

Outline

Light hidden gauge bosons at colliders and fixed target experiments

Existence

Tension

Dark photon redemption

Explosion of experimental activity

The search

The future

Dark matter exists

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Gravitationally interacting dark matter exists

Does it only interact gravitationally? If so, abandon all hope.

Does dark matter interact non-gravitationally?

Simple thermal-origin argument suggests weak-scale interactions.

For ~100 GeV DM mass, weak-scale mediators provide reasonable annihilation rate and range of DM-scattering rates

==> the WIMP scenario.

The WIMP scenario in tension

Beyond the WIMP scenario

Expanding our horizons

What about low-mass or light dark matter in the vicinity of the weak scale?

Direct detection experiments are limited in this range.

Perhaps dark matter is charged under a new force.

New forces

Forces that we care about at colliders

But is that it?

10

How could we have missed new forces?

Only a few allowed ways:

- 1) Neutrino portal heavy neutral leptons
 - 2) Higgs portal exotic decays of h125
- 3) Vector portal kinetic mixing of SM and hidden gauge groups

 —> New forces = new hidden gauge bosons

How could we have missed new forces?

One way: The gauge bosons associated to these forces are super massive.

How could we have missed new forces?

Another way: The gauge bosons have a very small mass...

...and couple very slightly to Standard Model particles.

A new (old), low-ish mass hidden gauge boson

U(1) extension of the Standard Model

Old-school idea

- Holdom, Phys.Lett. B166 (1986) 196
- Galison, Phys.Lett. B136 (1984); Manohar
- Later revisitation/developments: Fayet, Pospelov, et al.

Kinetic mixing

Lagrangian contains a term

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

Note:
$$\alpha'/\alpha = \epsilon^2$$

$$e^+$$
 $e^ e^ \gamma^*$
 γ^*
 A'

$$\epsilon_Y = \epsilon \cos \theta_W$$
$$\epsilon = g'/e$$

$$\epsilon \sim 10^{-6} - 10^{-2}$$
$$m_{A'} \sim \text{MeV} - \text{GeV}$$

Existing constraints

Existing constraints

Explosion of interest in dark photons at colliders

1) The realization that a dark photon in this range could explain a lot of things.

A sub-GeV mass for the A' could explain dark matter anomalies...

...and the anomalous magnetic moment of the muon

Explosion of interest in dark photons at colliders

2) The realization that we can handily search for a dark photon in this range at existing fixed target facilities

Explosion of interest in dark photons at colliders

3) The reminder that we've already been effectively looking for dark photons in this range at beam dump experiments

Example: <u>arXiv:1209.6083</u>

Dark photons from legacy beam dump experiments

FERMILAB-Pub-88/44 [VPI-IHEP 88/2]

Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump

(SLAC Experiment E-137)

J. D. Bjorken
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

S. Ecklund and W. R. Nelson Stanford Linear Accelerator Center Stanford, California 94305 Example: <u>arXiv:1406.2698</u>
2014 recasting of SLAC E137, from 1980-82, for invisible dark photon decays

There are several classes of conjectured low-mass, neutral particles with little coupling to matter which are of special interest as objects of such an experimental search. Among candidate objects are neutral neutrino-like leptons, the photinos of super-symmetric theories, and axions. However, it must be kept in mind that the most relevant object in such a speculative search experiment as this may well be "none of the above". For example, the predecessor of

Dark photons from legacy beam dump experiments

Dark photons from legacy beam dump experiments

Example: <u>arXiv:1406.2698</u>
2014 recasting of SLAC E137, from 1980-82, for invisible dark photon decays

Fix ϵ to the smallest possible value that can explain the $(g-2)_{\mu}$

Some parameter space survives!

Fixed target experiments

Searching for a dark photon in fixed target experiments is simple

- 1) Find a nearly-continuous low-to-medium energy electron beam
 - 2) Shoot it at a chunk of metal with a high-Z nucleus
- 3) Collect the outgoing e+e- pair with a detector apparatus featuring extremely good momentum resolution, angular resolution, particle ID and pion rejection
 - 4) Look for a tiny excess on top of a smooth background histogram of m_{e+e-}

This sounds like Jefferson Lab's Hall A.

