A Large Ion Collider Experiment

The ALICE Inner Tracking System Upgrade

Felix Reidt

CERN

on behalf of the ALICE collaboration

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

Outline

- ALICE
- Inner Tracking System (ITS) Upgrade
- Pixel Chip
- Detector Staves
- Production
- Readout Electronics
- Project Timeline
- Summary and Outlook

A Large Ion Collider Experiment (ALICE)

Detector (TOF) Transition Radiation Detector (TRD)

- ALICE is the heavy-ion focussed experiment at the LHC
- Its main goal is to study the Quark-Gluon Plasma (QGP)
- 2 layers each of silicon pixel, silicon drift and silicon strip detectors

Upgrade Strategy for LS2 (2019/2020)

Motivation:

High-precision measurements of rare probes at low p_{T}

- Cannot be selected by hardware triggers
- Need to record large minimum-bias data sample
 - ⇒ read out all Pb-Pb interactions up to the maximum LHC Pb-Pb collision rate of 50kHz

Goal:

- Pb-Pb recorded luminosity: 10 nb⁻¹ (plus pp and p-A data)
 - \rightarrow gain factor 100 in statistics for minimum-bias trigger
- Improved vertexing and tracking capabilities

Strategy:

- New silicon trackers:
 - New, smaller beam pipe
 - Inner Tracking System (ITS) covering mid-rapidity
 - Muon Forward Tracker (MFT) covering forward rapidity
- Further upgrades:
 - TPC (readout planes and electronics)
 - Forward trigger detectors (FIT) and ZDC
 - Readout electronics (TRD, TOF, PHOS, Muon Arm)
 - Upgrade of online and offline systems (O² project)

ALICE upgrade LoI: March 2013

ITS upgrade TDR: March 2014

ITS Upgrade Design Objectives

Improve impact parameter resolution by a factor ~3 in r ϕ and ~5 in z at p_T=500MeV/c

- get closer to IP: 39mm → 23mm (innermost layer)
- reduce material budget: ~1.14% X₀ → ~0.3% X₀ (inner layers)
- reduce pixel size: $50x425\mu m^2 \rightarrow O(30x30\mu m^2)$

Improve tracking efficiency and p_T resolution at low p_T

• increase granularity: 6 layers \rightarrow 7 pixel layers

Fast readout

 readout of Pb-Pb at up to 100 kHz (presently 1kHz) and 400kHz for pp

Fast insertion and removal

 possibility to replace non-functioning detector modules during yearly shutdown

ALICE

The Upgraded ITS

A Large Ion Collider Experiment				
Pixel Chip Requirements		Pixel chip development for the ITS Upgrade		
Parameter	Inner Barrel	Outer Barrel	ALPIDE	
Silicon thickness	50µm	100µm	✓	
Spatial resolution	5µm	10µm	~ 5µm	
Chip dimension	15mm x 30mm		\checkmark	
Power density	< 300mW/cm ²	< 100mW/cm ²	< 40mW/cm ²	
Event-time resolution	< 30µs		~ 2µs	
Detection efficiency	> 99%		✓	
Fake-hit rate *	< 10 ⁻⁶ /event/pixel		<<< 10 ⁻⁶ /event/pixel	
NIEL radiation tolerance **	1.7x10 ¹³ 1MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} /cm ²	~	
TID radiation tolerance **	2.7Mrad	100krad	tested at 350krad	

* revised numbers w.r.t. TDR
** including a safety factor of 10, revised numbers w.r.t. TDR

Test Beam Result of a Full-Scale ALPIDE Prototype

- Final pixel layout and front-end circuit selected
- Radiation effects visible
- Large operational margin maintained after NIEL and TID irradiation

Further details in Miljenko Šuljić's talk on Thursday

Detector Barrel Staves

Stave Layout

IB Flexible Printed Circuit

- Flexible printed circuit (FPC) of low-CTE polyamide and aluminium
- Power planes for digital and analogue voltage
- 11 differential pairs (clock, configuration, 9 data lines)
- Pads distributed over the full chip
- Connection with wire bonds through vias in the FPC

