Coherent Multi-Nucleon Transfer Reactions

Grégory Potel Aguilar (MSU/LLNL)

Catania, December 1st, 2015

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions

- Reaction $A+a(\equiv b+2) \longrightarrow a+B(\equiv A+2)$.
- Measure of the pairing correlations between the transferred nucleons.
- Need to correctly account for the correlated wavefunction.

$$
\begin{aligned}
&\left|\phi_{e l}\right\rangle= \Psi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \Psi_{A}\left(\xi_{A}\right) ; \\
&\left|\phi_{1 N T}\right\rangle=\Psi_{f}\left(\xi_{b}, \mathbf{r}_{1}\right) \Psi_{F}\left(\xi_{A}, \mathbf{r}_{2}\right) ; \\
&\left|\phi_{2 N T}\right\rangle=\Psi_{b}\left(\xi_{b}\right) \Psi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) ; \quad V_{1} \equiv V_{N A}\left(r_{1 A}\right), V_{2} \equiv V_{N A}\left(r_{2 A}\right) \\
&\left(H_{1}-E_{1}\right) \chi_{e l}=0, \\
&\left(H_{2}-E_{2}^{i}\right) \chi_{1 N T}^{i}=-\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l}, \\
& \Rightarrow \chi_{1 N T}^{i}=\left(E_{2}^{i}-H_{2}\right)^{-1}\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l} \\
&\left(H_{3}-E_{3}\right) \chi_{2 N T}=-\left\langle\phi_{2 N T}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l}-\sum_{i}\left\langle\phi_{2 N T}\right| V_{2}\left|\phi_{1 N T}^{i}\right\rangle \chi_{1 N T}^{i} \\
&-\sum_{i}\left\langle\phi_{2 N T} \mid \phi_{1 N T}^{i}\right\rangle\left(H_{2}-E_{2}^{i}\right) \chi_{1 N T}^{i},
\end{aligned}
$$

$$
\begin{aligned}
&\left|\phi_{e l}\right\rangle=\Psi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \Psi_{A}\left(\xi_{A}\right) ; \\
&\left|\phi_{1 N T}\right\rangle=\Psi_{f}\left(\xi_{b}, \mathbf{r}_{1}\right) \Psi_{F}\left(\xi_{A}, \mathbf{r}_{2}\right) ; \\
&\left|\phi_{2 N T}\right\rangle=\Psi_{b}\left(\xi_{b}\right) \Psi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) ; \quad V_{1} \equiv V_{N A}\left(r_{1 A}\right), V_{2} \equiv V_{N A}\left(r_{2 A}\right) \\
&\left(H_{1}-E_{1}\right) \chi_{e l}=0, \\
&\left(H_{2}-E_{2}^{i}\right) \chi_{1 N T}^{i}=-\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l}, \\
& \Rightarrow \chi_{1 N T}^{i}=\left(E_{2}^{i}-H_{2}\right)^{-1}\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l} \\
&\left(H_{3}-E_{3}\right) \chi_{2 N T}=-\left\langle\phi_{2 N T}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l} \\
&-\sum_{i}\left\langle\phi_{2 N T}\right| V_{2}\left|\phi_{1 N T}^{i}\right\rangle\left(E_{2}^{i}-H_{2}\right)^{-1}\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l} \\
&+\sum_{i}\left\langle\phi_{2 N T} \mid \phi_{1 N T}^{i}\right\rangle\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l},
\end{aligned}
$$

