Description of neutrinoless double beta decay using IBM-2

Jenni Kotila

Yale

Challenges in the investigation of double charge-exchange nuclear reactions:
towards neutrino-less double beta decay
LNS-Catania December, 1-2, 2015

Contents

- Motivation
- Different models, different assumptions
- Some tests of wave functions
- Nuclear Matrix Elements
- Half-Life Predictions
- Sterile neutrino contributions
- Limits on Average neutrino mass
- Quenching of $\mathbf{g}_{\mathbf{A}}$
- Conclusions

Motivation

- Although proposed more than 70 years ago to establish the nature of neutrinos, neutrinoless double beta decay remains the most sensitive probe to following open questions:
- What is the absolute neutrino mass scale?
- Are neutrinos Dirac or Majorana particles?
- How many neutrino species are there?
- At the moment experiments are scanning half-lives of the order of $10^{25} \mathrm{yr}$:

$$
\left[\tau_{1 / 2}^{0 \nu}\right]^{-1}=\mathrm{G}_{0 \nu} \mathrm{~g}_{\mathrm{A}}^{4}\left|\mathrm{M}^{(0 \nu)}\right|^{2}\left|\mathbf{f}\left(\mathbf{m}_{\mathrm{i}}, \mathbf{U}_{\mathrm{ei}}\right)\right|^{2}
$$

- $\mathbf{f}\left(\mathbf{m}_{\mathbf{i}}, \mathbf{U}_{\mathrm{ei}}\right)$ contains the physics beyond standard model and is different for different scenarios and mechanisms: exchange of light or heavy neutrino, emission of Majoron, exchange of sterile neutrino(s)...
- The fact that $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$-decay is a unique process, and there is no direct probe which connects the initial and final states other than the process itself makes the prediction challenging for theoretical models.
- The reliability of the used wave functions, and eventually $\mathbf{M}^{(0 \nu)}$, has to be then tested using other available relevant data.

Different models, different assumptions

$\mathbf{M}^{(0 \nu)}$ are calculated in nuclear models, such as:

- The Quasiparticle random phase approximation, QRPA, constructs ground state correlations by iterating two-quasiparticle excitations on top of a BCS or HFB vacuum. A quasiboson approximation is then imposed on the excitations. The calculations are performed in a large valence space including several major shells. The Hamiltonian is typically based on a realistic G matrix, but modified in the like-particle pairing and particle-hole channels to reproduce experimental pairing gaps and Gamow-Teller resonance energies. Results depend on fine-tuning of the interaction, especially near the spherical-deformed transition, for example ${ }^{150} \mathrm{Nd}$.
- In the interacting shell model, ISM, the single-particle Hilbert space is small, typically a few valence orbits. However, the shell model includes all possible correlations within that space through direct diagonalization of the Hamiltonian. The valence-shell interaction usually comes from G-matrix perturbation theory or a renormalization-group treatment, but must be adjusted to reproduce spectra. ISM cannot address nuclei with many particles in the valence shells, for example ${ }^{150} \mathrm{Nd}$, due to the exploding size of the Hamiltonian matrices $\left(>10^{9}\right)$.

Different models, different assumptions

- The idea that inspires the microscopic interacting boson model, IBM-2, is a truncation of the very large shell model space to states built from pairs of nucleons with $\mathbf{J}=\mathbf{0}$ and $\mathbf{2}$. These pairs are then assumed to be collective and are taken as bosons. The Hamiltonian is constructed phenomenologically and two- and four valence-nucleon states are generated by a schematic interaction. IBM-2 is known to be very successful in reproducing trends for spectra and E2 transitions involving collective states across isotopic and isotonic chains.
- Can be used in any nucleus and thus all nuclei of interest can be calculated within the same model.
- Realistic and well checked wave functions (excitation energies, $B(E 2)$ values and quadrupole moments, $B(M 1)$ values and magnetic moments, occupation probabilities, etc.).

Different models, different assumptions: IBM-2

- In the microscopic IBM the shell model S, D pair states are mapped onto \mathbf{s}, \mathbf{d} bosons as

$$
\begin{array}{ll}
\mathrm{S}_{\rho}^{\dagger}=\sum_{\mathrm{j}} \alpha_{\mathrm{j}} \sqrt{\frac{\Omega_{\mathrm{j}}}{2}}\left(\mathrm{a}_{\mathrm{j}}^{\dagger} \times \mathrm{a}_{\mathrm{j}}^{\dagger}\right)^{(0)} & \longrightarrow \mathrm{s}_{\rho}^{\dagger} \\
\mathrm{D}_{\rho}^{\dagger}=\sum_{\mathrm{j} \leq \mathrm{j}^{\prime}} \beta_{\mathrm{ij} j^{\prime}} \frac{1}{\sqrt{1+\delta_{\mathrm{j} j^{\prime}}}}\left(\mathrm{a}_{\mathrm{j}}^{\dagger} \times \mathrm{a}_{\mathrm{j}^{\prime}}^{\dagger}\right)^{(2)} & \longrightarrow \mathrm{d}_{\rho}^{\dagger},
\end{array}
$$

with $\Omega_{\mathrm{j}}=\mathrm{j}+1 / 2$ and pair structure coefficients α_{j} and $\beta_{\mathrm{ji}^{\prime}}$, that are obtained by diagonalizing the surface delta interaction (SDI) in a chosen valence space.

- Following the method developed by Pittel, Duval and Barrett, $\mathbf{S}_{\rho}^{\dagger}$ and $\mathbf{D}_{\rho}^{\dagger}$ create the energetically-lowest $\mathbf{0}^{+}$and $\mathbf{2}^{+}$two-fermion states appropriate to the nucleus of interest. By using this method some possible renormalization (polarization) effects induced by the neutron-proton interaction are included approximately.
- The used single particle energies are taken from experiments.
- Isovector strength parameter \mathbf{A}_{1} value is fitted to reproduce the energy difference between the first $\mathbf{2}^{+}$and the $\mathbf{0}^{+}$ground state in the corresponding two-valence-particle or two-valence-hole nucleus.

