Central Michigan UNIVERSITY

## Nuclear structure constraints for doublebeta decay nuclear matrix elements

Mihai Horoi<br>Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

>Support from NSF grant PHY-1404442 and DOE/SciDAC grants DE-SC0008529/SC0008641 is acknowledged

## The Nobel Prize in Physics 2015



Photo © Takaaki Kajita
Takaaki Kajita
Prize share: 1/2


Photo: K. McFarlane. Queen's University /SNOLAB
Arthur B. McDonald
Prize share: $1 / 2$

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino NUMEN201 oscillations, which shows that neutrinos have mass" December 1,

We learned that neutrinos have mass, but we don't know how to extend the Standard Model!

## Nobel prize 2025: Neutrinoless Double Beta Decay?

Probably the best chance of the lowenergy nuclear physics community to get another Nobel prize!

## Neutrinoless Double Beta Decay



$$
\begin{gathered}
T_{1 / 2}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}\right)\left[M^{0 v}\left(0^{+}\right)\right]^{2}\left(\frac{<m_{\beta \beta}>}{m_{e}}\right)^{2} \\
\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{k} m_{k} U_{e k}^{2}\right|
\end{gathered}
$$

## Neutrino $\beta \beta$ effective mass

arxiv:1507.08204

$\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{k=1}^{3} m_{k} U_{e k}^{2}\right|=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right| \quad \Leftarrow T_{12}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}\right)\left[M^{0 v}\left(0^{+}\right)\right]^{2}\left(\frac{\left\langle m_{\beta \beta}>\right.}{m_{e}}\right)^{2}$

$$
\phi_{2}=\alpha_{2}-\alpha_{1} \quad \phi_{3}=-\alpha_{1}-2 \delta
$$

NUMEN2015,
M. Horoi CMU

## Neutrinoless Double Beta Decay Black Box



$$
\left.\left[T_{1 / 2}^{0 v}\right]^{-1}=G^{0 v}\left|\sum_{j} M_{j} \eta_{j}\right|^{2}=G^{0 \nu} M^{(0 v}\right) \eta_{L L}+M^{(0 N)}\left(\eta_{N L}+\eta_{N R}\right)+\tilde{X}_{\lambda}<\lambda>+\tilde{X}_{n}<\eta>+M^{\left(0 \lambda^{\prime}\right)} \eta_{\lambda^{\prime}}+M^{(0 \bar{q})} \eta_{\bar{q}}+\left.\cdots\right|^{2}
$$

## NEMO-3 $2 \nu 2 \beta$ of ${ }^{100}$ Mo Measurement

- 6.9 kg of ${ }^{100} \mathrm{Mo}$
- ~700 $0002 \nu 2 \beta$ events collected
- Efficiency $\mathcal{E}_{2 \nu}=4.3$ \%
- Signal to background ratio $\mathrm{S} / \mathrm{B}=76$
- Preliminary half-life:
$\mathcal{T}_{1 / 2}^{2 \nu}=7.16 \pm 0.01$ (stat) $\pm 0.54$ (syst) $10^{18} \mathrm{y}$

compatible with previously published [Phys. Rev. Lett. 95, 182302 (2005)]



- 0.7 \% systematical uncertainty on the $2 \nu 2 \beta$ efficiency above 2 MeV


## Models, $\beta \beta$, and LHC

$\checkmark$ Left-right (LR) symmetric model(s):

- Restore LR symmetry (at some scale), needs new iso-triplet Higgs, $W_{R}$, new $\beta \beta$-decay contributions
- Super-Symmetric (SUSY) model(s):
- Restore fermion-boson symmetry, double the \# of particles, may contribute to $\beta \beta$-decay (R-parity)


## Models, $\beta \beta$, and LHC

- Left-right (LR) symmet
- Restore LR symmet Higgs, $W_{R}$, new $\beta \beta$ -
$\mathrm{W}_{\mathrm{R}}$ search at CMS arXiv:
1407.3683




## Low-energy LR contributions to $0 \nu \beta \beta$ decay

DAS et al.