IB Hybrid Integrated Circuit Prototypes

Small series of Inner Barrel Hybrid Integrated Circuit (HIC) prototypes built using pALPIDE-3 chips

- 4 HICs and 2 staves
- Full characterisation with different modes of operation, readout rates and environmental conditions (supply voltages and temperature)
- Sensor performance comparable to single chip

IB HIC Test Results - Threshold and Noise

- Average threshold and noise values from S-Curve scans for all chips on the IB HIC
- Error bars indicate RMS of the distributions

- Performance compatible to single chips
- Noise of about 7 electrons also on the HIC
- No systematic effect due to the presence in a module observed

- Measurement of fake-hit rate
- Different levels of masking:
 - -no masking
 - -0.01% of pixels masked

- Performance similar to single chip
- Noise occupancy orders of magnitude better than the requirement

IB Stave — Thermal Characterisation

Stave temperature measurements while powering on stave in two steps

- 1) Power on (with CLK): ~ 80 mW digital + 20 mW analogue / chip
- 2) Configuration of DTU: ~ 160 mW digital + 20 mW analogue / chip

ALICE

OB HIC Prototypes

(connection to power bus)

Small series of OB HIC prototypes built using pALPIDE-3 chips

- 6 HICs and 1 stave (with 2 modules)
- Full characterisation with different modes of operation, readout rates and environmental conditions (supply voltages and temperature)
- Sensor performance comparable to single chip

16

Module Assembly Machine

Automated module assembly (custom-made machine)

Electrical interconnection (wire bonding)

IB Stave Production

Materials, manufacturing process, tooling and thermo-mechanical performance fully qualified

Production:

- 31 units produced

Engineering Design Review (EDR): May 2016 ✓ Production Readiness Review (PRR): Dec 2016

OB Spaceframe & Coldplate Production

Materials, manufacturing process, tooling and thermo-mechanical performance fully qualified

Production:

Space Frame - 21 units 1.5m (OL) produced

- 14 units 1.m (ML) produced

Cold Plate

- 23 units 1,5m (OL) produced
- 9 units 1m (ML) produced

Readout Electronics — Global Architecture

Readout Unit — Prototype

Overall ITS Upgrade Schedule

Summary and Outlook

- Pixel chip prototypes qualified and shown to satisfy the requirements
- First IB staves and OB modules built
 - no showstoppers found
 - some design optimisation ongoing
 - pre-production with the final chip starting soon
- Mechanics design and prototyping well on track
- Global readout architecture determined
- Wafers of final pixel-chip 'ALPIDE' delivered, currently being tested

Thank you for your attention!

ALPIDE wafter during probe testing

A Large Ion Collider Experiment

Spare Slides

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

A Large Ion Collider Experiment

Pixel Chip

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

Pixel Chip Technology

schematic cross section of pixel of monolithic silicon pixel sensor

• 25µm high-resistivity epitaxial layer (>1kΩcm), not fully depleted:

-Charge collection: drift in depletion zone (white) and diffusion (light blue)

-Charge collection times: **1ns to 100ns**

- Small **n-well diode (2\mum to 3\mum)**, small compared to pixel \Rightarrow low capacitance
- Moderate (up to 8 V) reverse substrate bias V_{BB} increasing depletion zone around the collection diode
- Deep p-well shields n-well of PMOS transistors to allow for full CMOS within the active area

ALPIDE Architecture

ALPIDE

Concept

- In-pixel amplification
- In-pixel discrimination
- In-pixel multi-hit buffer
- In-matrix sparsification using priority encoder

Key features

- Continuously active, ultra lowpower front end (40nW/pixel)
- No clock propagation to the matrix
- Only hits propagate to end-ofcolumn logic
- Global shutter
 → continuous or triggered acquisition

Pixel Chip — Status & Plans

Pixel Chip Finalization and Production Timeline

- Engineering Design Review
- Complete design of final ALPIDE
- Pre-series Run: Apr Aug 16
- Production Readiness Review
- Series Production (~25 wafer/week):