Different models, different assumptions: IBM-2

- The bosonization method, when carried to all orders, produces results that are identical to the fermionic results. In $\boldsymbol{\beta} \boldsymbol{\beta}$-decay the fermion transition operator creates a pair of protons (neutrons) and annihilates a pair of neutrons (protons), so we need the mapping of the coupled pair operator:

$$
\begin{aligned}
\left(\pi_{j_{\pi}}^{\dagger} \times \pi_{j_{\pi}}^{\dagger}\right)^{(0)} & \longmapsto A_{j_{\pi}}^{(01)} s_{\pi}^{\dagger}+A_{j_{\pi}}^{(11)} s_{\pi}^{\dagger}\left(d_{\pi}^{\dagger} \tilde{d}_{\pi}\right)^{(0)}+\ldots \\
\left(\pi_{j_{\pi}}^{\dagger} \times \pi_{j_{\pi}^{\prime}}^{\dagger}\right)^{(2)} & \longmapsto B_{j_{\pi j}^{\prime}}^{(01)} d_{\pi}^{\dagger} \\
& +B_{j_{\pi j}^{\prime}}^{(11)} s_{\pi}^{\dagger}\left(s_{\pi}^{\dagger} \tilde{d}_{\pi}\right)^{(2)}+B_{j_{\pi j}^{\prime}}^{(12)} s_{\pi}^{\dagger}\left(d_{\pi}^{\dagger} \tilde{d}_{\pi}\right)^{(2)} \\
& +\ldots \\
\left(\tilde{\nu}_{j_{\nu}} \times \tilde{\nu}_{j_{\nu}}\right)^{(0)} & \longmapsto \tilde{A}_{j_{\nu}}^{(01)} \tilde{s}_{\nu}+\tilde{A}_{j_{\nu}}^{(11)} \tilde{s}_{\nu}\left(d_{\nu}^{\dagger} \tilde{d}_{\nu}\right)^{(0)}+\ldots \\
\left(\tilde{\nu}_{j_{\nu}} \times \tilde{\nu}_{j_{\nu}^{\prime}}\right)^{(2)} & \longmapsto \tilde{B}_{j_{\nu} j_{\nu}^{\prime}}^{(01)} \tilde{d}_{\nu} \\
& +\tilde{B}_{j_{\nu} j_{\nu}^{\prime}}^{(11)}\left(d_{\nu}^{\dagger} \tilde{s}_{\nu}\right)^{(2)} \tilde{s}_{\nu}+\tilde{B}_{j_{\nu} j_{\nu}^{\prime}}^{(12)}\left(d_{\nu}^{\dagger} \tilde{d}_{\nu}\right)^{(2)} \tilde{s}_{\nu} \\
& +\cdots
\end{aligned}
$$

- The nuclear matrix elements of proper operators are then obtained between realistic wave functions obtained from IBM-2, which in addition to spherical nuclei is also capable of describing medium and heavy deformed nuclei as ${ }^{150} \mathrm{Nd}$ and ${ }^{150} \mathrm{Sm}$

Some tests of wave functions

Case ${ }^{154} \mathrm{Gd}$: Granddaughter of ${ }^{154} \mathrm{Sm}$

- Shape transitional region \Rightarrow rapid changes of nuclear deformation
- Old calculation: No experimental information about $\mathbf{1}^{+}$scissors mode
- New experimental data \Rightarrow parameters of Majorana operator can be fitted
- Little effect on low-lying full-symmetric states
- BUT significant effect on the mixed symmetry state wave function, like $\mathbf{0}_{2}^{+} \Rightarrow$ new $\mathrm{M}^{0 \nu}\left(\mathbf{0}_{2}^{+}\right)=0.37$ (old $\left.\mathrm{M}^{0 \nu}\left(\mathrm{O}_{2}^{+}\right)=0.02\right)$

	${\stackrel{1}{ }{ }^{+} \quad 2932}^{154} \mathrm{Gd} \underline{1}^{+} \quad 2934$			
1+	4^{+}	1269		
$8^{+} \quad 1303$	$3{ }^{+}$	\bigcirc	8^{+}	1144
$\frac{3^{+}}{4^{+}} \quad \sqrt{230}$	8^{+}	1244	$\frac{3^{+}}{4^{+}}$	$\sqrt{128}$
$4^{+} \quad \square$	$\frac{8}{2^{+}}$	1087	4^{+}	1048
$2^{+} \quad 1050$		938	$\frac{2^{+}}{2^{+}}$	996
$2^{+} \longrightarrow 889$	6^{+}	$-\frac{938}{758}$	$\frac{2^{+}}{6^{+}}$	815
$6^{6^{+}} \lcm{801}$	${ }^{+}$	$\begin{array}{r}758 \\ \hline 717\end{array}$	6^{+}	$\sqrt{\frac{718}{681}}$
$\xrightarrow{6+\text { - } 658}$	0^{+}	$\xrightarrow{717}$	0^{+}	$\sqrt{681}$
$4^{+} \quad 407$	4^{+}	381	4^{+}	371
$\mathrm{2}^{+} \longrightarrow 135$	2^{+}	123	2^{+}	123
$0^{+} \longrightarrow 0$		0	0^{+}	0
th old				

Some tests of wave functions

Occupation probabilities: $A=100$ system, neutrons

EXP: D. K Sharp at MEDEX'15; BCS: J. Suhonen and O. Civitarese, NPA 924 (2014) 1

- IBM-2: 1d overfilled for both ${ }^{100} \mathrm{Mo}$ and ${ }^{100} \mathrm{Ru}$
- The change appears to be dominated by the $\mathbf{1 d}$ and $\mathbf{0 h}_{11 / 2}$ orbitals with a small contributions from $2 s_{1 / 2}$ and $0 g_{7 / 2}$
- IBM-2: Agreement good with experiments
- BCS: more complex rearrangement of nucleons, differs both from experiments and IBM-2 results

Some tests of wave functions

Occupation probabilities: $A=100$ system, protons

EXP: D. K Sharp, a. MEDEX'15; BCS: J. Suhonen and O. Civitarese, NPA 924 (2014) 1

- Individual ${ }^{100} \mathrm{Mo}$ and ${ }^{100} \mathrm{Ru}$ proton occupancies, as well as the difference in proton occupancy are in proper agreement with the experiments
- Change is dominated by $0 \mathrm{~g}_{9 / 2}$ orbital, where 1 p orbitals play a lesser role, and $\mathbf{0} \mathbf{f}_{5 / 2}$ orbital gives only a small contribution
- Comparison with BCS calculation reveals complex differences
\therefore Overall agreement good between IBM-2 and experiments for $\mathbf{A}=\mathbf{1 0 0}$ system