(a)

(d)
(b)

$\mathcal{H}_{W}=\frac{G_{F}}{\sqrt{2}}\left[j_{L}^{u}\left(J_{L \mu}^{+}+\kappa J_{R \mu}^{+}\right)+j_{R}^{u}\left(\eta J_{L \mu}^{+}+\lambda J_{R \mu}^{+}\right)\right]+$h.c. Left - right symmetric model

$$
\begin{gathered}
\mathcal{H}_{W}=\frac{G_{F}}{\sqrt{2}} j_{L}^{\mu} J_{L \mu}^{+}+h . c . \\
j_{L / R}^{u}=\bar{e} \gamma^{\mu}\left(1 \mp \gamma^{5}\right) v_{e}
\end{gathered}
$$

Low-energy effective Hamiltonian

(e)
$-\mathcal{L} \supset \frac{1}{2} h_{\alpha \beta}^{T}\left(\bar{\nu}_{\beta L} \bar{e}_{\alpha L}\right)\left(\begin{array}{cc}\Delta^{-} & -\Delta^{0} \\ \Delta^{--} & \Delta^{-}\end{array}\right)\binom{e_{R}^{c}}{-v_{R}^{c}}+h c$

No neutrino exchange

## More long-range contributions?

SUSY/w $R$ - parity violation : e.g. Rep.Prog.Phys. 75, 106301(2012)

Hadronization /w R-parity v. and heavy neutrino

$\left.\left[T_{1 / 2}^{0 v}\right]^{-1}=G^{0 v}\left|\sum_{j} M_{j} \eta_{j}\right|^{2}=G^{0 v} M^{(0 v)} \eta_{v L}+M^{(0 N)}\left(\eta_{N L}+\eta_{N R}\right)+\tilde{X}_{\lambda}<\lambda>+\tilde{X}_{\eta}<\eta>+M^{\left(0 \lambda^{\prime}\right.}\right) \eta_{\lambda^{\prime}}+M^{(0 \tilde{q})} \eta_{\tilde{q}}+\left.\cdots\right|^{2}$
(i) $\eta_{N L}$ neglijible in most models;
(ii) $\langle\boldsymbol{\eta}\rangle \&\langle\lambda\rangle$ ruled in /out by energy or angular distributions
$\left[T_{1 / 2}^{0 v}\right]^{-1} \cong G^{0 v}\left|M^{(0 v)} \eta_{v L}+M^{(0 N)} \eta_{N R}\right|^{2} \approx G^{0 v}\left[\left|M^{(0 v)}\right|^{2}\left|\eta_{v L}\right|^{2}+\left|M^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}\right] \quad$ No interference terms!
R. Arnold et al.: Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

(a)

(b)

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 \nu}\right]^{-1} } & =\left|M_{G T}^{(0 \nu)}\right|^{2}\left\{C_{\nu^{2}}+C_{\nu \lambda} \cos \phi_{1}+C_{\nu \eta} \cos \phi_{2}\right. \\
& \left.+C_{\lambda^{2}}+C_{\eta^{2}}+C_{\lambda \eta} \cos \left(\phi_{1}-\phi_{2}\right)\right\}
\end{aligned}
$$

R. Arnold et al.: Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

(a)

(b)

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 \nu}\right]^{-1} } & =\left|M_{G T}^{(0 \nu)}\right|^{2}\left\{C_{\nu^{2}}+C_{\nu \lambda} \cos \phi_{1}+C_{\nu \eta} \cos \phi_{2}\right. \\
& \left.+C_{\lambda^{2}}+C_{\eta^{2}}+C_{\lambda \eta} \cos \left(\phi_{1}-\phi_{2}\right)\right\}
\end{aligned}
$$

$\frac{\mathrm{d}^{2} W_{0^{+} \rightarrow 0^{+}}^{0 \nu}}{\mathrm{~d} \epsilon_{1} \mathrm{~d} \cos \theta_{12}}=\frac{a_{0 \nu \omega_{0 \nu}\left(\epsilon_{1}\right)}}{2\left(m_{e} R\right)^{2}}\left[A\left(\epsilon_{1}\right)+B\left(\epsilon_{1}\right) \cos \theta_{12}\right]$

$$
\frac{2 \mathrm{~d} W_{0^{+} \rightarrow 0^{+}}^{0 \nu}}{\mathrm{~d}(\Delta t)}=\frac{2 a_{0 \nu}}{\left(m_{e} R\right)^{2}} \frac{\omega_{0 \nu}(\Delta t)}{m_{e} c^{2}} A(\Delta t)
$$

$$
t=\varepsilon_{e 1}-\varepsilon_{e 2}
$$

## 竟

CENTRAL MICHIGAN UNIVERSITY
$\lambda$ and $\eta$ mechanisms $\left({ }^{82} \mathrm{Se}\right)$ : look for green
$<\lambda>$ dominates
$<\eta>$ dominates