$$
\begin{aligned}
\left|\phi_{e l}\right\rangle= & \Psi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \Psi_{A}\left(\xi_{A}\right) ; \\
\left|\phi_{1 N T}\right\rangle & =\Psi_{f}\left(\xi_{b}, \mathbf{r}_{1}\right) \Psi_{F}\left(\xi_{A}, \mathbf{r}_{2}\right) ; \\
\left|\phi_{2 N T}\right\rangle & =\Psi_{b}\left(\xi_{b}\right) \Psi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) ; \quad V_{1} \equiv V_{N A}\left(r_{1 A}\right), V_{2} \equiv V_{N A}\left(r_{2 A}\right) \\
\quad\left(H_{1}-E_{1}\right) \chi_{e l} & =0 \\
\left(H_{2}-E_{2}^{i}\right) \chi_{1 N T}^{i} & =-\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l}, \\
& \Rightarrow \chi_{1 N T}^{i}=\left(E_{2}^{i}-H_{2}\right)^{-1}\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l} \\
\left(H_{3}-E_{3}\right) \chi_{2 N T} & =-\sum_{i}\left\langle\phi_{2 N T}\right| V_{2}\left|\phi_{1 N T}^{i}\right\rangle\left(E_{2}^{i}-H_{2}\right)^{-1}\left\langle\phi_{1 N T}^{i}\right| V_{1}\left|\phi_{e l}\right\rangle \chi_{e l}
\end{aligned}
$$

V is a single particle operator (mean field potential) $\Rightarrow 2 N T$ is a sequential process

Simultaneous, successive, and non-orthogonal amplitudes

The final cross section is the result of a coherent sum of many amplitudes

$$
\begin{aligned}
& T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
& \frac{d \sigma}{d \Omega}=\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
\end{aligned}
$$

Simultaneous transfer

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

Simultaneous, successive, and non-orthogonal amplitudes

The final cross section is the result of a coherent sum of many amplitudes

$$
\begin{gathered}
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\text { Successive transfer }
\end{gathered}
$$

$$
\begin{aligned}
T_{s u c c}^{(2)}\left(j_{j}, j_{f}\right) & =2 \sum_{K, M} \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f f} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}^{\prime}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{f f}^{\prime} d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime} G\left(\mathbf{r}_{f f}, \mathbf{r}_{f f}^{\prime}\right)\left[\psi^{j f}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times \frac{2 \mu_{f f}}{\hbar^{2}} v\left(\mathbf{r}_{f 2}^{\prime}\right)\left[\psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Simultaneous, successive, and non-orthogonal amplitudes

The final cross section is the result of a coherent sum of many amplitudes

Non-orthogonality term

$$
\begin{aligned}
T_{N O}^{(2)}\left(j_{j}, j_{f}\right) & =2 \sum_{K, M} \sum_{\sigma_{1}^{\sigma_{1} \sigma_{2}}} \int d \mathbf{r}_{f f} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{f} f}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times\left[\psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{~S} n$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{~S} n$ total cross section

Contributions to the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{~S} n$ total cross section

Essentially a sequential process!

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions

enhancement factor with respect to the transfer of uncorrelated neutrons:
$\varepsilon=20.6$
G.P., Barranco, Marini, Idini, Vigezzi, Broglia, PRL 107 (2011) 092501
G.P., Idini, Barranco, Vigezzi, Broglia, PRC 87 (2013) 054321
experiment very well reproduced with mean field (BCS) wavefunctions

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions

We will try to draw information about the halo structure of ${ }^{11} \mathrm{Li}$ from the reactions ${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}\right){ }^{3} \mathrm{H}$ and ${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li}^{9}{ }^{9} \mathrm{Li}{ }^{*}(2.69 \mathrm{MeV})\right)^{3} \mathrm{H}$ (I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008))

Schematic depiction of ${ }^{11} \mathrm{Li}$
First excited state of ${ }^{9} \mathrm{Li}$

Beyond mean field: particle-vibration coupling

Structure of the ${ }^{11} \mathrm{Li}\left(3 / 2^{-}\right)$ground state

${ }^{11} \mathrm{Li}={ }^{9} \mathrm{Li}$ core $+2-$ neutron halo (single Cooper pair). According to Barranco et al. (2001), the two neutrons correlate by means of the bare interaction (accounting for $\approx 20 \%$ of the ${ }^{11} \mathrm{Li}$ binding energy) and by exchanging 1^{-}and 2^{+}phonons ($\approx 80 \%$ of the binding energy)