Nuclear Matrix Elements

- Transition operator for $\boldsymbol{\beta} \boldsymbol{\beta}$ decay: $\mathbf{T}(\mathbf{p})=\mathbf{H}(\mathbf{p}) \mathbf{f}\left(\mathbf{m}_{\mathrm{i}}, \mathrm{U}_{\mathrm{ei}}\right)$, where

$$
\mathrm{H}(\mathrm{p})=\sum_{\mathrm{n}, \mathrm{n}^{\prime}} \tau_{\mathrm{n}}^{+} \tau_{\mathrm{n}^{\prime}}^{+}\left[-\mathrm{h}^{\mathrm{F}}(\mathrm{p})+\mathrm{h}^{\mathrm{GT}}(\mathrm{p}) \vec{\sigma}_{\mathrm{n}} \cdot \vec{\sigma}_{\mathrm{n}^{\prime}}+\mathrm{h}^{\top}(\mathrm{p}) \mathrm{S}_{\mathrm{nn}^{\prime}}^{\mathrm{p}}\right]
$$

(in momentum space, including higher order corrections)

- Truncated transition operator in IBM-2

$$
h_{I B M}^{F, G T, T}=h_{s-s}^{F, G T, T} s_{\pi}^{\dagger} \cdot \tilde{s}_{\nu}+h_{d-d}^{F, G T, T} d_{\pi}^{\dagger} \cdot \tilde{d}_{\nu}
$$

where coefficients

$$
\begin{aligned}
h_{s-s}^{F, G T, T} & =-\sum_{j_{\pi}} \sum_{j_{\nu}} G^{F, G T, T}\left(j_{\pi} j_{\pi} j_{\nu} j_{\nu} ; J=0\right) A_{j_{\pi}}^{(01)} \tilde{A}_{j_{\nu}}^{(01)} \\
h_{d-d}^{F, G T, T} & =-\frac{1}{2} \sum_{j_{j} j_{\pi}^{\prime}} \sum_{j_{\nu} j_{\nu}^{\prime}} \sqrt{1+\delta_{j \pi j_{\pi}^{\prime}}} \sqrt{1+\delta_{j \nu j_{\nu}^{\prime}}} \\
& \times G^{F, G T, T}\left(j_{j} j_{\pi}^{\prime} j_{\nu} j_{\nu}^{\prime} ; J=2\right) B_{j_{\pi} j_{\pi}^{\prime}}^{(01)} \tilde{B}_{j j_{\nu}(0)}^{(01)}
\end{aligned}
$$

Nuclear Matrix Elements

Using the above defined oprators we obtain some general trends:

- Shell effects: The matrix elements are smaller at the closed shells than in the middle of the shell
- Deformation effects always decrease the matrix elements
- Isospin restoration reduces matrix elements
- The offending isospin violating NME is the Fermi NME in $2 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ which should be zero, since the Fermi part of the transition operator can not change isospin
- Isospin restoration makes the Fermi NME vanish for $2 \nu \boldsymbol{\beta} \beta$ and for $0 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ is reduced by subtraction of the monopole term in the expansion of the matrix element multipoles

Nuclear Matrix Elements: : $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

ISOSPIN RESTORATION reduces matrix elements

	$\chi_{\mathrm{F}}=\left(\mathrm{g}_{\mathrm{V}} / \mathrm{g}_{\mathrm{A}}\right)^{2} \mathrm{M}_{\mathrm{F}}^{(0 \nu)} / \mathrm{M}_{\mathrm{GT}}^{(0 \nu)}$		
Decay	IBM-2	QRPA	ISM
${ }^{48} \mathrm{Ca}$	$-0.10(-0.39)$	$-0.32(-0.93)$	
${ }^{76} \mathrm{Ge}$	$-0.09(-0.37)$	$-0.21(-0.34)$	-0.12
${ }^{\mathbf{8 2}} \mathrm{Se}$	$-0.10(-0.40)$	$-0.23(-0.35)$	-0.11
${ }^{96} \mathrm{Zr}$	$-0.08(-0.08)$	$-0.23(-0.38)$	
${ }^{100} \mathrm{Mo}$	$-0.08(-0.08)$	$-0.30(-0.30)$	
${ }^{110} \mathrm{Pd}$	$-0.07(-0.07)$	$-0.27(-0.33)$	
${ }^{116} \mathrm{Cd}$	$-0.07(-0.07)$	$-0.30(-0.30)$	
${ }^{124} \mathrm{Sn}$	$-0.12(-0.34)$	$-0.27(-0.40)$	
${ }^{128} \mathrm{Te}$	$-0.12(-0.33)$	$-0.27(-0.38)$	-0.15
${ }^{130} \mathrm{Te}$	$-0.12(-0.33)$	$-0.27(-0.39)$	-0.15
${ }^{136} \mathrm{Xe}$	$-0.11(-0.32)$	$-0.25(-0.38)$	-0.15
${ }^{148} \mathrm{Nd}$	$-0.12(-0.12)$		
${ }^{150} \mathrm{Nd}$	$-0.10(-0.10)$		
${ }^{154} \mathrm{Sm}$	$-0.09(-0.09)$		
${ }^{160} \mathrm{Gd}$	$-0.07(-0.07)$		
${ }^{198} \mathrm{Pt}$	$-0.10(-0.10)$		
${ }^{232} \mathrm{Th}$	$-0.08(-0.08)$		
${ }^{238} \mathrm{U}$	$-0.08(-0.08)$		

$\underline{0 \nu} \beta^{-} \beta^{-}:$
$\chi_{\mathrm{F}}=\left(\frac{\mathrm{g}_{\mathrm{V}}}{\mathrm{g}_{\mathrm{A}}}\right)^{2} \mathrm{M}_{\mathrm{F}}^{(0 \nu)} / \mathrm{M}_{\mathrm{GT}}^{(0 \nu)}$ (old values in parentheses):

- Considerable reduction obtained!
- Isospin restored $\chi_{\text {F }}$ values very close to the ones obtained from ISM, where isospin is a good quantum number by construction
- Similar prescription has been used for QRPA (Simkovic et al., PRC 87 045501 (2013) and Suhonen et al., PRC 91024613 (2015))

Nuclear Matrix Elements: : $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

- Light neutrino exchange: $v(p)=\frac{2}{\pi} \frac{1}{(p+A)}, f=\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}$