Oct 15	~
Mar 16	~
ongoing	
Sep 16	
Oct 16 – J	ul/Aug 17

Pixel Chip — Manufacturing, QA and Test

Selection of industrial suppliers almost completed

ITS Pixel Chip — Epitaxial Layer

Charge collection time and recombination depend on doping concentration (Si resistivity) and radiation induced dislocations

ALPIDE — Principle of Operation

Front-end acts as delay line

ultra low-power front-end circuit 40nW / pixel

- Sensor and front-end continuously active
- Upon particle hit front-end forms a pulse with $\sim 1-2\mu s$ peaking time
- Threshold is applied to form binary pulse
- Hit is latched into memory if strobe is applied during binary pulse

Pixel Matrix - Hit driven architecture

low-power matrix readout ~ 2mW

- Priority encoder sequentially provides addresses of all hit pixels present in double column
- No activity if no hit (no free running clock) → low power

ALPIDE — matrix and pixel layout

ALICE

Pixel matrix layout

Pixel layout

30 µm

ALPIDE —Dev	elopment	ALICE
2012 Explorer	 20μm x 20μm and 30μm x 30μm pixels (analogue reade pixel geometry, starting material, sensitivity to radiation 	out)
2013 pALPIDEss-0	 Matrix with 64 columns x 512 rows 22μm x 22μm pixels (in-pixel discrimination and buffering) zero suppression within pixel matrix 	11 mm
May-2014 pALPIDE-1	 Full-scale prototype: 1024 x 512 4 sectors with different pixels pixel pitch: 28μm x 28μm 1 register/pixel, no final interface 	30mm
Apr-2015 PALPIDE-2	 Optimization of some circuit blocks final interface: allows integration into ITS modules NO high-speed output link (1.2 Gbit/sec replaced by a 4) 	10Mb/s)
Oct-2015 pALPIDE-3	 Optimization of some circuits all final functionalities ALICE PIXEL2016 05.09.20 	16 Felix Reidt 34

IB Stave & OB Stave — Milestones

A Large Ion Collider Experiment

OB Mechanics

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

OB Stave Mechanics — Production Site and Personnel ALICE

Manufacturing site and personnel

Clean room CERN-Meyrin Bld 167 90m² clean environment, 22±2°C, 50% humidity

Personnel 3 FTE production 2 FTE test and QA

EDR May 2016 PRR Dec 2016

Production start Jan 2017 Production end Sept 2017

OB Mechanics ALICE Stave 2 Middle Layers 2 Outer Layers COSS (INFN) 5⁶ End Wheel (INFN) **Outer Detector Half** Outer Layer Stave Barrel Middle Layer Stave Service Barrel CYSS (LBNL) (LBNL) ALICE | PIXEL2016 | 05.09.2016 | Felix Reidt 38

OB Mechanics — Milestones

Detector Barrel Mechanics

- 1 Engineering Design Review Ju
- 2 Production Readiness Review
- ③ Production

Service Barrel / Cage

- ① Engineering Design Review Sep 2016
- ② Production Readiness Review Feb 2017
- ③ Production

Mar – Sep 2017

A Large Ion Collider Experiment

Readout Electronics

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

Stave Readout Topology

From the innermost to the outermost layer

- The expected hit density decreases by a factor of 100
- The number of chips per (half-)stave increases from 9 to 98.

Different readout topologies for inner and outer barrel:

• Inner barrel: each chip drives point-to-point data line to off-detector electronics

• Outer barrel: chips grouped into modules with two master chips; data links from masters to off-detector electronics