APEX: Dark photon search in fixed target experiment at Jefferson Lab

Bjorken, Essig, Schuster, Toro, Wojtsekhowski, et al. proposed a fixed target experiment to be conducted at Thomas Jefferson National Accelerator Facility, in Virginia; test run for experiment in June/July 2010

• Full run: $\alpha'/\alpha \gtrsim 10^{-7}$ $m_{A'} = 65 \text{ to } 525 \text{ MeV}$

• Test run: $\alpha'/\alpha \gtrsim 10^{-6}$ $m_{A'} = 178$ to 250 MeV

Experimental signature

Looking for a small, narrow bump on top of a smooth histogram of QED processes; excellent mass resolution required

Jefferson Lab's Hall A experimental apparatus

27

Bump hunt / resonance search

Final invariant mass spectrum QED radiative trident / Bethe-Heitler events

2000

1500

1000

500

180

Test run mass resolution: $\sigma \sim 0.85$ - 1.11 MeV

$$P(m_{e^+e^-} \mid m_{A'}, \sigma, S, B, a_i) = \frac{S \cdot N(m_{e^+e^-} \mid m_{A'}, \sigma) + B \cdot Polynomial(m_{e^+e^-}, a_i)}{S + B}$$

Probability model and profile likelihood ratio

$$\lambda(S) = \frac{L(S, \hat{B}, \hat{a_i})}{L(\hat{S}, \hat{B}, \hat{a_i})}$$

220

240

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Upper limit on S → upper limit on coupling

$$\frac{d\sigma(A')}{d\sigma(\gamma^*)} = \left(\frac{3\pi\epsilon^2}{2N_{\text{eff}}\alpha}\right) \frac{m_{A'}}{\delta m} = \frac{S_{\delta m}}{B_{\delta m}^{\gamma^*}} \qquad 10^{-4}$$

(See APEX proposal)

Normalize all backgrounds to γ^* background

• Ratio *f* of radiative-only cross section to full trident cross section determined via Monte Carlo to vary linearly from 0.21 to 0.25 across APEX mass range

$$\left(\frac{\alpha'}{\alpha}\right)_{max} = \left(\frac{S_{max}/m_{A'}}{f \cdot \Delta B/\Delta m}\right) \times \left(\frac{2N_{\text{eff}}\alpha}{3\pi}\right)$$

Plan for full run

Full run at JLab will take data for ~34 days at several energy and spectrometer settings

• Possible modifications to original run plan could take advantage of higher beam energies and wider angles (with adjustment of septum magnets) to access higher $m_{A'}$ region

Cover a larger mass range using a 50-cm long multifoil target

Test run results and full run status

Test run results in PRL

- prl.aps.org/abstract/PRL/v107/i19/e191804
- arXiv:1108.2750

APEX is approved; 12 GeV JLab program currently in full swing

- APEX equipment fully funded
- Experiment will be ready to run in Spring 2016

Search for a new gauge boson in the A' Experiment (APEX) S. Abrahamyan, ¹ Z. Ahmed, ² K. Allada, ³ D. Anez, ⁴ T. Averen, ⁵ A. Barbieri, ⁶ K. Bartlen, ⁷ J. Beacham, ⁸ J. Bono, ⁹ J.R. Boyce, ¹⁰ P. Brindza, ¹⁰ A. Camsonne, ¹⁰ K. Cranmer, ⁸ M.M. Dalton, ⁶ C.W. de Jager, ^{10,6} J. Donaghy, ⁷ R. Essig, ^{11,8} C. Field, ¹¹ E. Folts, ¹⁰ A. Gasparian, ¹² N. Goeckner-Wald, ¹³ J. Gomez, ¹⁰ M. Graham, ¹¹ J.-O. Hansen, ¹⁰ D.W. Higinbotham, ¹⁰ T. Holmstrom, ¹⁴ J. Huang, ¹⁵ S. Iqbal, ¹⁶ J. Jaros, ¹¹ E. Jensen, ³ A. Kelleher, ¹⁵ M. Khandaker, ^{17,10} J.J. LeRose, ¹⁰ R. Lindgren, ⁶ N. Liyanage, ⁶ E. Long, ¹⁸ J. Marmei, ¹⁶ P. Markowitz, ⁷ T. Maruyama, ¹¹ V. Maxwell, ⁷ S. Mayilyan, ¹ J. McDonald, ¹¹ R. Michaels, ¹⁰ K. Moffeit, ¹¹ V. Nelyubin, ⁶ A. Odian, ¹¹ M. Oriunn, ¹¹ R. Partridge, ¹¹ M. Paolone, ²⁰ E. Piasetzky, ²¹ I. Pomerantz, ²¹ Y. Qiang, ¹⁰ S. Riordan, ¹⁶ Y. Roblin, ¹⁰ B. Sawatzky, ¹⁰ P. Schuster, ^{11,12,1} J. Segal, ¹⁰ L. Selvy, ¹⁸ A. Shabinyan, ¹ R. Subedi, ²³ V. Sulkosky, ¹⁵ S. Stepanyan, ¹⁰ N. Toro, ^{24,22,1} D. Walz, ¹¹ B. Wojtsekhowski, ^{10,6} and J. Zhang, ¹⁰ ¹ Nervous Physics Institute, Nervous 375036, Armenia ² Synacuse University, Synacuse, New York 13244 ¹ University of Kentocky, University, Malifam, NS B3H 3C3, Canada ¹⁰ College of William and Mary, Williamsburg, Unginia 23187 ¹ University of Wigheia, Charlotterstille, Wighnia 2303

