

Welcome to NUMEN2015

Challenges in the investigation of double charge exchange nuclear reactions: towards neutrino-less double beta decay

Catania, December, 1-2, 2015

Organizing Committee:

C. Agodi (agodi@lns.infn.it)

- F. Cappuzzello (cappuzzello@Ins.infn.it)
- D. Carbone (carboned@lns.infn.it)
- M. Cavallaro (manuela@Ins.infn.it)
- M. Colonna (colonna@Ins.infn.it)
- V. Greco (greco@lns.infn.it)
- F. lachello (francesco.iachello@yale.edu)
- L. Pandola (pandola@Ins.infn.it)
- S. Tudisco (tudisco@lns.infn.it)

Secretariat:

G.Agnello (agnello@Ins.infn.it)

F. Cappuzzello Università di Catania and INFN LNS

The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS

The NUMEN collaboration

INFN – LABORATORI NAZIONALI DEL SUD, CATANIA, ITALY DIPARTIMENTO DI FISICA E ASTRONOMIA, UNIV. DI CATANIA, CATANIA, ITALY INFN – SEZIONE DI CATANIA, CATANIA, ITALY UNIV. DEGLI STUDI DI ENNA "KORE", ENNA, ITALY INFN – SEZIONE DI GENOVA, GENOVA, ITALY INFN – SEZIONE DI TORINO, TORINO, ITALY INSTITUT FÜR THEORETISCHE PHYSIK, GIESSEN UNIVERSITY, GERMANY DEP. OF PHYSICS AND HINP, THE UNIV. OF IOANNINA, IOANNINA, GREECE INSTITUTO DE FISICA DA UNIVERSIDADE DE SAO PAULO, BRAZIL INST. DE FISICA DA UNIV. FEDERAL FLUMINENSE, NITEROI, BRAZIL AKDENIZ UNIVERSITY, ANTALYA, TURKEY

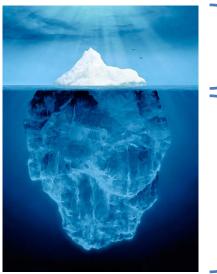
Forthcoming collaborations

Other INFN sections INSTITUTO DE CIENCIAS NUCLEARES, UNAM, MEXICO CICANUM, UNIVERSIDAD DE COSTA RICA, SAN JOSE, COSTA RICA DÉPARTEMENT DE PHYSIQUE, UNIVERSITÉ HASSAN II – CASABLANCA, MOROCCO CERN BROKHAVEN NATIONAL LABORATORY INSTITUTE OF MODERN PHYSICS, CHINESE ACADEMY OF SCIENCES, LANZHOU, CHINA RCNP, OSAKA UNIVERSITY, OSAKA, JAPAN BOCHUM UNIVERSITY, GERMANY

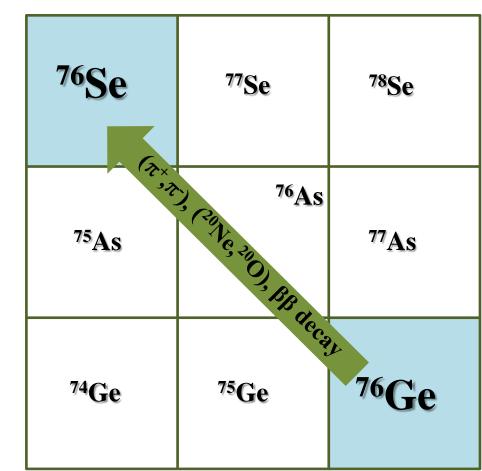
Spokespersons: F. Cappuzzello (cappuzzello@lns.infn.it) and C. Agodi (agodi@lns.infn.it)

$$1/T_{\frac{1}{2}}^{0\nu}\left(0^{+} \rightarrow 0^{+}\right) = G_{0}\left[M^{\beta\beta\,0\nu}\right]^{2} \frac{\langle m_{\nu}\rangle}{m_{e}}$$