Within this model, the ${ }^{11} \mathrm{Li}$ wavefunction can be written as

$$
\begin{aligned}
|\tilde{0}\rangle & =0.45\left|s_{1 / 2}^{2}(0)\right\rangle+0.55\left|p_{1 / 2}^{2}(0)\right\rangle+0.04\left|d_{5 / 2}^{2}(0)\right\rangle \\
& +0.70\left|(p s)_{1^{-}} \otimes 1^{-} ; 0\right\rangle+0.10\left|(s d)_{2^{+}} \otimes 2^{+} ; 0\right\rangle
\end{aligned}
$$

highly renormalized single particle states coupled to excited states of the core

differential cross section calculated with three ${ }^{11} \mathrm{Li}$ ground state model wavefunctions:

- pure $\left(s_{1 / 2}\right)^{2}$ configuration
- pure $\left(p_{1 / 2}\right)^{2}$ configuration
- $20 \%\left(s_{1 / 2}\right)^{2}+30 \%\left(p_{1 / 2}\right)^{2}$ configuration (Barranco et al. (2001)).
compared with experimental data.
${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}\right){ }^{3} \mathrm{H}$ at 33 MeV . Data from Tanihata et.al. (2008).
G.P., Barranco, Vigezzi, Broglia, PRL 105 (2010) 172502

${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}{ }^{*}(2.69 \mathrm{MeV})\right)^{3} \mathrm{H}$ at 33 MeV . Data from Tanihata et.al. (2008). G.P., Barranco, Vigezzi, Broglia, PRL 105 (2010) 172502

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart

4 Conclusions

Cooper pair transfer across the nuclear chart

good results obtained for halo nuclei, population of excited states, superfluid nuclei, normal nuclei (pairing vibrations), heavy ion reactions...
G.P., Idini, Barranco, Vigezzi, Broglia, Rep.

Prog. Phys. 76 (2013) 106301

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions
- A quantitative account of two-neutron transfer cross sections can be achieved for a wide variety of nuclear species.
- A correct simultaneous description of both reaction and structure aspects is essential in order to obtain the absolute value of the transfer cross sections.
- The reaction mechanism of Cooper pair transfer is described in terms of the sequential transfer of two nucleons.
- Pairing correlations are preserved during the transfer process despite the localization of Cooper pair partners close in different nuclear species.
- An independent Cooper pair model gives a very good account for Cooper pair transfer in superfluid nuclei.

Reaction and structure models

Structure:

$$
\begin{aligned}
& \Phi_{i}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{i}} B_{j_{i}}\left[\psi^{j_{i}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \\
& \Phi_{f}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{f}} B_{j_{f}}\left[\psi^{j_{f}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
\end{aligned}
$$

Reaction:

$$
\begin{aligned}
T_{2 N T} & =\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\frac{d \sigma}{d \Omega} & =\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
\end{aligned}
$$

with:

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

etc...

Neutrinoless double β-decay ($\beta \beta 0 \nu$)

- neutrino mass?
\bullet is the neutrino a Majorana particle?

Nuclear matrix elements $M_{0 \nu}$ needed from low-energy nuclear physics.

2015 LRP

We recommend the timely development and deployment of a US-led ton-scale neutrinoless double beta decay experiment.

Experimental and theoretical challenges (Nuclear matrix elements)

Experimental efforts:

- 2-proton and 2-neutron transfer reactions.
- Single and double charge exchange reactions.

Theory efforts:

- Relationship between $M_{0 \nu}$ and Fermi and Gamow-Teller matrix elements.
- Theory for charge exchange reactions.

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions

Assymetry dependence of spectroscopic factors

knock-out experiments:
strong dependence

transfer experiments:
weak dependence

Theory for eikonal inclusive breakup needed

Outline

(1) Two-Nucleon Transfer: Reaction Mechanism

- Mechanism of Cooper pair transfer
(2) Two-Nucleon Transfer: Structure
- Two-nucleon transfer in stable nuclei
- Two-nucleon transfer in exotic nuclei
(3) Results across the Nuclear Chart
(4) Conclusions