IBM-2: J. Barea et al., PRC 91, 034304 (2015), QRPA-Tu: F. Simkovic et al. PRC 87, 045501 (2013), QRPA-Jy: Suhonen et al., PRC 91024613 (2015), QRPA-def: J:L. Fang et al., PRC 83034320 (2011), ISM: J. Menendez et al., NPA 818, 139 (2009), PHFB: P.K. Rath et al., PRC 82, 064310 (2010), EDF: T.R. Rodriguez et al., PRL 105, 252503 (2008)

Nuclear Matrix Elements: : $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

$$
M^{(0 \nu)}=M_{G T}^{(0 \nu)}-\left(\frac{g v}{g_{A}}\right)^{2} M_{F}^{(0 \nu)}+M_{T}^{(0 \nu)}
$$

- Comparison of IBM-2, QRPA, ISM NMEs for light neutrinos
- IBM-2/QRPA/ISM similar trend
- Larger values at the middle of the shell than at closed shells
- The ISM is a factor of ~ 2 smaller than both the IBM-2 and QRPA in the lighter nuclei and the difference is smaller for heavier
- Effective value of g_{A} ?

Nuclear Matrix Elements: : $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

Estimate of error

- Sensitivity to input parameter changes
- Single particle energies: 10%
- Strengths of interactions: 5\%
- Oscillator parameter (SP wave functions): 5%
- Closure energy in the neutrino potential: 5\%
- Nuclear radius (If NMEs in dimensionless units): 5\%
- Sensitivity to model assumptions
- Truncation to S-D space: 1\% (spherical) - 10\% (deformed)
- Isospin purity: 2\%
- Sensitivity to operator assumptions
- Form of the transition operator: 5\%
- Finite nuclear size: 1%
- Short range correlations (SRC): 5\%
- The total error estimate is 16%

Nuclear Matrix Elements: : $0 \nu_{\mathrm{h}} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

- In heavy neutrino exchange scenario the transition operator has same form as for light neutrinos, but with

$$
\begin{aligned}
f & \propto \boldsymbol{m}_{\mathrm{p}}\left\langle\mathbf{m}_{\nu_{\mathrm{h}}}^{-1}\right\rangle \\
\left\langle\mathbf{m}_{\nu_{\mathrm{h}}}^{-1}\right\rangle & =\sum_{\mathrm{k}=\text { heavy }}\left(\mathrm{U}_{\text {ek }}\right)^{2} \frac{1}{\boldsymbol{m}_{\mathrm{k}_{\mathrm{h}}}}
\end{aligned}
$$

- involves the mass eigenstates $\boldsymbol{m}_{\mathrm{k}_{\mathrm{h}}}$ of heavy neutrinos
- and $\mathbf{m}_{\nu_{\mathrm{h}}} \gg 1 \mathrm{GeV}$
- The Fourier transform of the neutrino "potential" is

$$
v(p)=\frac{2}{\pi} \frac{1}{m_{p} m_{e}}
$$

- Contact interaction in configuration space \Rightarrow strongly influenced by short range correlations

Nuclear Matrix Elements: : $0 \boldsymbol{\nu}_{\mathrm{h}} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

- Comparison of IBM-2, QRPA, and ISM matrix elements for heavy neutrinos

- IBM-2/QRPA/ISM similar trend, factor of ~ 2 difference between IBM-2 and QRPA-Tü
- Comment: Ratio for QRPA-Jy/QRPA-Tü results varies from 1 up to 2.5 , reason for this discrepancy is not clear
- Note: IBM-2 error estimate in this case is 56% mostly coming from SRC

IBM-2: J. Barea et al., PRC 91, 034304 (2015), QRPA-Tü: F. Simkovic et al. PRC 87, 045501 (2013), QRPA-Jy:
Suhonen et al., PRC 91024613 (2015) ISM: A. Neacsu et al.,AHEP 2014,724315(2014)

Half-Life Predictions: $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

- Predictions calculated with $\mathbf{g}_{\mathbf{A}}=1.269$ (and $\left|\left\langle\mathbf{m}_{\nu}\right\rangle\right|=\mathbf{1 e V}$)

- Judging by the half-life, best candidates ${ }^{150} \mathrm{Nd},{ }^{100} \mathrm{Mo}$, and ${ }^{130} \mathrm{Te}$, where half-lives $\sim 10^{\mathbf{2 3}} \mathrm{yr}$

Half-Life Predictions: $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$

DECAYS TO FIRST EXCITED 0^{+}STATES

- In some cases, the matrix elements to the first excited $\mathbf{0}^{+}$state are large
- Although the PSFs are smaller to the excited state, large matrix elements offer the possibility of a direct detection, by looking at the γ-ray de-exciting the excited $0+$ level

- Best candidates ${ }^{100} \mathrm{Mo}$ and ${ }^{150} \mathrm{Nd}$, $\tau_{1 / 2}^{(0 \nu)} \sim 10^{24} \mathrm{yr}$
- $2 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$-decay observed to excited $\mathbf{0}^{+}$state in these nuclei!

Comment about $0 \nu \boldsymbol{\beta}^{+} \boldsymbol{\beta}^{+}, 0 \nu \mathrm{EC} \beta^{+}$, and $\mathrm{R} 0 \nu \mathrm{ECEC}$

- $\beta^{+} \beta^{+}$and $0 \nu \mathrm{EC} \beta^{+}$: available kinetic energy much smaller since $\mathrm{T}_{\beta^{+} \beta^{+}}=\mathrm{M}(\mathrm{A}, \mathrm{Z})-\mathrm{M}(\mathrm{A}, \mathrm{Z}-2)-4 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}$ and $\mathrm{T}_{\mathrm{EC} \beta^{+}}=\mathrm{M}(\mathrm{A}, \mathrm{Z})-\mathrm{M}(\mathrm{A}, \mathrm{Z}-2)-2 \mathrm{~m}_{\mathrm{e}} \mathrm{C}^{2}-\epsilon_{\mathrm{b}}$ \Rightarrow much smaller phase space \Rightarrow much longer $\tau_{1 / 2}^{(0 \nu)}>10^{26} \mathrm{yr}$
- For 0ν ECEC available energy larger, but since all the energies are fixed, additional requirement that Q -value matches the final state energy