## Two Non-Interfering Mechanisms

$\left[T_{1 / 2}^{0 v}\right]^{-1} \approx G^{0 v}\left[\left|M^{(0 v)}\right|^{2}\left|\eta_{v L}\right|^{2}+\left|M^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}\right] \quad$ No interference terms!
$\left|\eta_{\nu}\right|,\left|\eta_{N R}\right| \Leftarrow\left\{\begin{array}{l}{\left[G_{G e}^{0 v} T_{1 / 2 G e}^{0 v}\right]^{-1}=\left|M_{G e}^{(0 v)}\right|^{2}\left|\eta_{\nu}\right|^{2}+\left|M_{G e}^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}} \\ {\left[G_{X e}^{0 v} T_{1 / 2 X e}^{0 v}\right]^{-1}=\left|M_{X e}^{(0 v)}\right|^{2}\left|\eta_{v}\right|^{2}+\left|M_{X e}^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}}\end{array}\right.$

$$
\begin{aligned}
& \left|\eta_{v}\right|=\frac{\left\langle m_{\beta \beta}\right\rangle}{m_{e}} \approx 10^{-6} \\
& \left|\eta_{\text {NR }}\right|=\left(\frac{M_{W I}}{M_{\text {WR }}}\right)^{4} \sum_{k}^{4 \text { nawy }} V_{e k}^{2} \frac{m_{p}}{M_{k}} \approx 10^{-8}
\end{aligned}
$$

Assume $\mathrm{T}_{1 / 2}\left({ }^{76} \mathrm{Ge}\right)=22.3 \times 10^{24} \mathrm{y}$
NUMEN2015,
December 1, 2015

M. Horoi CMU

## Two Non-Interfering Mechanisms

$$
r(\nu / N) \equiv T_{1 / 2}^{\nu / N}(1) / T_{1 / 2}^{\nu / N}(2)=\frac{G_{01}^{0 \nu}(2)\left|M^{0 \nu / N}(2)\right|^{2}}{G_{01}^{0 \nu}(1)\left|M^{0 \nu / N}(1)\right|^{2}}
$$

## Two Non-Interfering Mechanisms

$$
r(\nu / N) \equiv T_{1 / 2}^{\nu / N}(1) / T_{1 / 2}^{\nu / N}(2)=\frac{G_{01}^{0 \nu}(2)\left|M^{0 \nu / N}(2)\right|^{2}}{G_{01}^{0 \nu}(1)\left|M^{0 \nu / N}(1)\right|^{2}}
$$

|  | $\mathrm{Ge} / \mathrm{Se}$ |  | $\mathrm{Ge} / \mathrm{Te}$ |  | $\mathrm{Ge} / \mathrm{Xe}$ |  | $\mathrm{Se} / \mathrm{Te}$ |  | $\mathrm{Se} / \mathrm{Xe}$ |  | $\mathrm{Te} / \mathrm{Xe}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ge | Se | Ge | Te | Ge | Xe | Se | Te | Se | Xe | Te | Xe |
| $G_{01}^{0 \nu} \times 10^{14}$ | 0.237 | 1.018 | 0.237 | 1.425 | 0.237 | 1.462 | 1.018 | 1.425 | 1.018 | 1.462 | 1.425 | 1.462 |
| $M^{0 \nu}(1 / 2)$ | 3.57 | 3.39 | 3.57 | 1.93 | 3.57 | 1.76 | 3.39 | 1.93 | 3.39 | 1.76 | 1.93 | 1.76 |
| $M^{0 N}(1 / 2)$ | 202 | 187 | 202 | 136 | 202 | 143 | 187 | 136 | 187 | 143 | 136 | 143 |
| $T_{1 / 2}^{\nu}(1) / T_{1 / 2}^{\nu}(2)$ | 3.87 | 1.76 | 1.50 | 0.45 | 0.39 | 0.85 |  |  |  |  |  |  |
| $T_{1 / 2}^{N}(1) / T_{1 / 2}^{N}(2)$ | 3.68 | 2.73 | 3.09 | 0.74 | 0.84 | 1.13 |  |  |  |  |  |  |
| $R(N / \nu)$ present | 0.95 | 1.55 | 2.06 | 1.63 | 2.17 | 1.33 |  |  |  |  |  |  |
| $R(N / \nu)[45]$ | 1.02 | 1.39 | 1.42 | 1.36 | 1.39 | 1.03 |  |  |  |  |  |  |

