΛL_0

step scaling (from u₀=2.012)

$$ar{g}^2(1/L_0) = u_0 \,, \quad u_k = \sigma(u_{k+1}), ext{ non-pert} \ L_0\Lambda = 2^n arphi^{ ext{pert}}(\sqrt{u_n}) \qquad arphi_s(ar{g}_s) = (b_0ar{g}_s^2)^{-b_1/(2b_0^2)} e^{-1/(2b_0ar{g}_s^2)} \ imes \exp\left\{-\int\limits_0^{ar{g}_s} \mathrm{d}x \, \left[rac{1}{eta_s(x)} + rac{1}{b_0x^3} - rac{b_1}{b_0^2x}
ight]
ight\}$$

Determination of Λ L₀

• repeat step scaling for different $\nu \Leftrightarrow$ different schemes

Determination of Λ L₀

• use
$$r_{\nu} = \Lambda / \Lambda_{\nu} = \mathrm{e}^{-\nu \times 1.25516}$$
 exact

• A independent of ν , n ? \leftarrow excellent check of accuracy of PT

Results for ΛL_0

fit	u_n	i	$\frac{L}{a}\Big _{\min}$	$n_{ ho}^{(i)}$	n_c	$L_0\Lambda \times 100$	$b_3^{\text{eff}} \times (4\pi)^4$	χ^2	d.o.f.
А	1.193(4)	0	6	2	1	3.04(8)		14.7	16
В	1.194(4)	1	6	2	1	3.07(8)		14.2	16
\mathbf{C}	1.193(5)	2	6	2	1	3.03(8)		14.5	16
D	1.192(7)	2	6	2	2	3.03(13)		14.5	15
Ε		2	6	2	1	3.00(11)	4(3)	14.6	16
\mathbf{F}		2	8	1	1	3.01(11)	4(3)	12.7	9
G	1.191(11)	2	8	0	2	3.02(20)		13.0	9
Η		1	6	2	1	3.04(10)	3(3)	14.1	16
fit	ν	i	$\left.\frac{L}{a}\right _{\min}$	$n_{ ho}^{(i)}$	n_c	$L_0\Lambda \times 100$	$b^{\mathrm{eff}}_{3,\nu} \times (4\pi)^4$	χ^2	d.o.f
Н	-0.5	1	6	2	1	3.03(15)	11(5)	10 4	16
Ц	0.3	1	6	2	1	3.00(10)	0(3)	20.1	16
11	0.0	T	0	\angle	T	3.04(10)	$\mathbf{U}(3)$	20.0	10

TABLE I. Results for $\nu = 0$ in the upper part.

- all results agree when PT is used at $\alpha = 0.1$
- what happens at larger α ?

$$\varphi_s(\bar{g}_s) = (b_0 \bar{g}_s^2)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}_s^2)} \\ \times \exp\left\{-\int_0^{\bar{g}_s} dx \left[\frac{1}{\beta_s(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$

Results for ΛL_0

fit σ (u) with a 4-loop coefficient in β instead of polynomial in u

fit	u_n	i	$\frac{L}{a}\Big _{\min}$	$n_{ ho}^{(i)}$	n_c	$L_0\Lambda \times 100$	$b_3^{\text{eff}} \times (4\pi)^4$	χ^2	d.o.f.
A B C D E F G H	$1.193(4) \\ 1.194(4) \\ 1.193(5) \\ 1.192(7) \\ 1.191(11)$	$egin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{array}$	6 6 6 6 8 8 8 6	$2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 0 \\ 2$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \end{array} $	$\begin{array}{c} 3.04(8)\\ 3.07(8)\\ 3.03(8)\\ 3.03(13)\\ 3.00(11)\\ 3.01(11)\\ 3.02(20)\\ 3.04(10) \end{array}$	4(3) 4(3) 3(3)	$14.7 \\ 14.2 \\ 14.5 \\ 14.5 \\ 14.6 \\ 12.7 \\ 13.0 \\ 14.1$	$ \begin{array}{r} 16 \\ 16 \\ 15 \\ 16 \\ 9 \\ 9 \\ 16 \\ \end{array} $
fit	ν	i	$\left.\frac{L}{a}\right _{\min}$	$n_{ ho}^{(i)}$	n_c	$L_0\Lambda$ ×100	$b^{\mathrm{eff}}_{3,\nu} \times (4\pi)^4$	χ^2	d.o.f
H H	$\begin{array}{c} -0.5 \\ 0.3 \end{array}$	1 1	6 6	$2 \\ 2$	1 1	3.03(15) 3.04(10)	$11(5) \\ 0(3)$	$\begin{array}{c} 10.4 \\ 20.0 \end{array}$	$\begin{array}{c} 16 \\ 16 \end{array}$

TABLE I. Results for $\nu = 0$ in the upper part.