FIG. 4. Top: Background-only model p-value versus A' mass. Middle: Shaded gray region denotes 90% confidence limit, 50% power-constrained allowed region [23], 90% confidence upper limit is shown in solid blue (dotted blue) when it is above (below) the expected limit (gray dashed). Red solid line denotes the best-fit for the number of signal events S. For comparison, dot-dashed line indicates contribution of statistical uncertainty to expected sensitivity, if background shape were known exactly. Bottom: 90% confidence, 50% power-constrained, and expected limits as above, here quoted in terms of ratio of signal strength upper-limit to the QED background, B, in a 1-MeV window around each A' mass hypothesis.

candidate masses within 15 MeV of the upper or lower boundaries, for which a window of equal size touching the boundary is used. A binned profile likelihood ratio (PLR) is computed as a function of signal strength S at the candidate mass, using 0.05 MeV bins. The PLR is used to derive the local probability (p-value) at S=0 (i.e. the probability of a larger PLR arising from statistical fluctuations in the background-only model) and a 90%-confidence upper limit on the sig-

FIG. 5. The 90% confidence upper limit on α'/α versus A' mass for the APEX test run (solid blue). Shown are existing 90% confidence level limits from the muon anomalous magnetic moment a_μ (fine hatched) [7], KLOE (solid gray) [14], the result reported by Mainz (solid green) [18], and an estimate using a Ballar result (wide hatched) [2, 12]. Between the red line and fine hatched region, the A' can explain the observed discrepancy between the calculated and measured muon anomalous magnetic moment [7] at 90% confidence level. The full APEX experiment will roughly cover the entire area of the nlot.

dence. The most significant excess, at 224.5 MeV, has a local p-value of 0.6%; the associated global p-value is 40% (i.e. in the absence of a signal, 40% of prepared experiments would observe a more significant effect due to fluctuations).

To translate the limit on signal events into an upper limit on the coupling α' with minimal systematic errors from acceptance and trigger efficiencies, we use a ratio method, normalizing A' production to the measured QED trident rate. We distinguish between three components of the QED trident background: radiarive tridents Fig. 1 (b), Bethe-Heltler tridents Fig. 1 (c), and their interference diagrams (not shown). The A' signal and radiative trident fully differential cross sections are simply related [2], and the ratio f of the radiative-only cross section to the full trident cross section can be reliably computed in Monte Carlor f varies linearly from 0.21 to 0.25.