$$
R(N / \nu)=r(\bar{N}) / r(\nu)
$$

## Summary of 0 vDBD mechanisms

- The mass mechanism (a.k.a. light-neutrino exchange) is likely, and the simplest BSM scenario.
- Right-handed heavy neutrino-exchange is possible, and requires knowledge of half-lives for more isotopes.
- $\eta$ - and $\lambda$ - mechanisms are possible, but could be ruled in/out by energy and angular distributions.
- Left-right symmetric model may be also (un)validated at LHC/colliders.
- SUSY/R-parity, KK, GUT, etc, scenarios need to be checked, but validated by additional means.


## $2 v$ Double Beta Decay (DBD) of ${ }^{48} \mathrm{Ca}$

$$
\begin{aligned}
& T_{1 / 2}^{-1}=G_{2 v}\left(Q_{\beta \beta}\right)\left[M_{G T}^{2 v}\left(0^{+}\right)\right]^{2} \\
& M_{\mathrm{GT}}^{2 v}\left(0^{+}\right)=\sum_{k} \frac{\left\langle 0_{f}\left\|\sigma \tau^{-}\right\| 1_{k}^{+}\right\rangle\left\langle 1_{k}^{+}\left\|\sigma \tau^{-}\right\| 0_{i}\right\rangle}{E_{k}+E_{0}} \\
& { }^{48} \mathrm{Ca} \xrightarrow{2 v \beta \beta}{ }^{48} \mathrm{Ti}
\end{aligned}
$$

The choice of valence space is important!

$$
B(G T)=\frac{|\langle f\|\sigma \cdot \tau\| i\rangle|^{2}}{\left(2 J_{i}+1\right)}
$$

| ISR | 48Ca | 4871 |
| :--- | :--- | ---: |
| pf | 24.0 | 12.0 |
| f7 p3 | 10.3 | 5.2 |

Ikeda satisfied in pf !


NUMEN2015,
December 1, 2015

Ikeda sum rule $(I S R)=\sum B(G T ; Z \rightarrow Z+1)-\sum B(G T ; Z \rightarrow Z-1)=3(N-Z)$


Horoi, Stoica, Brown, PRC 75, 034303 (2007)

## Shell Model GT Quenching





$$
H_{\text {valence }} \Psi=E_{n} \Psi
$$

core polarization:
Phys.Rep. 261, 125 (1995)


NUMEN2015,
December 1, 2015

can describe most correlations around the Fermi surface!

$c_{D}$
FIG. 1: Chiral 2 b currents and 3 N force contributions.
J. Menendez, D. Gazit and A. Schwenk, arXiV:1103.3622, PRL

## Closure Approximation and Beyond in Shell Model

$$
\begin{aligned}
& \text { Challenge: there are about } 100,000 \\
& J_{k} \text { states in the sum for } 48 \mathrm{Ca} \\
& \text { Much more intermediate states for } \\
& \text { heavier nuclei, such as }{ }^{76} \mathrm{Ge} \text { !!! } \\
& \text { No-closure may need states out of } \\
& \text { the model space (not considered). } \\
& M^{0 v}=M_{G T}^{0 v}-\left(g_{V} / g_{A}\right)^{2} M_{F}^{0 v}+M_{T}^{0 v} \\
& \hat{S}= \begin{cases}\sigma_{1} \tau_{1} \sigma_{2} \tau_{2} & \text { Gamow }- \text { Teller }(G T) \\
\tau_{1} \tau_{2} & \text { Fermi }(F) \\
{\left[3\left(\vec{\sigma}_{1} \cdot \hat{n}\right)\left(\vec{\sigma}_{2} \cdot \hat{n}\right)-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)\right] \tau_{1} \tau_{2}} & \text { Tensor }(T)\end{cases}
\end{aligned}
$$


${ }^{82}$ Se: PRC 89, 054304 (2014)



$$
M_{\text {mixed }}(N)=M_{\text {no-closure }}(N)+\left[M_{\text {closure }}(N=\infty)-M_{\text {closure }}(N)\right]
$$