- all results agree when PT is used at $\alpha = 0.1$
- what happens at larger α ?

$$\varphi_s(\bar{g}_s) = (b_0 \bar{g}_s^2)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}_s^2)} \\ \times \exp\left\{-\int_0^{\bar{g}_s} dx \left[\frac{1}{\beta_s(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$

Results for ΛL_0

- 3 % accuracy?
- yes, at α =0.1 ! $\sigma(u) = \overline{g}^2(2L)$ when $\overline{g}^2(L) = u$
- take a more precise look: $\omega(u)$

• deviation from PT at u_0 (α =0.19):

$$(\omega(\bar{g}^2) - v_1 - v_2\bar{g}^2)/v_1 = -3.7(2)\,\alpha^2$$

- not small, not perturbative
- statistically very significant

Continuum limit $\sigma(g^2) = \Sigma(g^2, 0)$ in large g^2 region

> χ^2 of global fits is good - continuum limit is precise

Results (1): the non-perturbative β -functions

g

Results (1): the non-perturbative β -functions

Results (1): the non-perturbative β -functions

Preliminary result for α

$$\Lambda \frac{(3)}{\mathrm{MS}} = 351(14) \mathrm{MeV}$$

$$\ \ \, \sim \alpha_{\overline{\rm MS}}(m_{\rm Z}) = 0.1191(10)$$

quantity	value	error	relative error	comment
$\Lambda^{(3)}_{\overline{ m MS}}L_0$	0.0791	0.0021	0.026	arXiv:1604.06193
$L_{2.6712}/(2L_0)$	1	0.0080	0.0080	
s(11.31, 2.6712)	10.895	0.170	0.0156	
$t_{0,\rm symm}^{1/2}/L_{11.31}$	0.1507	0.0015	0.0099	
$t_{0,\text{symm}}^{-1/2} \text{ [GeV]}$	1.3524	0.0126	0.0093	symmetric
$\Lambda_{\overline{\mathrm{MS}}}^{(3)} [\mathrm{GeV}]$	0.351	0.012	0.034	11. 6. 2016
$lpha(m_{ m Z})$	0.1191	0.0008	0.007	no conversion error
$\Lambda_{\overline{\mathrm{MS}}}^{(3)} \mathrm{[GeV]}$	0.336	0.019		FLAG3

- using 3-flavor theory (decoupling)
 - at present no error from conversion from 3 flavors to 4 to 5: negligible uncertainty, assuming estimate from perturbation theory

Conclusions

- errors of (asymptotic) series expansions are difficult to assess
- at α=0.2: we have examples where α=0.2 does not lead to an accurate perturbative result

 more generally, this may be a reason for differences in determinations in α(m_z)
 - also a warning for some uses of PT in flavor physics
- at $\alpha = 0.1$: PT is accurate
 - SSF technology allows to get there
 - very accurate predictions for LHC (if matching is accurate)

Conclusions

- errors of (asymptotic) series expansions are difficult to assess
- at α=0.2: we have examples where α=0.2 does not lead to an accurate perturbative result

 more generally, this may be a reason for differences in determinations in α(m_z)
 - also a warning for some uses of PT in flavor physics
- at $\alpha = 0.1$: PT is accurate
 - SSF technology allows to get there
 - very accurate predictions for LHC (impatching is accurate)

EFT ($N_f=3 \leftarrow N_f=6$)

Thank you

Backup

Change of N_f

Figure 6: The mass-dependence P at 1-loop formula and at 4-loop (left) as well as 2,3,4-loop correction normalised to the 1-loop approximation (right) for the case $N_{\rm q} = 4$, $N_{\rm l} = 3$.

$$P = \frac{\Lambda^{(N_{\rm f}-1)}}{\Lambda^{(N_{\rm f})}}$$

it is harmless in perturbation theory

The SF scheme - basic definition

M. Lüscher, R. Narayanan, P. Weisz, and U. Wolff, Nucl.
Phys. B384, 168 (1992), arXiv:hep-lat/9207009 [hep-lat].
M. Lüscher, R. Sommer, P. Weisz, and U. Wolff, hep-lat/9309005

