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Introduction 
 
 

Property Diamond GaN 4H SiC  Si 
Eg [eV] 5.5 3.39 3.26 1.12 
Ebreakdown [V/cm] 107 4·106 2.2·106 3·105 
µe [cm2/Vs] 1800 1000 800 1450 
µh [cm2/Vs] 1200 30 115 450 
 vsat [cm/s] 2.2·107 - 2·107 0.8·107 
 Z 6 31/7 14/6 14 
εr 5.7 9.6 9.7 11.9 
e-h energy [eV] 13 8.9 7.6-8.4 3.6 
Density [g/cm3] 3.515 6.15 3.22 2.33 
Displacem. [eV] 43 ≥15 25 13-20 
 

 
• Wide bandgap (3.3eV)  
⇒ lower leakage current 

than silicon 
 

• Signal (for MIP !): 
Diamond   36 e/µm 
SiC            51 e/µm 
Si 89 e/µm 

⇒ more charge than  
diamond Si/SiC≈2  

 
• Higher displacement 

threshold  than silicon 
⇒ radiation harder than 

silicon 

M.Moll , NIM in Physics Research A 511 (2003) 97–105 



SiC detectors 

De Napoli et al. NIM A, 572 (2007), 831 
CNR-IMM detector  

L. Calcagno et al. Radiation Effect & Defects 
in Solid, 170(4), (2015) 303 

CNR-IMM detector    

High linearity Low noise 



SiC detectors 

Intrinsic detector resolution 14.5 KeV (0.2%) 



Effects of ion irradiation 

Extended defects 
(dislocations, etc…) 

VSi 

VC 

Point defects 
(vacancies, interstitial, 

antisites, etc…) 

IC 

Ion irradiation can produce defects in the crystal lattice of the semiconductor 



Effect of defects on the detectors 

The defects in the lattice produce some levels in the band-gap 

CB 

VB 

N: 0.06eV 

Al: 0.19eV 

Deep levels 

(structural defects) 

Increasing the density of these levels with the increasing of the 
ion dose, the characteristics of the detectors deteriorate 
  Charge Collection Efficiency (CCE) 
  Resolution (FWHM)  



Radiation induced defects  

Low Fluence: 
Individual Regions 

High Fluence: 
Amorphous Layer 

Low Fluence Regime:       

  109 < Φ < 1013 ions/cm2          

point defects & defects cluster 

< 1018 defects/cm3 

(DLTS, LTPL …) 

Ion flux 
(Z, E, Φ) Epi Substrates 

Point defects < 1011 cm-3 

Extended defects < 105 - 107 cm-2 

4H-SiC 
homo-epitaxial 

layers 



Analisys of the radiation induced 
defects by DLTS 

Φ = 1 x 109  - 5 x 1013 ions/cm2  

[V]* = 1014 – 1019 vacancies/cm3 
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Defects vs. ion dose 

  POINT DEFECTS    

Z1/Z2: (VSi/C, SiC, CSi, Ci)** 
 
RD1/2: (Vc+VSi)** 
 
RD4: (VC)** ** From literature 
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Increasing ion dose the point defects 
increase linearly 



High fluence regime 

POINT DEFECTS CLUSTERS 
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G. Litrico et al. Mater. Sci. For. 
 Vols. 615-617, (2009), pp. 397-400 

Φ = 5 x 1010- 5 x 1013 ions/cm2 



Effect of radiation induced defect on   
I-V characteristics 

 Un-irradiated (Nd= 5.34 x 1014 cm-3)
 Φ = 3.0 x 109 cm-2

 Φ = 6.0 x 109 cm-2
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G. Litrico et al. J. Appl. Phys. 
Vol. 104 (2008) p. 093711 
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-3 ) 

Increasing the doping of the epitaxial layer the effect on the doping 
compensation decreases. 



Effect of radiation induced defect on   
I-V characteristics 
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Efficiency of point defects production 

[traps/eV] 

TRAPS PRODUCTION EFFICIENCY   

ε = 
η 

Sn 
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  INTRODUCTION RATE   η = 
NT 

Φ 

[traps/cm] 

 ion mass 

 energy 

η (Z1/Z2)  

 1363 traps/cm          7 MeV C+ 

3 traps/cm           60 MeV H+
 

L. Calcagno et al. / Nucl. Instr. and Meth. 
in Phys. Res. B 257 (2007) 279–282 



Efficiency of point defects production 

60 MeV MeV H 

Ion track effect 

Target Depth 7 μm 0 

7 MeV C+ 

0 

60 MeV H+ 

Target Depth 

low distance between primary defects 
 
  

defects recombination  
(LOW ε) 

 

d = 0.13 μm 

high distance between primary defects 
 
 

no defects recombination  
(HIGH ε) 

 
 
 

d = 140 μm 

1 mm 



SiC vs. Si radiation hardness 
740 MeV C+ 

S. Privitera et al. Material Science Forum (2016) in press. 



Challenge for SiC detectors 
production: device area 

 
For large area detectors 
a very low defects 
density D is needed 



Challenge for SiC detectors 
production: carrier lifetime 

The carrier lifetime can have an influence on CCE at low reverse bias. 

G. Verzellesi et al. / Nuclear Instruments and 
Methods in Physics Research A 476 (2002) 717–
721 

T. Kimoto et al. in “Silicon carbide epitaxy”  (Ed. F. 
La Via, Research Signapost) 



Challenge for SiC detectors 
production: carrier lifetime 

To reduce the carbon 
vacancies and increase the 
minority carrier lifetime a 
high temperature oxidation 
or an oxidation and a 
subsequent high 
temperature annealing 
should be done 

T. Kimoto et al. in “Silicon carbide epitaxy”  
(Ed. F. La Via, Research Signapost) 



Summary 

• SiC is extremely interesting for high radiation 
hardness detectors. 

• High linearity and high resolution detectors have 
been demonstrated.  

• The ion irradiation introduces point defects (low 
fluence regime) or cluster of point defects (high 
fluence regime). 

• Deactivation of dopant 
• Increase of the leakage current 

• The efficiency in the introduction of point defects 
strongly depends on the energy. 



Outlook 
• For the realization of high energy ions detectors the main 

difficulty is reach the low defects density (<1 cm2) needed to 
obtain a reasonable yield (>50%). 

• Carrier lifetime can have an influence on the CCE at low voltage 
and then a high temperature oxidation  process should be done 
to reduce the traps. 

• The P/N junctions show a lower reverse leakage current with 
respect to the Schottky diodes at high voltage and then these 
kind of detectors will be used 
 



Outlook 

Substrate n+ 

Epi n- 

Buffer n+ 

P+ 

∆E detector 

100 µm 

 n+ 

Substrate n- 

P+ 

E detector 

1 mm 

Thank you for the attention 
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