- Resonance enhancement:
$\left[\tau_{1 / 2}^{0 \nu}\right]^{-1}=\mathrm{g}_{\mathrm{A}}^{4} \mathrm{G}_{0 \nu}\left|\mathrm{M}^{0 \nu}\right|^{2}|\mathrm{~F}|^{2} \frac{\left(\mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}\right) \Gamma}{\Delta^{2}+\mathrm{\Gamma}^{2} / 4}$,
where $\boldsymbol{\Delta}=\left|\mathbf{Q}-\mathbf{B}_{2 \mathrm{~h}}-\mathbf{E}\right|$ is the degeneracy parameter, and $\boldsymbol{\Gamma}$ is the two-hole width
- So in principle, if $\Delta \sim 0$ and $\boldsymbol{\Gamma} \sim 1 \mathrm{eV}$ we could obtain up to 10^{6} enhancement
- Unfortunately this is not the case and $\tau_{1 / 2}^{(0 \nu)}>10^{27} \mathrm{yr}$

Comment about Majoron emitting $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$

- This mechanism requires the emission of one or two additional bosons, Majorons, so it has similarities with $2 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$
- There are many different models, where \mathbf{m}, the number of emitted Majorons and \mathbf{n}, the spectral index of the decay take different values:

$$
\left[\tau_{1 / 2}^{0 \nu}\right]^{-1}=\mathrm{g}_{\mathrm{A}}^{4} \mathbf{G}_{\mathrm{m} \chi_{0} \mathrm{n}}^{(0)}\left|\left\langle\mathbf{g}_{\chi_{\mathrm{ee}}^{\mathrm{M}}}\right\rangle\right|^{2 \mathrm{~m}}\left|\mathrm{M}_{0 \nu \mathrm{M}}^{(\mathrm{m}, \mathrm{n})}\right|^{2}
$$

- Comparison with experimental limits on $\tau_{1 / 2, \text { exp }}^{0 \nu \mathrm{M}}$ gives information about $\left\langle\mathbf{g}_{\text {ee }}^{\mathbf{M}}\right\rangle$, the majoron-neutrino coupling constant
- Ordinary Majoron decay $\mathbf{m}=\mathbf{1}, \mathbf{n}=\mathbf{1}$: If the Majoron couples only to light neutrino, the NME needed to calculate the half-life are the same as for light neutrino exchange
- There are cosmologic constraints on $\left\langle\mathbf{g}_{\text {ee }}^{M}\right\rangle$, such as values $\mathbf{3} \times \mathbf{1 0}^{-\mathbf{7}} \lesssim \mathbf{g}_{\text {ee }}^{\mathrm{M}} \lesssim \mathbf{2 \times 1 0 ^ { - 5 }}$ or $\mathbf{g}_{\text {ee }}^{\mathrm{M}} \gtrsim \mathbf{3} \times \mathbf{1 0}^{-4}$ are excluded by the observation of SN 1987A
- The most stringent of the current limits are at these regions

Sterile neutrinos

- Another scenario, currently being extensively discussed, is the mixing of additional "sterile" neutrinos
- The NME for sterile neutrinos of arbitrary mass can be calculated using a transition operator as in $\nu_{\text {light }}$ and $\nu_{\text {heavy }}$ exchange but with

$$
\mathrm{f}=\frac{\mathbf{m}_{\mathrm{N}}}{\mathrm{~m}_{\mathrm{e}}}, \quad \mathrm{v}(\mathrm{p})=\frac{2}{\pi} \frac{1}{\sqrt{\mathbf{p}^{2}+\mathrm{m}_{N}^{2}}\left(\sqrt{\mathbf{p}^{2}+\mathrm{m}_{N}^{2}}+\tilde{\mathbf{A}}\right)}
$$

where \mathbf{m}_{N} is the mass of the sterile neutrino

- The product

$$
\mathrm{fv}(\mathbf{p})=\frac{\mathbf{m}_{\mathrm{N}}}{\mathbf{m}_{\mathrm{e}}} \frac{2}{\pi} \frac{1}{\sqrt{\mathbf{p}^{2}+\mathbf{m}_{N}^{2}}\left(\sqrt{\mathbf{p}^{2}+\mathbf{m}_{N}^{2}}+\tilde{\mathbf{A}}\right)}
$$

has the limits:

$$
\begin{array}{ll}
\mathbf{m}_{N} \rightarrow \mathbf{0} & \mathrm{fv}(\mathrm{p})=\frac{m_{N}}{m_{e}} \frac{2}{\pi} \frac{1}{\mathrm{p}(\mathrm{p}+\tilde{A})} \\
\mathbf{m}_{N} \rightarrow \infty & \mathrm{fv}(\mathrm{p})=\frac{m_{N}}{m_{e}} \frac{2}{\pi} \frac{1}{m_{N}^{2}}=\frac{2}{\pi} \frac{1}{m_{e} m_{N}}
\end{array}
$$

Sterile neutrinos

- Several types of sterile neutrinos have been suggested.
- Light sterile neutrinos
- Neutrino masses are $\mathrm{m}_{\mathrm{N}} \sim 1 \mathrm{eV}$
- These neutrinos account for the reactor anomaly in oscillation experiments and for the gallium anomaly *
- Heavy sterile neutrinos
- Neutrino masses are $\mathbf{m}_{\mathrm{N}} \gg 1 \mathrm{eV}$
- keV mass range, $\mathrm{MeV}-\mathrm{GeV}$ mass range, TeV mass range
- When the mass $\mathbf{m}_{\mathbf{N}}$ is intermediate the factorization is not possible, and physics beyond the standard model is entangled with nuclear physics. In this case, the half-life can be written as

$$
\left[\tau_{1 / 2}^{0 \nu}\right]^{-1}=G_{0 \nu}\left|\sum_{\mathrm{N}}\left(\mathrm{U}_{\mathrm{eN}}\right)^{2} \mathrm{M}_{0 \nu}\left(\mathrm{~m}_{\mathrm{N}}\right) \frac{\mathrm{m}_{\mathrm{N}}}{\mathrm{~m}_{\mathrm{e}}}\right|^{2}
$$

Sterile neutrinos

- The corresponding nuclear matrix elements can be written as

$$
\begin{aligned}
M_{0 \nu}\left(m_{N}\right) & =g_{A}^{2} M^{(0 \nu)}\left(m_{N}\right), \\
M^{(0 \nu)}\left(m_{N}\right) & =M_{G T}^{(0 \nu)}\left(m_{N}\right)-\left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{(0 \nu)}\left(m_{N}\right)+M_{T}^{(0 \nu)}\left(m_{N}\right)
\end{aligned}
$$