Dirichlet bc's

$$\begin{aligned} A_k(x)|_{x_0=0} &= C_k(\eta,\nu) \,, \quad A_k(x)|_{x_0=L} = C'_k(\eta,\nu) \\ C_k &= \frac{i}{L} [\operatorname{diag}(-\pi/3,0,\pi/3) + \eta(\lambda_8 + \nu\lambda_3) \\ C'_k &= \frac{i}{L} [\operatorname{diag}(-\pi,\pi/3,2\pi/3) - \eta(\lambda_8 - \nu\lambda_3)] . \\ \langle \partial_\eta S|_{\eta=0} \rangle &= \frac{12\pi}{\bar{g}_{\nu}^2} = 12\pi [\frac{1}{\bar{g}^2} - \nu \,\bar{v}] \end{aligned}$$

- similar to Casimir effect
- non-perturbative definition of background field (BF) = classical solution with these Dirichlet bc's spatially constant, abelian
- each value of \mathcal{V} : a different scheme

The GF scheme - basic definition

$$\begin{aligned} \frac{dB_{\mu}(t,x)}{dt} &= D_{\nu}G_{\nu\mu}(t,x), \qquad B_{\mu}(0,x) = A_{\mu}(x) \\ G_{\mu\nu}(t,x) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}] \\ \bar{g}_{\rm GF}^2(1/L) &= t^2\mathcal{N}^{-1}(c)\langle \operatorname{tr}\left[G_{ij}(x_0,t)G_{ij}(x_0,t)\right]\Big|_{\sqrt{8t}=cL;x_0=T/2} \end{aligned}$$

Continuum limit of $\boldsymbol{\Sigma}$

N_f=3 from now on

- Inear in a/L discretisation errors suppressed by Symanzik improvement (boundary terms)
 - 2-loop coefficients
 - in weak coupling region
 - taking $1 + c_1g^2 + (c_2 \pm c_2)g^4$ (g=g₀)
- extrapolate with O((a/L)²)

Properties of the scheme

 $\Delta_{\rm stat} \bar{g}_{\nu}^2 = s(a/L) \bar{g}_{\nu}^4 + O(\bar{g}_{\nu}^6)$ good accuracy for small g

• no μ^{-1}, μ^{-2} renormalons (infrared cutoff)

instead: secondary minimum of the action

$$\exp(-2.62/\alpha) \sim (\Lambda/\mu)^{3.8}$$

3-loop β

$$(4\pi)^3 \times b_{2,\nu} = -0.06(3) - \nu \times 1.26, \ (N_{\rm f} = 3)$$

- small discretisation effects (a⁴ at LO PT) we also subtract them including 2-loop terms [hep-lat/9911018 Bode, Weisz, Wolff]
- but O(a) discretisation effects due to boundary terms

Continuum limit of $\boldsymbol{\Sigma}$

use perturbative improvement (i=1,2)

$$\Sigma^{(i)}(u, a/L) = \frac{\Sigma(u, a/L)}{1 + \sum_{k=1}^{i} \delta_k(a/L) u^k},$$

and global fit

$$\Sigma_{\nu}^{(i)}(u, a/L) = \sigma_{\nu}(u) + \rho_{\nu}^{(i)}(u) (a/L)^{2}$$
$$\rho_{\nu}^{(i)}(u) = \sum_{k=1}^{n_{\rho}^{(i)}} \rho_{\nu,k}^{(i)} u^{i+1+k}, \quad \sigma_{\nu}(u) = u + u^{2} \sum_{k=0}^{3} s_{k} u^{k}$$

with

Continuum limit of **S**

was also tested carefully in pure gauge theory

Continuum limit of Ω

$$\Omega(u, a/L) = \bar{v}|_{\bar{g}^2(L)=u} \quad \omega(u) = \Omega(u, 0)$$

- Global fits, similar to Σ
- but with L/a=6,8,10,12 ("L") and L/a=12,16,24 ("2L")
- a-effects different for "L" vs. "2L" (different def. of m=0)

Continuum limit of Ω

$$\Omega(u, a/L) = \bar{v}|_{\bar{g}^2(L)=u} \quad \omega(u) = \Omega(u, 0)$$

- Global fits, similar to Σ
- but with L/a=6,8,10,12 ("L") and L/a=12,16,24 ("2L")
- a-effects different for "L" vs. "2L" (different def. of m=0)

Continuum limit of Ω

$$\Omega(u, a/L) = \bar{v}|_{\bar{g}^2(L)=u} \quad \omega(u) = \Omega(u, 0)$$

- Global fits, similar to Σ
- but with L/a=6,8,10,12 ("L") and L/a=12,16,24 ("2L")
- a-effects different for "L" vs. "2L" (different def. of m=0)