Plan for full run

JLab 12 GeV program underway

- APEX is the back-up experiment for Spring 2016 (more likely Fall 2017/Spring 2018)
- New SciFi optics calibration method and septum magnets
- Data acquisition rate improvements (up to 5 kHz) and high-rate VDC updates

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

MAMI at Mainz

A1: Spectrometer setup at MAMI

Spectrometer A: $\alpha > 20^{\circ}$ $p < 735 \frac{\text{MeV}}{c}$ $\Delta\Omega = 28 \, \text{msr}$ $\Delta p/p = 20\%$

Spectrometer B: $\alpha > 8^{\circ}$ $p < 870 \frac{\text{MeV}}{c}$ $\Delta\Omega = 5.6 \, \text{msr}$ $\Delta p/p = 15\%$

 $\delta p/p < 10^{-4}$

Similar approach and reach to APEX

Phenomenal built-in momentum resolution wins the day

PRL 112, 221802 (2014)

HPS in JLab Hall B

Designed to be sensitive to both prompt and displaced decays — unique reach

Engineering run earlier this year

Targeting APS 2016 for publication of engineering run data Full-run sometime in 2016

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Effectively kills the $(g-2)_{\mu}$ band for dark photon to visible!

High-intensity collider experiments: BaBar

High-intensity, low-to-medium energy collider experiments have excellent dark photon reach

B-factories have huge datasets (BaBar: 514/fb, Belle: >1000/fb) ==> Ideally suited for high-statistics resonance searches

BaBar:

$$e^+e^- \rightarrow \gamma \gamma^d$$
, $\gamma^d \longrightarrow \mu^+\mu^-$ or $e^+e^ e^+e^- \longrightarrow \gamma + invisible$

James Beacham (Ohio State) Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

36

High-intensity collider experiments: Belle

Belle conducted dark photon searches in a large number of leptonic and hadronic decays and multiplicities with similar reach to BaBar

Things get very interesting with Belle II

Dark photons with KLOE@DAΦNE

e+e⁻ collider designed (appropriately) to study

the
$$\Phi$$
, so $\sqrt{s} = 1.0195$ GeV
$$e^{+}e^{-} -> \mu^{+}\mu^{-} \Upsilon$$

$$e^{+}e^{-} -> e^{+}e^{-} \Upsilon$$

$$e^{+}e^{-} -> \eta e^{+}e^{-}$$

==> Possible sources of dark photons

Dark photons with KLOE@DAΦNE

Big Drift chamber

Stereo wires and carbon-fiber structure, $\sigma_{PT} < 0.4\%$ PT ($\theta > 45^{\circ}$)

Hermetic sampling calorimeter

Loose trigger conditions (high acceptance across a broad physics program)

Excellent integrated luminosity in 2002 and 2004-2005 runs

Upgrades

An excellent venue for dark photon searches Hadronic dark photon decay searches proposed

arXiv:1509.00740

Dark photons with WASA@COSY

WASA detector designed to study rare pion decays

Moved from Uppsala to Jülich

Excellent repurposing of existing experimental equipment to put an exclusion right in the $(g-2)_{\mu}$ sweet spot

arXiv:1304.0671

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

James Beacham (Ohio State)

At the LHC we're not just slight, intriguing diphoton excesses at 750 GeV.

arXiv pheno $m_{YY} = 750$ GeV papers, cumulative, after our seminar @CERN on Tues. 15 Dec. 2015

Run 2 is a playground of fascinating signatures, approaches and final states, including dark photons.

Dark photons at the LHC

The LHC is now getting in on the dark photon action...
...via lepton-jets.

Dark photons at the LHC

Highly collimated groupings of leptons: lepton-jets; distinct LHC signature

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Prompt and displaced lepton-jets at the LHC

Highly collimated groupings of leptons: lepton-jets; distinct LHC signature

• Standard muon ID benefits from isolation; here need dedicated clustering algorithm with a cone of ΔR

Model-independent search for lepton-jet objects, with a few benchmark signal interpretations

Three separate types of lepton-jet definitions considered

Cosmic backgrounds important

Weak interaction ==> non-negligible dark photon lifetime

Dark/hidden sector coupled to SM Higgs and leptons via very light dark sector particles

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Prompt and displaced lepton-jets at the LHC

Parameter space getting squeezed

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

48

Parameter space getting squeezed — for visible decays

Parameter space getting squeezed — for visible decays

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

50

Higher mass hidden gauge bosons: $H \longrightarrow Z_{(d)}Z_d \longrightarrow 4I$

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Invisible dark photon decays

arXiv:1309.5084

Excellent prospects at Belle 2

Monophoton trigger essential

Others:

NA62, Project X

[ORKA canceled!]