- The NMEs can be calculated exactly, but a simple formula

$$
\left[\tau_{1 / 2}^{0 \nu_{1}}\right]^{-1}=\mathrm{G}_{0 \nu} \mathrm{~g}_{\mathrm{A}}^{4}\left|\mathrm{M}^{\left(0 \nu_{\mathrm{h}}\right)}\right|^{2}\left|\mathrm{~m}_{\mathrm{p}} \sum_{\mathrm{N}}\left(\mathrm{U}_{\mathrm{eN}}\right)^{2} \frac{\mathrm{~m}_{\mathrm{N}}}{\left\langle\mathbf{p}^{2}\right\rangle+\mathrm{m}_{\mathrm{N}}^{2}}\right|^{2},
$$

with

$$
\left\langle\mathbf{p}^{2}\right\rangle=\frac{\mathbf{M}^{\left(0 \nu_{\mathrm{h}}\right)}}{\mathbf{M}^{(0 \nu)}} \mathbf{m}_{\mathrm{p}} \mathbf{m}_{\mathrm{e}},
$$

gives a very good approximation

Sterile neutrinos

- IBM-2 NMEs for neutrinos of arbitrary mass plotted as a function of m_{N} in a) $\left.{ }^{76} \mathrm{Ge}, \mathrm{b}\right){ }^{130} \mathrm{Te}$, and c) ${ }^{136} \mathrm{Xe}$. Blue squares represent the exact calculation for $\mathbf{m}_{N}=\mathbf{0 . 0 0 1} \mathrm{GeV}, \mathbf{0 . 0 1 G e V}, \mathbf{0 . 1} \mathrm{GeV}, \mathbf{1 G e V}$, 10 GeV , joined together by a Mathematica interpolating formula. The curve is obtained using the simple formula.
- The interesting aspect is that the curves peak at $\mathbf{m}_{\mathrm{N}} \sim 100 \mathrm{MeV}$, the scale set by the nucleon Fermi momentum in the nucleus, $\mathbf{p}_{\mathbf{F}}$. If sterile neutrinos of this mass exist, their contribution to the half-life is enhanced.

Sterile neutrinos

- Expected half-life for a single neutrino of mass $\boldsymbol{m}_{\mathrm{N}}$ with coupling $\mathrm{U}_{\mathrm{eN}}^{2}=10^{-2}-10^{-8}$ and $\mathrm{g}_{\mathrm{A}}=1.269$ for a) ${ }^{76} \mathrm{Ge}$, b) ${ }^{130} \mathrm{Te}$, and c$)$ ${ }^{136} \mathrm{Xe}$. Blue squares represent the exact calculation for $\mathrm{m}_{\mathrm{N}}=0.001 \mathrm{GeV}, 0.01 \mathrm{GeV}, 0.1 \mathrm{GeV}, 1 \mathrm{GeV}, 10 \mathrm{GeV}$. The smooth curve is obtained using the simple formula. The experimental limits from GERDA, CUORE-0, KamLAND-Zen, and EXO are also shown. The excluded zone is that below these limits.

Sterile neutrinos

- Excluded values of $\left|\mathbf{U}_{\mathrm{eN}}\right|^{2}$ and \mathbf{m}_{N} in the $\mathbf{m}_{\mathrm{N}^{-}}\left|\mathbf{U}_{\mathrm{eN}}\right|^{2}$ plane, for $\mathrm{g}_{\mathrm{A}}=1.269$. For each experiment, GERDA, CUORE-0, KamLAND-Zen, and EXO, a band of values is given, corresponding to our error estimate

Limits on Average Light Neutrino Mass

Reminder:

$$
\left[\tau_{1 / 2}^{0 \nu}\right]^{-1}=\mathrm{G}_{0 \nu} \mathrm{~g}_{\mathrm{A}}^{4}\left|\mathrm{M}^{(0 \nu)}\right|^{2}\left|\mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}, \mathrm{U}_{\mathrm{ei}}\right)\right|^{2}
$$

- Light neutrinos:

$$
f\left(m_{i}, U_{e i}\right)=\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}=\frac{1}{m_{e}} \sum_{k=l i g h t}\left(U_{e k}\right)^{2} m_{k}
$$

- The average light neutrino mass is now well constrained by atmospheric, solar, reactor and accelerator neutrino oscillation experiments

inverted hierarchy
- Obtained information on mass differences and their mixing leaves two possibilities: Normal and inverted hierarchy

Limits on Average Light Neutrino Mass

- The average light neutrino mass is then written as:

$$
\begin{aligned}
& \left\langle\mathrm{m}_{\nu}\right\rangle=\left|\mathrm{c}_{13}^{2} \mathrm{c}_{12}^{2} \mathrm{~m}_{1}+\mathrm{c}_{13}^{2} \mathrm{~s}_{12}^{2} \mathrm{~m}_{2} \mathrm{e}^{\mathrm{i} \varphi_{2}}+\mathrm{s}_{13}^{2} \mathrm{~m}_{3} \mathrm{e}^{\mathrm{i} \varphi_{3}}\right| \\
& \mathrm{c}_{\mathrm{ij}}=\cos \theta_{\mathrm{ij}}, \quad \mathrm{~s}_{\mathrm{ij}}=\sin \theta_{\mathrm{ij}}, \quad \varphi_{2,3}=[0,2 \pi] \\
& \quad\left(\mathrm{m}_{1}^{2}, \mathrm{~m}_{2}^{2}, \mathrm{~m}_{3}^{2}\right)=\frac{\mathbf{m}_{1}^{2}+\mathrm{m}_{2}^{2}}{2}+\left(-\frac{\delta \mathrm{m}^{2}}{2},+\frac{\delta \mathrm{m}^{2}}{2}, \pm \Delta \mathrm{m}^{2}\right)
\end{aligned}
$$