ARTICLE

Received 28 Dec 2014 | Accepted 24 Feb 2015 | Published 27 Mar 2015
Signatures of the Giant Pairing Vibration in the ${ }^{14} \mathrm{C}$ and ${ }^{15} \mathrm{C}$ atomic nuclei
F. Cappuzzello ${ }^{1,2}$, D. Carbone ${ }^{2}$, M. Cavallaro ${ }^{2}$, M. Bondi ${ }^{1,2}$, C. Agodi ${ }^{2}$, F. Azaiez ${ }^{3}$, A. Bonaccorso ${ }^{4}$, A. Cunsolo ${ }^{2}$,
L. Fortunato ${ }^{5,6}$, A. Foti ${ }^{1,7}$, S. Franchoo ${ }^{3}$, E. Khan ${ }^{3}$, R. Linares ${ }^{8}$, J. Lubian ${ }^{8}$, J.A. Scarpaci ${ }^{9}$ \& A. Vitturi ${ }^{5,6}$

Experimental and theoretical challenges (GPV)

Experimental efforts:

- 2-nucleon transfer reactions

Theory efforts:

- Nuclear structure (pairing correlations) in the continuum
- 2-nucleon transfer in the continuum.

2-transfer in well bound nuclei ${ }^{A} S n(p, t)^{A-2} S n$

Comparison with the experimental data available so far for superfluid tin isotopes
Potel et al., PRL 107, 092501 (2011)

Cancellation of simultaneous and non-orthogonal contributions

very schematically, the first order (simultaneous) contribution is

$$
T^{(1)}=\langle\beta| V|\alpha\rangle,
$$

while the second order contribution can be separated in a successive and a non-orthogonality term

$$
\begin{aligned}
T^{(2)} & =T_{\text {succ }}^{(2)}+T_{N O}^{(2)} \\
& =\sum_{\gamma}\langle\beta| V|\gamma\rangle G\langle\gamma| V|\alpha\rangle-\sum_{\gamma}\langle\beta \mid \gamma\rangle\langle\gamma| V|\alpha\rangle .
\end{aligned}
$$

If we sum over a complete basis of intermediate states γ, we can apply the closure condition and $T_{N O}^{(2)}$ exactly cancels $T^{(1)}$
the transition potential being single particle, two-nucleon transfer is a second order process.

Reaction and structure models

Structure:

$$
\begin{aligned}
& \Phi_{i}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{i}} B_{j_{i}}\left[\psi^{j_{i}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \\
& \Phi_{f}\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j_{f}} B_{j_{f}}\left[\psi^{j_{f}}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
\end{aligned}
$$

Reaction:

$$
\begin{aligned}
T_{2 N T} & =\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\frac{d \sigma}{d \Omega} & =\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
\end{aligned}
$$

with:

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

etc...

Ingredients of the calculation

Structure input for, e.g., the ${ }^{112} \operatorname{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction:

 wavefunction:

$$
\Phi\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j} B_{j}\left[\psi^{j}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
$$

- Recent $t\left({ }^{32} \mathrm{Mg}, p\right)^{30} \mathrm{Mg} @ 1.8 \mathrm{MeV} . A$ at ISOLDE (Wimmer et.al.) reaction.
- Shape coexistence (low-lying 0^{+}excited state).
- Ground state and first excited 0^{+}populated with 2 -neutron transfer

Elements of the calculation

$\Psi_{a}\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right), \Psi_{B}\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M} \chi(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation
it is a single particle potential!!
${ }^{206} \mathrm{~Pb}(t, p){ }^{208} \mathrm{~Pb}$ at 12 MeV . Data from Bjerregaard et.al. (1966)

	$B_{n l j}$	
state $n l j$	$p p R P A$	(TDA)
$1 h_{9 / 2}$	0.15	(0.14)
$2 f_{7 / 2}$	0.21	(0.26)
$1 i_{13 / 2}$	0.29	(0.28)
$3 p_{3 / 2}$	0.23	(0.22)
$2 f_{5 / 2}$	0.32	(0.31)
$3 p_{1 / 2}$	0.89	(0.85)
$2 g_{9 / 2}$	0.18	
$1 i_{11 / 2}$	0.15	
$1 j_{15 / 2}$	0.13	
$3 d_{5 / 2}$	0.06	$(-)$
$4 s_{1 / 2}$	0.06	
$2 g_{7 / 2}$	0.10	
$3 d_{3 / 2}$	0.05	