(ant michicn New Approach for NME: Novel Tests of Nuclear Structure


Spin of the neutron-neutron (proton-proton) pairs

December 1, 2015

## Two-nucleon transfer

PHYSICAL REVIEW C 75, 051301(R) (2007)
Pair correlations in nuclei involved in neutrinoless double $\beta$ decay: ${ }^{76} \mathrm{Ge}$ and ${ }^{76} \mathrm{Se}$
S. J. Freeman, ${ }^{1}$ J. P. Schiffer,,${ }^{2, *}$ A. C. C. Villari, ${ }^{3}$ J. A. Clark, ${ }^{4}$ C. Deibel, ${ }^{4}$ S. Gros, ${ }^{2}$ A. Heinz, ${ }^{4}$ D. Hirata, ${ }^{3,5}$ C. L. Jiang, ${ }^{2}$ B. P. Kay, ${ }^{1}$ A. Parikh, ${ }^{4}$ P. D. Parker, ${ }^{4}$ J. Qian, ${ }^{4}$ K. E. Rehm, ${ }^{2}$ X. D. Tang, ${ }^{2}$ V. Werner, ${ }^{4}$ and C. Wrede ${ }^{4}$

TABLE II. $3^{\circ}$ laboratory cross sections and ratios to DWBA. Cross sections are for the ground-state to ground-state transitions.

| Target | $\sigma_{\text {exp }}(\mathrm{lab})$ <br> $(\mathrm{mb} / \mathrm{sr})$ | $\sigma_{\text {DWBA }}$ <br> $(\mathrm{mb} / \mathrm{sr})$ | $\sigma_{\text {exp }} / \sigma_{\text {DWBA }}$ |
| :--- | :---: | :---: | :---: | :---: |

Prepared by Alex Brown


What Experimental Searches Do Exist?



IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013). $\longrightarrow$ IBM-2 PRC 91, 034304 (2015)
QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207-232 (2010).
QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077
ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139-151 (2009).
SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC
91, 024309 (2015), PRL 110, 222502 (2013), PRL 113, 262501(2014).
NUMEN2015,
M. Horoi CMU

December 1, 2015

## Heavy neutrino-exchange NME



IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).
QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.
QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015), ISM-StMa J. Menendez, private communication.
ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

## $2 \pi$-exchange NME




QRPA-Tu A. Faessler, S. Kovalenko, and F. Simkovic, PRD 58, 115004 (1998). MS: Miller-Spencer SRC.
ISM M. Horoi et al, to be published. New SRC: AV18 (low) \& CD-Bonn (high).

## The effect of larger model spaces for ${ }^{48} \mathrm{Ca}$

| M $(0 \mathrm{v})$ | SDPFU | SDPFMUP |
| :--- | :--- | :--- |
| $0 \hbar \omega$ | 0.941 | 0.623 |
| $0+2 \hbar \omega$ | $1.182(26 \%)$ | $1.004(61 \%)$ |

SDPFU: PRC 79, 014310 (2009)
SDPFMUP: PRC 86, 051301(R) (2012)

$s d-p f$
NUMEN2015,
December 1,2015
M. Horoi CMU

|  | $\mathrm{M}(0 \mathrm{v})$ |
| :--- | :--- |
| $0 \hbar \omega /$ GXPF1A | 0.733 |
| $0 \hbar \omega+2^{\text {nd }}$ ord./GXPF1A | $1.301(77 \%)$ |
| arXiv:1308.3815, PRC $89,045502(2014)$ |  |

PRC 87, 064315 (2013)


## Experimental info needed





TABLE I. The calculated $B(E 2) \uparrow$ values on the first line compared to the adopted ones on the second line.

|  | ${ }^{128} \mathrm{Te}{ }^{130} \mathrm{Te}$ | ${ }^{132} \mathrm{Te}$ | ${ }^{130} \mathrm{Xe}$ | ${ }^{132} \mathrm{Xe}$ | ${ }^{136} \mathrm{Xe}{ }^{136} \mathrm{Ba}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $B(E 2) \uparrow_{\text {th. }}$ | 0.202 | 0.153 | 0.085 | 0.502 | 0.390 | 0.215 | 0.479 |
| $B(E 2) \uparrow_{\text {ad }}$ | 0.380 | 0.297 | 0.207 | 0.634 | 0.468 | 0.217 | 0.413 |

FIG. 2. (Color on-line) Theoretical and experimental [58] neutron shell vacancies for ${ }^{128} \mathrm{Te}$ and ${ }^{130} \mathrm{Te}$.