Readout Electronics Architecture ALICE **Central Trigger** Processor optical Inner layer (0,1,2) GBT One way, passive optical rigger 1.2 Gb/s high speed data, splitting, no busy back 80 Mb/s clock and control **GBT** Clock optical Control FPGA Control DR-185770-XX 000000 2 x 16 channel FP X0000X Data (9.6 Gb/s max) Inner Barrel FPGA Outer Barrel Data (960 Mb/s max) Outer layers (3,4,5,6) × 192 400 Mb/s high speed data, 80 Mb/s clock and control **Identical Readout Units (RU)** cover the full ITS **Clock GBT** Each Readout Unit is optical Control FPGA connected to one stave, Control R-185770-XX-EC both for in Inner and Outer X00000X X0000X Data (9.6 Gb/s max) Barrels FPGA Data (960 Mb/s max)

02

Readout Unit — Prototype

Readout Electronics — Milestones

- Readout Unit Prototype I
 - Selection of technology (radiation tolerance)
 - Validation of full readout chain and components
- ① Engineering Design Review
- Readout Unit Prototypes II (& III)
 - System integration
 - Integration with services (power supplies and crates)
- ② Production Readiness Review
- Readout Unit Final Design
- Pre-series production
- Series Production (220 boards)
- ③ Commissioning with detector (on surface)
 - Full detector + readout electronics + T/DAQ
- (4) Installation and Commissioning in ALICE

2015-2016

2016

Dec 2017 Jan – Mar 2018 Apr-Jun 2018 Jul – Dec 2018

Jul 18 – May 19

Jul - Dec 2020

A Large Ion Collider Experiment

IB Stave

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

IB Stave — Materials

- High Thermal Conductive (HTC) material carries the heat to a pipe with coolant
- Pipes are embedded in the HTC material
- HTC= Carbon

Carbon prepreg D=1.02 mm **Carbon fleece** wall thick.=24 µm Pyre M.L. Polyimide pipes **Carbon peek Carbon roving filament wound**

Graphite foil

IB Stave — Materials

Thermal/ Structural fibres

Cyanate ester resin

available in different shapes, offer a large range of properties

- ↑ High stiffness and strenght, fibre E ~ 900GPa, X ~4 GPa
- Λ High thermal conductivity, fibre K \sim 1000 W/mK
- Λ Minimum thickness, prepreg ~ 45 μm
 - ↓ Limitation on fibres minimum bending radius
 - \downarrow Poor mechanical and thermal properties \perp fibres

A Large Ion Collider Experiment

IB Stave — FEA IB FEA materials

Materials properties and mechanical constraints have been tuned to match the experimental results

Simulation has been used to optimise layout Stave final characterisation by test

Materials theoretical values

Materials values tuned on test results

	FAW	fiber/resin [%weight]	Cured thick[µm]	Density [g/ cm3]	Filaments [K=1000]	E1 [GPa]	X _t /X _c [MPa]	E2 [GPa]	Y _t [MPa]	К [W/mK]	CTE [10 ⁻⁶ K ⁻¹]
K13D2U [0]-prepreg		67/33	70	1.86	2К	563	1800/340	6	25	~450	-1,2/61
Carbon fleece/Epoxy		30/70	30	0.75(1)	-	134 (70)	150	134(70)	150		
M55J/Epoxy-roving		70/30	-	1.62 (2)	6k	340 (200)	2010/880	6		155	-1.1
M60J/Epoxy- roving		70/30	-	1.62 (2)	3k	365 (200)	2010/785	6		151	-1.1
Carbon paper		-	20	1.6	-	10	-	10		1000/15	
Polyimide tube		-	24	1.42	-	2.5	305	2.5		0.205	40
Carbon peek		-	-	1.41	-	7.7	130	7.7	130	0.92	25

IB Stave — Mechanical Characterisation

Bending test: sag 2-9 μm

Torsion test: torsional stiffness: Glp ~0.33 Nm²

Vibration test: first natural frequency - 159 Hz second natural frequency - 461 Hz

Started tests at wind gallery

Spaceframe – 167 Hz

Spaceframe+HIC – 159 Hz

vibration < 3.6 micron for 3.2m/sec speed (foreseen airflow <1m/sec)

Spaceframe – 461 Hz

Spaceframe+HIC – 474 Hz

B

• Burst pressure

Objective: The maximum inside pressure that a stave can withstand before burst

Pipe Burst @ 51bar

• Vacuum ID Objective: Verify stave and plastic tube stability under vacuum

IB Stave — cooling lines test

Slip Off pressure

The maximum pressure required to slip off a plastic flexible tube from the SS fitting

Pull out FORCE

The maximum required force to pull a plastic flexible tube out of a SS fitting

Pull out force 4 kgf ALICE | PIXEL2016 | 05.09.2016 | Felix Reidt 53

IB Stave — thermo-elastics test

Objective: Determine stave stability respect to thermal variation.