Non-local, correlated form factor

$$
F\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{A p}\right)=\phi_{f}\left(\mathbf{r}_{p 1}, \mathbf{r}_{p 2}\right) V_{p n}\left(\mathbf{r}_{p 1}\right) V_{p n}\left(\mathbf{r}_{p 2}\right) \phi_{i}\left(\mathbf{r}_{A 1}, \mathbf{r}_{A 2}\right)
$$

Structure input for, e.g., the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction:

plus the B_{j} spectroscopic amplitudes needed to define the two-neutron wavefunction:

$$
\Phi\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j} B_{j}\left[\psi^{j}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
$$

Differential cross section worked out
 making use of two different structure calculations:

- Skyrme in $p-h$ channel (mean field)+collective vibrations+bare v_{14} Argonne interaction and particle-vibration coupling (induced interaction) in $p-p$ channel (black line),
- Skyrme in $p-h$ channel (mean field)+bare v_{14} Argonne in $p-p$ channel (red line),
compared with experimental data.
${ }^{122} \mathrm{Sn}(p, t){ }^{120} \mathrm{~S} n$ at 26 MeV . Data from Guazzoni et.al. (1999).

- X. Mougeot et al. PLB 718, $441(2012){ }^{8} \mathrm{He}(\mathrm{p}, \mathrm{t})^{6} \mathrm{He}(\mathrm{gs}),{ }^{8} \mathrm{He}\left(2^{+}\right)$ with SPIRAL and MUST2;
- Coupled Reaction Channels (CRC) analysis by N .Keeley.

- Sensitive to ${ }^{8} \mathrm{He}$ structure.
- Nuclear Fied Theory calculations for ${ }^{8} \mathrm{He}($ g.s. $),{ }^{6} \mathrm{He}\left(\mathrm{g} . \mathrm{s}, 2^{+}\right)\left({ }^{6} \mathrm{He}\right.$ as a pair removal mode of ${ }^{8} \mathrm{He}$?).
- Consistent description of elastic and one-neutron transfer channels and the overlap ${ }^{8} \mathrm{He}($ g.s. $) /{ }^{6} \mathrm{He}\left(2^{+}\right)$is essential.

Coupling of pairing vibrations with phonons

Population of excited 2^{+}state with (t, p) reaction
Diagrams contributing

HIGH-LYING PAIRING RESONANCES*

R.A. BROGLIA

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (1, Denmark ${ }^{1}$ State University of New York, Department of Phrsics, Stony Brook, New York 11794, USA
and
D.R. BES ${ }^{2}$

NORDITA, DK-2100 Copenhagen 0_{1} Demmark
Received 1 April 1977
Pairing vibrations based on the excitation of pairs of particles and holes across major shells are predicted at an excitation energy of about $70 / A^{1 / 3} \mathrm{MeV}$ and carrying a cross section which is $20 \%-100 \%$ the ground state cross section.

giant pairing vibration

Example: ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ in 2-step DWBA

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

Correlation lenght of Cooper pair $=30 \mathrm{fm}$

simultaneous and successive contributions

simultaneous
$A+a \underset{\text { successive }}{\longrightarrow} \mathrm{f}+\mathrm{F}+\mathrm{B}$

$$
|\alpha\rangle=\phi_{\mathbf{a}}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times
$$

$$
\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right)
$$

$$
|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times
$$

$$
\chi_{b B}\left(r_{b B}\right)
$$

simultaneous and successive contributions

simultaneous
$A+a \underset{\text { successive }}{\longrightarrow} \mathrm{f}+\mathrm{F}+\mathrm{B}$
simultaneous transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times
\end{aligned}
$$

$$
\chi_{b B}\left(r_{b B}\right)
$$

simultaneous and successive contributions

simultaneous
$A+a \underset{\text { successive }}{\longrightarrow} \mathrm{f}+\mathrm{F}+\mathrm{B}$
$|\alpha\rangle=\phi_{\mathbf{a}}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times$
$\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right)$
$|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times$
$\chi_{b B}\left(r_{b B}\right)$

successive transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

successive transfer

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

simultaneous and successive contributions

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned}
$$

${ }^{132} \mathrm{Sn}$

${ }^{A} S n(p, t)^{A-2} S n$, superfluid isotopic chain