NUMEN2015,
M. Horoi CMU

December 1, 2015

## Take-Away Points

## Observation of $0 v \beta \beta$ will signal New Physics Beyond the Standard Model.

Black box theorem (all flavors + oscillations)

(i) Neutrinos are Majorana fermions.
$0 \nu \beta \beta$ observed $\Leftrightarrow$ at some level
(ii) Lepton number conservation is violated by 2 units

$$
\text { (iii) }\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{k=1}^{3} m_{k} U_{e k}^{2}\right|=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right|>0
$$

Regardless of the dominant $0 \nu \beta \beta$ mechanism!

## Take-Away Points

The analysis and guidance of the experimental efforts need accurate Nuclear Matrix Elements.

$$
\left\langle m_{\beta \beta}\right\rangle \equiv\left\langle m_{v}\right\rangle=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right|
$$

$$
T_{1 / 2}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}{\left[M^{0 v}\left(0^{+}\right)\right]}^{2}\left(\frac{<m_{\beta \beta}>}{m_{e}}\right)^{2}\right.
$$



NUMEN2015,
December 1, 2015

$$
\phi_{2}=\alpha_{2}-\alpha_{1} \quad \phi_{3}=-\alpha_{1}-2 \delta
$$



## Take-Away Points

Extracting information about Majorana $\left\langle m_{\beta B}\right\rangle=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right|$ CP-violation phases may require the mass hierarchy from LBNE(DUNE), cosmology, etc, but also accurate Nuclear Matrix Elements.

$$
\phi_{2}=\alpha_{2}-\alpha_{1} \quad \phi_{3}=-\alpha_{1}-2 \delta
$$

$\Sigma=m_{1}+m_{2}+m_{3}$ from cosmology



NUMEN2015,
M. Horoi CMU

December 1, 2015

## Take-Away Points

Alternative mechanisms to $0 v \beta \beta$ need to be carefully tested: many isotopes, energy and angular correlations.

These analyses also require accurate Nuclear Matrix Elements.


SuperNEMO; ${ }^{82} \mathrm{Se}$
$\left|\eta_{v}\right|,\left|\eta_{N R}\right| \Leftarrow\left\{\begin{array}{l}{\left[G_{G e}^{0 v} T_{1 / 2 G e}^{0 v}\right]^{-1}=\left|M_{G e}^{(0 v)}\right|^{2}\left|\eta_{v}\right|^{2}+\left|M_{G e}^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}} \\ {\left[G_{X e}^{0 v} T_{1 / 2 X e}^{0 v}\right]^{-1}=\left|M_{X e}^{(0 v)}\right|^{2}\left|\eta_{v}\right|^{2}+\left|M_{X e}^{(0 N)}\right|^{2}\left|\eta_{N R}\right|^{2}}\end{array}\right.$


$\left[T_{1 / 2}^{0 v}\right]^{-1}=G^{0 v}\left|\sum_{j} M_{j} \eta_{j}\right|^{2}=G^{0 \nu} M^{(0 v)} \eta_{L L}+M^{(0 N)}\left(\eta_{N L}+\eta_{N R}\right)+\tilde{X}_{\lambda}<\lambda>+\tilde{X}_{\eta}<\eta>+M^{(0 \lambda \cdot} \cdot \eta_{\lambda^{\prime}}+M^{(0 \tilde{q})} \eta_{\tilde{q}}+\left.\cdots\right|^{2}$

Accurate shell model NME for different decay mechanisms were recently calculated.

The method provides optimal closure energies for the mass mechanism.

Decomposition of the matrix elements can be used for selective quenching of classes of
 states, and for testing nuclear structure.

$$
M_{\text {mixied }}(N)=M_{\text {no-closure }}(N)+\left[M_{\text {closure }}(N=\infty)-M_{\text {closure }}(N)\right]
$$



roi CMU
Spin of the neutron-neutron (proton-proton) pairs
Spin of the intermediate states


## Collaborators:

- Alex Brown, NSCL@MSU
- Roman Senkov, CMU and CUNY
- Andrei Neacsu, CMU
- Jonathan Engel, UNC
- Jason Holt, TRIUMF