On the horizon: Dark photons at LHCb Run 3

arXiv:1509.06765

Hidden gauge boson from charm meson decays $D^{*0} \rightarrow D^0 \gamma$

Rate in LHCb ~ 700 kHz

---> ~5 trillion events in LHC

Run 3

Closes (some of) the gap between APEX/HPS resonance search and vertexing searches

On the horizon: New beam dumps

1 m

1 m

Example: BDX

Probe higher $m_{\gamma d}$

arXiv:1406.3028

Detected energy deposit is low, so the detector concept is shockingly simply, but the background estimate is difficult.

Pair produce a dark matter beam with enough recoil energy to show up in a scintillator cube

Elastic e⁻ Scattering, Various Thresholds, $\alpha_D = 0.1$, $m_\chi = 10 \text{ MeV}$ 10^{-4} 10^{-5} 10^{-6} ϵ^2 10^{-9} 10^{-9} BDX E > 2 GeV, 3 evt. BDX E > 500 MeV, 3 evt. $m_{A'} \text{ (GeV)}$

Proposed to take place at JLab, but SLAC also a possibility

Currently working on prototype detector, simulation, full JLab proposal

Others: "Missing momentum" [arXiv:1411.1404]

Mini-BooNE

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

On the horizon: New reaches for ATLAS/CMS

Higgs mixing with displaced decays

arXiv:1412.0018

James Beacham (Ohio State) Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

55

The future: FCC

Higgs mixing with displaced decays

56

arXiv:1412.0018

James Beacham (Ohio State) Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Impossibilities: h125 as a photon source

$$h \longrightarrow \gamma \gamma^{d_r} m_{\gamma d} < m_h/2$$

Experiment	N _{h125}	
ILC at 1 TeV	10 ⁴⁻⁵ / year	
TLEP	10 ⁵ / year	
Muon collider	10 ⁴ / year	
LHC 14 TeV 3000/fb	108	
Photon linear collider	60 x e+e- collider	

V.Telnov, Photon2015

BR(h—> $\gamma\gamma$) ~2e-3 —> X years at a photon collider?

Impossibilities: $Z \longrightarrow 3\gamma$ as a photon source

Recent ATLAS result: World's best limit on SM Z to three photons

One of many results in an inclusive three photon search for new phenomena arXiv:1509.05051

Obs. (exp.) 95% CL upper limit on $BR(Z\longrightarrow 3\gamma)$

- 2.2 (2.0)e-6 (almost 5 times better than LEP)
- •SM prediction: 5e-10

If you have a source of 10^{15} Zs, let me know.

Peta-Z @ FILC?

New ideas

What else?

PADME!

Figure 3: Schematic of the Positron Annihilation into Dark Matter Experiment (PADME).

Sensitive to both visible and invisible decays, $\mathbf{\epsilon}^2 \sim 1 \cdot 10^{-6}$ in the mass range $2.5 < M_{A'} < 22.5$ MeV.

arXiv:1501.01867

Approved and financed! Talk to Mauro.

Stepping from the dark photon wood into the light

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

Backups

Hall A High Resolution Spectrometers (HRSs)

APEX: Determining mass resolution

Two parallel VDCs provide accurate reconstruction of full 3D track of particle as it enters the HRS

- APEX: Electron singles rate from 0.7 to 5.8 MHz
- Rates are higher than ever used in Hall A -- 5 MHz (75 kHz/wire, 368 wires)

Algorithm scans for 'V' shaped clusters in time

S. Riordan

Mass resolution depends on angular and momentum resolution

- HRS momentum resolution excellent, 10⁻⁴; negligible
- Angular resolution and multiple scattering in target dominate

mrad	Optics	Tracking	MS in target
σ (horiz)	0.11	~0.4	0.37
σ (vert)	0.22	~1.8	0.37

Test run mass resolution: $\sigma \sim 0.85$ - 1.11 MeV (varies over mass range)

James Beacham (Ohio State)

Challenges in the Dark Sector — Frascati, Italy — 18 Nov. 2015

APEX: Work in progress for full run

New septum magnets

- Magnet parts produced
- Contractor, Buckley Systems, has finished testing coils
- Magnet shipped to JLab for further testing
- Sensitivity projections currently being updated with new acceptance and dedicated Monte Carlo

New optics method

Scintillating fiber (SciFi) hodoscope