- $\theta_{12}, \theta_{13}, \theta_{23}$ and $\delta \mathbf{m}, \Delta \mathrm{m}$ fitted to oscillation experiments*
- Phases φ_{2} and φ_{3} may vary from 0 to 2π

$$
\begin{aligned}
& * \sin ^{2} \theta_{12}=0.308, \delta \mathrm{~m}^{2}=7.54 \times 10^{-5} \mathrm{eV}^{2} \\
& \mathrm{NH}:\left(\Delta \mathrm{m}^{2}=2.43 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta_{13}=\right. \\
& \left.0.0234, \sin ^{2} \theta_{23}=0.437\right) \\
& \mathrm{IH}:\left(\Delta \mathrm{m}^{2}=2.38 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta_{13}=\right. \\
& \left.0.0240, \sin ^{2} \theta_{23}=0.455\right)
\end{aligned}
$$

lightest neutrino mass in eV

Limits on Average Light Neutrino Mass

Current lower half-life limits coming from different experiments

Experiment	nucleus	$\tau_{1 / 2}$	$\left\langle\mathrm{~m}_{\nu}\right\rangle$
IGEX	${ }^{76} \mathrm{Ge}$	$>1.57 \times 10^{25} \mathrm{yr}$	$<0.35 \mathrm{eV}$
GERDA	${ }^{76} \mathrm{Ge}$	$>2.1 \times 10^{25} \mathrm{yr}$	$<0.30 \mathrm{eV}$
NEMO-3	${ }^{100} \mathrm{Mo}$	$>1.1 \times 10^{24} \mathrm{yr}$	$<0.56 \mathrm{eV}$
CUORE	${ }^{130} \mathrm{Te}$	$>4.0 \times 10^{24} \mathrm{yr}$	$<0.35 \mathrm{eV}$
EXO	${ }^{136} \mathrm{Xe}$	$>1.1 \times 10^{25} \mathrm{yr}$	$<0.25 \mathrm{eV}$
Kamland-Zen	${ }^{136} \mathrm{Xe}$	$>1.9 \times 10^{25} \mathrm{yr}$	$<0.20 \mathrm{eV}$
$\tau_{1 / 2} \Rightarrow\left\langle\mathbf{m}_{\nu}\right\rangle<\frac{\mathrm{m}_{\mathrm{e}}}{\sqrt{\tau_{1 / 2}^{\exp } \mathrm{G}_{0 \nu}} \mathrm{~g}_{\mathrm{A}}^{2}\left\|\mathrm{M}^{(0 \nu)}\right\|}$			

IGEX: C. E. Aalseth et al., PRD 65, 092007 (2002), GERDA: M. Agostini et al. (GERDA collaboration) PRL 111 122503 (2013), NEMO-3: R. Arnold, et al., PRD 89, 111101 (2014), CUORE: K. Alfonso et al., PRL 115, 102502 (2015), EXO: M. Auger et al., Nature 510, 229 (2014),KamLAND-Zen: A. Gando et al., PRL. 110, 062502 (2013)

Limits on Average Light Neutrino Mass

- Current limits to $\left\langle\mathbf{m}_{\nu}\right\rangle$ from CUORE, IGEX, NEMO-3, KamLAND-Zen, EXO, and GERDA $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ experiments for light neutrino exchange

IGEX: C. E. Aalseth et al., Phys. Rev. D 65, 092007 (2002), NEMO-3: R. Arnold, et al., Phys. Rev. D 89, 111101 (2014), CUORE: K. Alfonso et al., arXiv:1504.02454 [nucl-ex] (2015), KamLAND-Zen: A. Gando et al., Phys. Rev. Lett. 110, 062502 (2013), EXO: M. Auger et al., Nature 510, 229 (2014)GERDA: M. Agostini et al. (GERDA collaboration) Phys. Rev Lett. 111122503 (2013), X: H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004),

Limits on Average Light Neutrino Mass

- If, however, there are sterile neutrinos, this picture is different
- Considering, for example, a suggested of a 4th neutrino with mass $\mathrm{m}_{4}=1 \mathrm{eV}$ and $\left|\mathrm{U}_{\mathrm{e} 4}\right|^{2}=0.03$, we have

$$
\left\langle\mathbf{m}_{\mathrm{N}, \text { light }}\right\rangle=\sum_{\mathrm{k}=1}^{3} \mathrm{U}_{\mathrm{ek}}^{2} \mathbf{m}_{\mathrm{k}}+\mathrm{U}_{\mathrm{e} 4}^{2} \mathrm{e}^{\mathrm{i} \alpha_{4}} \mathrm{~m}_{4}, \text { with } 0 \leq \alpha_{4} \leq 2 \pi
$$

Limits on Average Light Neutrino Mass: Remarks

- We do not know what is the mechanisms of $\boldsymbol{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$-decay and several mechanisms may contribute with different relative phases
- The question of effective value of \mathbf{g}_{A} is still open. Three suggested scenarios are
- Free value: 1.269
- Quark value: 1
- Even stronger quenching: $\mathrm{g}_{\mathrm{A}, \mathrm{eff}}<1$

Quenching of $\mathbf{g}_{\mathbf{A}}$

- It is well-known from single $\boldsymbol{\beta}$ decay/EC $*$ and $\boldsymbol{2} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ that \mathbf{g}_{A} is renormalized in nuclei. Reasons:
- Limited model space
- Omission of non-nucleonic degrees of freedom($\left.\boldsymbol{\Delta}, \mathbf{N}^{*}, \ldots\right)$
- The effective value of \mathbf{g}_{A} can be
- defined as

$$
\begin{aligned}
M_{2 \nu}^{\text {eff }} & =\left(\frac{g_{A, \text { eff }}}{g_{A}}\right)^{2} M_{2 \nu} \\
M_{\beta / E C}^{\text {eff }} & =\left(\frac{g_{A, \text { eff }}}{g_{A}}\right) M_{\beta / E C}
\end{aligned}
$$

- and obtained by comparing the calculated and measured half-lives for $\boldsymbol{\beta} / \mathrm{EC}$ and/or for $\mathbf{2 \nu} \boldsymbol{\beta} \boldsymbol{\beta}$

[^0]
Quenching of $\mathbf{g}_{\mathbf{A}}$

Maximally quenched value from $2 \boldsymbol{\nu} \boldsymbol{\beta}^{-} \boldsymbol{\beta}^{-}$experiments:

Nucleus	$\tau_{1 / 2}^{2 \nu}\left(10^{18} \mathrm{y}\right) \exp ^{*}$
${ }^{48} \mathrm{Ca}$	44_{-5}^{+6}
${ }^{76} \mathrm{Ge}$	1650_{-120}^{+140}
${ }^{82} \mathrm{Se}$	92 ± 7
${ }^{96} \mathrm{Zr}$	23 ± 2
${ }^{100} \mathrm{Mo}$	7.1 ± 0.4
${ }^{100} \mathrm{Mo-}{ }^{100} \mathrm{Ru}\left(0_{2}^{+}\right)$	670_{-40}^{+50}
${ }^{116} \mathrm{Cd}$	28.7 ± 1.3
${ }^{128} \mathrm{Te}$	2000000 ± 300000
${ }^{130} \mathrm{Te}$	690 ± 130
${ }^{136} \mathrm{Xe}$	2110 ± 250
${ }^{150} \mathrm{Nd}$	8.2 ± 0.9
${ }^{150} \mathrm{Nd}-$	
${ }^{150} \mathrm{Sm}\left(0_{2}^{+}\right)$	120_{-20}^{+30}
${ }^{238} \mathrm{U}$	2000 ± 600