 $\sqrt{12}$


17

Heavy-ion DCE

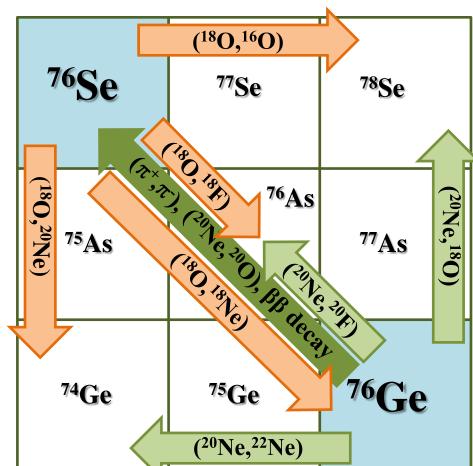

- $\checkmark \ \ _{z}^{a}x_{n} + \frac{A}{Z}X_{N} \rightarrow \frac{a}{z-2}y_{n+2} + \frac{A}{Z+2}Y_{N-2}$
- ✓ Induced by strong interaction
- ✓ Sequential nucleon transfer mechanism 4th order:
- ✓ Meson exchange mechanism 2nd order
- ✓ Possibility to go in both directions

From T. Uesaka talk at NN2015

Tiny amount of DGT strenght in low lying states

Sum rule almost exhausted by DGT Giant Mode

Heavy-ion DCE

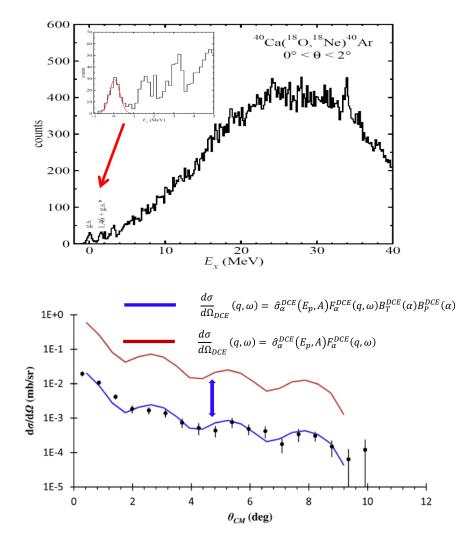

- $\checkmark \ \ _{z}^{a}x_{n} + \frac{A}{Z}X_{N} \rightarrow \frac{a}{z-2}y_{n+2} + \frac{A}{Z+2}Y_{N-2}$
- ✓ Induced by strong interaction
- ✓ Sequential nucleon transfer mechanism 4th order:
- ✓ Meson exchange mechanism 2nd order
- ✓ Possibility to go in both directions

From T. Uesaka talk at NN2015

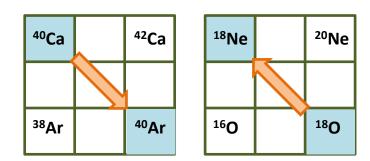
Tiny amount of DGT strenght in low lying states

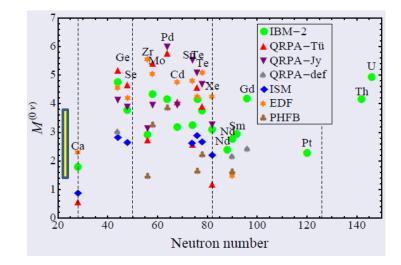
Sum rule almost exhausted by DGT Giant Mode

$0\nu\beta\beta$ vs HI-DCE


- **1.** Initial and final states: Parent/daughter states of the *0 v*ββ are the same as those of the target/residual nuclei in the DCE;
- 2. <u>Spin-Isospin mathematical structure</u> of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases;
- **3.** <u>Large momentum available</u>: A linear momentum (100 MeV/c or so) is characteristic of both processes;
- 4. <u>Non-locality</u>: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality can be affected by basic pairing correlation length;
- 5. <u>In-medium</u> processes: both processes happen in the same nuclear medium, thus **quenching** phenomena are expected to be similar;
- 6. Relevant **off-shell propagation** in the intermediate channel.