Mechanical Measurements Laboratory

EN-MME-EDM

DI	402				
Atmosphere	Helium at 150 ml/min				
Calibration standard	Graphite				
temperature program	RT to 150°C at 1°C/min				
Sample length	approx. 25 mm				
dL/Lo /%	T. Alpha *10-6 /K-1				

IB Stave — cooling pipes/water compatibility test

Objective: investigate the interaction of irradiated water with polyimide tubes

investigate the effect of radiation on the connection of PUR tubes to stave fittings

Test campaign before and after irradiation

A Large Ion Collider Experiment

OB Stave

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

OB Stave — Layout

OB Stave — Layout

OB HIC Test Setup and Results

8 OB HIC have being built and characterized Results similar to IB HIC

Test of an OB HIC. Power is supplied from external voltage regulators through the cross cables, soldered to the FPC

Schematic view of the FPC-chip interconnection

A Large Ion Collider Experiment

Detector Layout

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

ITS Outer Detector Barrel

Detector Layout

A Large Ion Collider Experiment

Detector Layout

A Large Ion Collider Experiment

HIC Assembly

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

FPC is placed on pick-up tool and vacuum is applied to flatten it

Dowel pins for FPC and mask alignment

FPC alignment based on dowel pins

An adhesive mask is placed above the FPC to dispense a precise pattern of glue droplets

Optimisation for mechanical strength and to prevent chip pads contamination and spilling through the vias.

The glue is dispensed and sputtered above the mask

The mask/stencil is removed and the pattern of glue is checked

Placement of the FPC attached to the pick-up tool onto the chip array

FPC held by vacuum and hidden below the FPC pick-up tool

Relative alignment ensured by ruby spheres

Release vacuum from the FPC pick-up tool, which is kept in place till complete glue curing

The connection is established between the pad over the chip and

the metalized crown surrounding the vias

Improved hole layout for redundant bonds (≥2) and eventually re-working

A Large Ion Collider Experiment

Module Assembly Machine

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

Module Assembly Machine

ALICE

Timing (time per chip):

- Chip placement on pre-position chuck and probe card alignment : ~ 1.4'
- Chip AOI (edge integrity + pad cleanliness) : ~ 4'
- Chip pick-up from tray and alignment on assembly table:
 ~ 2.5'

Prototype SAT date Wk 21

- delivery on Tue 24/05
- SAT on 26-27/05

Delivery of series machine

- 1) Pusan Wk 46
- 2) Bari Wk 48
- 3) Liverpool Wk 50
- 4) Strasbourg Wk 2
- 5) Wuhan Wk 4

Module Assembly Machine

A Large Ion Collider Experiment

HIC Testing

ALICE | PIXEL2016 | 05.09.2016 - 09.09.2016 | Felix Reidt (CERN)

IB HIC Test Setup

- HIC connected to MOSAIC test / readout card via 5m firefly cable + adapter card + 1 m Eyespeed cables
- Analogue and digital supply voltages provided by regulators close to the HIC
- Connection of regulators to supply planes by cables, significantly worse than in final layout.

IB HIC Test Results — Thresholds and Noise

Threshold scan results for one chip under three different conditions:

- All chips read out concurrently
- All chips powered, but only one chip read out
- Only one chip read out and analogue bias of other chips switched off, reducing analogue current consumption from 80 90 mA to 12 mA

Both threshold and noise show now measurable difference between the three conditions

IB Stave - Characterisation

Threshold and Noise extracted from S-curve scan for two different coolant temperatures