- $\left|\mathbf{M}_{2 \nu}^{\text {eff }}\right|^{2}$ is obtained from the measured half-life by

$$
\left|\mathrm{M}_{2 \nu}^{\mathrm{eff}}\right|^{2}=\left[\tau_{1 / 2}^{2 \nu} \times \mathrm{G}_{2 \nu}\right]^{-1}
$$

Smallest $\mathbf{M}_{2 \nu}^{\text {eff }}$ for ${ }^{136} \mathrm{Xe}$, the newest one measured!

[^1]
Quenching of $\mathbf{g}_{\mathbf{A}}$

$$
g_{A, \text { eff }}=g_{A} \sqrt{M_{2 \nu}^{\text {eff }} / M_{2 \nu}}
$$

* ISM NMEs from E. Caurier et al., Int. J. Mod. Phys. E 16, 552 (2007).
a Yoshida and lachello, PTEP 2013, 043D01 (2013).
${ }^{b}$ QRPA results from J. Suhonen et al.,
Phys. Lett. B 725, 153 (2013).
- Extracted $\mathbf{g}_{\mathbf{A}, \text { eff }}$:
- IBM-2~ 0.6-0.5
- QRPA~ $0.7-0.6$
- ISM ~ 0.8-0.7
- Similar values found by analyzing $\boldsymbol{\beta}^{-} / \mathrm{EC}$ for IBFM-2 ${ }^{\text {a }}$ and for QRPA $^{\text {b }}$
- Assumption: $\mathbf{g}_{\mathbf{A}, \text { eff }}$ is a smooth function of \mathbf{A}
- Parametrization:
$\mathrm{g}_{\mathrm{A}, \text { eff }}=1.269 \mathrm{~A}-\gamma$
- IBM-2: $\gamma=\mathbf{0 . 1 8}$
- QRPA: $\gamma=0.16$
- ISM: $\gamma=0.12$

Quenching of $\mathbf{g}_{\mathbf{A}}$

Let's return to $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ NMEs:

$\mathbf{M}_{0 \nu}=\mathbf{g}_{\mathrm{A}, \text { eff }}^{2} \mathbf{M}^{(0 \nu)}$ for IBM-2, QRPA, and ISM

- Taking into account the 16% error estimate for IBM-2:
Agreement quite good
- Looks promising...

Quenching of $\mathbf{g}_{\mathbf{A}}$

Effective value of g_{A} is a work in progress, since:

- Is the renormalization of \mathbf{g}_{A} the same in $2 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ as in $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$?
- In $2 \nu \beta \beta$ only the 1^{+}(GT) multipole contributes. In $0 \nu \beta \beta$ all multipoles $\mathbf{1}^{+}, 2^{-}, \ldots ; \mathbf{0}^{+}, 1^{-}, \ldots$ contribute. Some of which could be even unquenched.
- This is a critical issue, since half-life predictions with maximally quenched g_{A} are $\sim 6-34$ times longer due to the fact that $\mathbf{g}_{\mathbf{A}}$ enters the equations to the power of 4 !
- Additional ways to study quenching of \mathbf{g}_{A} :
- Theoretical studies by using effective field theory (EFT) to estimate the effect of non-nucleonic degrees of freedom (two-body currents)
- Experimental and theoretical studies of single beta decay and single charge exchange reactions involving the intermediate odd-odd nuclei
- Double charge exchange reactions

Double charge exchange reactions

A lot of similarities with $0 \nu \beta \beta$:

- Same initial and final states: Parent/daughter states of the $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ = target/residual nuclei in the DCE
- Structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor present in both cases
- Large momentum transfer:

A linear momentum transfer as high as 100 $\mathrm{MeV} / \mathrm{c}$ or so is characteristic of both processes

- In-medium processes: both processes happen in the same nuclear medium, thus we can learn about quenching phenomena

Double charge exchange reactions

However, a simple relation between DCE cross sections and $\boldsymbol{\beta} \boldsymbol{\beta}$-decay half-lives is by no means trivial:

- DCE and $0 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ processes are mediated by different interactions, so the comparison is not straightforward
- The theory of DCE is much more complicated than the theory of $0 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$-decay
- DCE reaction, to its leading order, is a two-step process involving projectile and target internal structure as well as the full nucleus-nucleus interaction and the details of the theory have not yet been fully worked out
- Both theoretical and experimental work is needed

```
- ..
```

In any case the involved nuclear matrix elements are connected, and valuable information about the reliability of NMEs and quenching of $\mathbf{g}_{\mathbf{A}}$ may be learned from the study of DCE reactions

Conclusions

- We have studied several scenarios and mechanisms suggested to describe double beta decay
- This includes two neutrino and neutrinoless decays, exhange of light and heavy neutrinos, majoron emitting $\boldsymbol{\beta} \boldsymbol{\beta}$, decays to ground states as well as to first excited $\mathbf{0}^{+}$states, and possible contributions of sterile neutrinos
- The next generation of experiments should be able to reach at least the inverted mass hierarchy. In case there are sterile neutrinos, the situation might be more complicated
- With or without sterile neutrinos, the reliability of nuclear matrix elements as well as the quenching of \mathbf{g}_{A} are becoming more and more important and the NUMEN project is expected to bring valuable information on these issues
Motivation for the work is clear: No matter what the mechanism of neutrinoless DBD is, its observation will answer the fundamental questions
- What is the absolute neutrino mass scale?
- What is the nature of neutrinos?
- How many neutrino species are there?

THANK YOU!

Image: The Royal Swedish Academy of Sciences

Collaborators: Francesco lachello (Yale) Jose Barea (Universidad de Concepción)

Academy of Finland

Research funding and expertise
More information: nucleartheory.yale.edu

[^0]: * J. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965), D.H. Wilkinson. Nucl. Phys. A225, 365 (1974)

[^1]: * A.S. Barabash, Nucl. Phys. A 935, 52 (2015).