Qualitative is not enough


We need to access quantitative information with control of the error bars!


How far we are from that goal?

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ 270 MeV

F. Cappuzzello et al. Eur. Phys. J. A (2015) 51: 145

 $\left| M^{0\nu\beta\beta} \left({}^{40}Ca \right) \right|^2 = 0.37 \pm 0.18$ Pauli blocking about 0.14 for F and GT

Tools for DCE at LNS

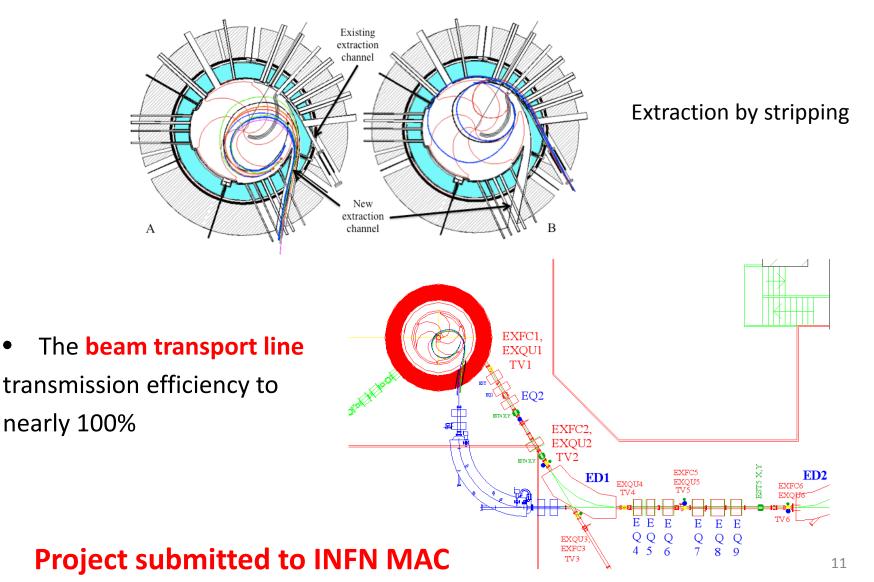
The Superconducting Cyclotron

Moving towards hot-cases:

Caveat

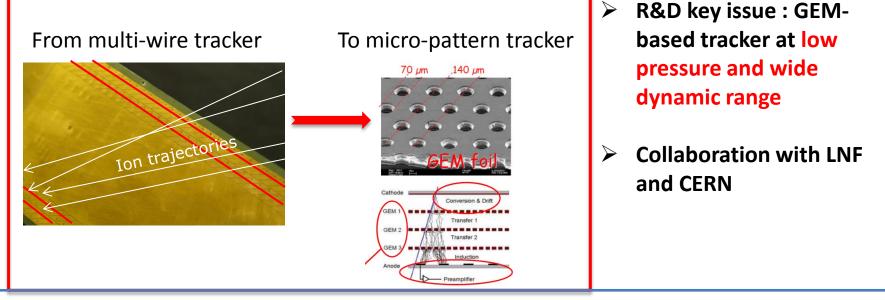
- The $({}^{18}O, {}^{18}Ne)$ reaction is particularly advantageous, but it is of ${\cal B}^+{\cal B}^+$ kind;
- None of the reactions of 8⁻8⁻ kind looks like as favourable as the (¹⁸O,¹⁸Ne). (¹⁸Ne,¹⁸O) requires a radioactive beam (²⁰Ne,²⁰O) or (¹²C,¹²Be) have smaller B(GT)
- The reaction Q-values are normally more negative than in the ⁴⁰Ca case
- In some cases gas or implanted target will be necessary, e.g. ¹³⁶Xe or ¹³⁰Xe
- In some cases the energy resolution is not enough to separate the g.s. from the excited states in the final nucleus \rightarrow Coincident detection of γ -rays

Much higher beam current is needed

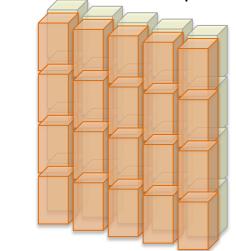

Present technology is not enough

We need to measure at very high rates of heavy ions!

How far we are from that goal?


Major upgrade of LNS facilities: The CS accelerator

• The **CS** accelerator current (from 100 W to 5-10 kW);


Major upgrade of LNS facilities: the MAGNEX spectrometer

• The MAGNEX focal plane detector rate (from 2 kHz to several MHz)

To wall of **2500 SiC-SiC** pad telescopes

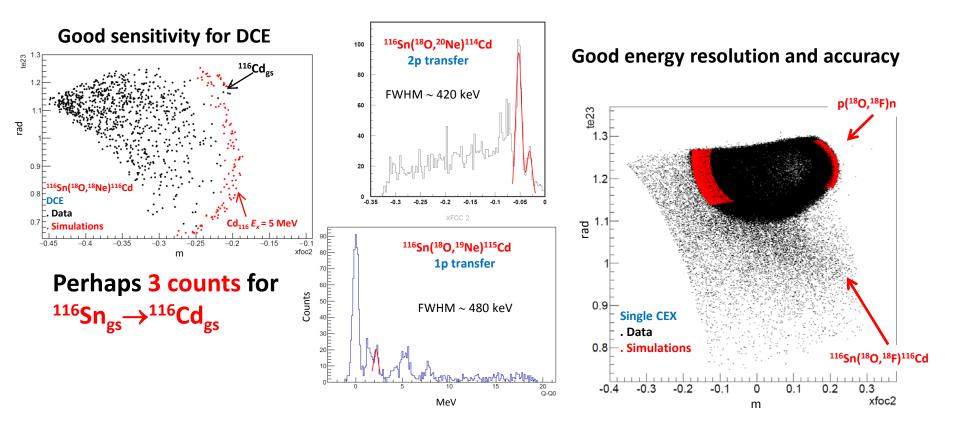
A big challenge!

0.9 M€ call approved by INFN CSN5 (SICILIA) in collaboration with CNR STM microelectronics FBK ¹²

The Phases of NUMEN project

- Phase1: The experimental feasibility
- Phase2: "hot" cases optimizing the experimental conditions and getting first results (approved)
- > **Phase3**: The facility Upgrade (Cyclotron, MAGNEX, beam lines,):
- Phase4 : The systematic experimental campaign

Preliminary time table


year	2013	2014	2015	2016	2017	2018	2019	2020	2021
Phase1	done								
Phase2				A	oprov	ed			
Phase3									
Phase4									

Challenging some hot cases in Phase 2

		2016				2017				2018			
Reaction	Energy (MeV/u)	Ι	Π	III	IV	Ι	II	ш	IV	Ι	II	ш	IV
¹¹⁶ Sn (¹⁸ O, ¹⁸ Ne) ¹¹⁶ Cd	15-30	Approved experiment											
¹¹⁶ Cd (²⁰ Ne, ²⁰ O) ¹¹⁶ Sn	15-25	Approved test											
130 Te (20 Ne, 20 O) 130 Xe	15-25												
⁷⁶ Ge (²⁰ Ne, ²⁰ O) ⁷⁶ Se	15-25												
⁷⁶ Se (¹⁸ O, ¹⁸ Ne) ⁷⁶ Ge	15-30												
¹⁰⁶ Cd(¹⁸ O, ¹⁸ Ne) ¹⁰⁶ Pd	15-30												

Results from a test run on ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd October 2015

- ✓ E_{beam} =15MeV/u, target thickness 400 µg/cm²
- ✓ 150µC integrated charge in 50 hours at 1 enA (including dead time 50%)
- ✓ Detector and beam transport performances studied up to 6 enA
- ✓ Realistic cross section estimate for DCE

Preliminary

Let's enjoy the workshop