The 4D pixel challenge

Is it possible to build a tracker with concurrent excellent time and position resolution?

Can we provide from the same detector and readout chain:

Timing resolution ~ 10 ps Space resolution ~ 10's of mm

Tracking in 4 Dimensions

Is timing really necessary?

The research into 4D tracking is strongly motivated by the HL-LHC experimental conditions:

150-200 events/bunch crossing

According to CMS simulations:

- Time RMS between vertexes: 153 ps
- Average distance between two vertexes: 500 um
- Fraction of overlapping vertexes: 10-20%
 - Of those events, a large fraction will have significant degradation of the quality of reconstruction

At HL-LHC: Timing is equivalent to additional luminosity

In other experiments (NA62, PADME, Mu3e): Timing is key to background rejection

The effect of timing information

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments.

Timing can be available at different levels of the event reconstruction.

- 1) Timing at each point along the track
- 2) Timing in the event reconstruction
- 3) Timing at the trigger level

Timing at each point along the track

→ Massive simplification of patter recognition, new tracking algorithms will be faster even in very dense environments
 → Use only "time compatible points"

Timing in the event reconstruction - I

Timing allows distinguishing overlapping events by means of an extra dimension.

INEN

Timing in the event reconstruction - II

Missing Et: consider overlapping vertexes, one with missing Et: Timing allows obtaining at HL-LHC the same resolution on missing Et that we have now

Timing

 $H \rightarrow \gamma \gamma$: The timing of the $\gamma \gamma$ allows to select an area 1 cm) where the vertex is located. The vertex timing allows to select the correct vertex within this area

Displaced vertexes: The timing of the displaced track and that of each vertex

allow identifying the correct vertex

The effect of timing information:

Timing at the trigger decision: it allows reducing the trigger rate, rejecting topologies that look similar, but they are actually different.

I N EN

Where do we place a track-timing detector?

Some (all?) layers in a silicon tracker can provide timing information

An additional detector can provide timing information, separated from the tracker

How do we build a 4D tracking system?

INEN

space 30-20= 10mm

Where do we stand?

The tracking community thinks it is a wonderful idea, clearly to be implemented **outside the tracker volume**, in front of the calorimeter

The calorimeter community thinks it is a wonderful idea, clearly to be implemented far from the calorimeter, in the tracker volume

We are now in contact with the muon community....

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning.

Strong interplay between sensor and electronics

2 important effects: Time walk and Time jitter

Time walk: the voltage value V_{th} is reached at different times by signals of different amplitude

Jitter: the noise is summed to the signal, causing amplitude variations

Due to the physics of signal formation

Mostly due to electronic noise

Time walk and jitter ~ $N/(S/t_r) = N/(dV/dt)$

INEN

Time resolution

Usual "Jitter" term Here enters everything that is "Noise" and the steepness of the signal

Time walk: time correction circuitry Shape variations: non homogeneous energy deposition

The key to good timing is the uniformity of signals:

Drift velocity and Weighting field need to be as uniform as possible

Basic rule: parallel plate geometry: strip implant ~ strip pitch >> thickness

Everything else does not work

Best result : NA62, 150 ps on a 300 x 300 micron pixels

How can we do better?

LGAD - Ultra-Fast Silicon Detector

Traditional Silicon Detector

Ultra-Fast Silicon Detector

Adding a highly doped, thin layer of of p-implant near the p-n junction creates a high electric field that accelerates the electrons enough to start multiplication. Same principle of APD, but with much lower gain.

Gain changes very smoothly with bias voltage.

Easy to set the value of gain requested.

E = 300 kV/cm → q ~ 10¹⁶ /cm³

Need to have 10¹⁶/cm³ charges !!

2) Use Gauss Theorem:

need V_{bigs} = 30 kV

Not possible

~ 75 pairs/ μ m - + v_d ~ 100 μ m/ns - + d - + d - + + d - + + d

 $\sum q = 2\pi r * E$

1) Use external bias: assuming a 300 micron silicon detector, we

INEN

Low Gain Avalanche Detectors (LGADs)

The LGAD sensors, as proposed and manufactured by CNM

(National Center for Micro-electronics, Barcelona):

High field obtained by adding an extra doping layer

E ~ 300 kV/cm, closed to breakdown voltage

Simulation

We developed a full sensor simulation to optimize the sensor design

WeightField2, F. Cenna, N. Cartiglia 9th Trento workshop, Genova 2014 Available at http://personalpages.to.infn.it/~cartigli/weightfield2

It includes:

INEN

- Custom Geometry
- Calculation of drift field and weighting field
- Currents signal via Ramo's Theorem
- Gain

- 4D pixel - Sestri 2016

Cartiglia, INFN, Torino

- Diffusion
- Temperature effect
- Non-uniform deposition
- Electronics

For each event, it produces a file with the current output that can be used as input in the simulation of the electronic response.

WeightField2: a program to simulate silicon detectors

6

How gain shapes the signal

Gain electron: absorbed immediately Gain holes: long drift home

Current [µA] 9 8 8 **UFSD Simulation Total Signal** 50 µm thick **MIP Signal Gain = 10 Gain Holes** 3 **Electrons Gain Electrons** Holes 0.8 0.2 0.4 0.6

Electrons multiply and produce additional electrons and holes.

- Gain electrons have almost no effect
- Gain holes dominate the signal

No holes multiplications

Time [ns]

Significant improvements in time resolution require thin detectors $\frac{22}{22}$

Ultra Fast Silicon Detectors

UFSD are LGAD detectors optimized to achieve the best possible time resolution

Specifically:

- 1. Thin to maximize the slew rate (dV/dt)
- Parallel plate like geometries (pixels..) for most uniform weighting field
- 3. High electric field to maximize the drift velocity
- 4. Highest possible resistivity to have uniform E field
- 5. Small size to keep the capacitance low
- 6. Small volumes to keep the leakage current low (shot noise)

Merging timing with position resolution

Electrode segmentation makes the E field very non uniform, and therefore ruins the timing properties of the sensor

We need to find a geometry that has very uniform E field and gain, while allowing electrode segmentation.

1) Segmentation: buried junction

Separate the multiplication side from the segmentation side

Moving the junction on the deep side allows having a very uniform multiplication, regardless of the electrode segmentation 25

2) Segmentation: AC coupling

3) Segmentation: splitting gain and position measurements

The real solution: monolithic

> 10 years

This is the correct approach, however it will take time.

What is the best "time measuring" circuit?

Constant Fraction Discriminator

The time is set when a fixed fraction of the amplitude is reached

Time over Threshold

The amount of time over the threshold is used to correct for time walk

Multiple sampling

Most accurate method, needs a lot of computing power. Possibly too complicated for large systems

There are 3 quantities determining the output rise time after the amplifier:

- 1. The signal rise time (t_{Cur})
- 2. The RC circuit formed by the detector capacitance and the amplifier input impedance ($t_{\rm RC}$)
- 3. The amplifier rise time (t_{Amp})

N. Cartiglia, INFN, Torino - 4D pixel - Sestri 2016

Shot noise

Let's assume a 4 mm² pad, 50 micron thick, and a electronic noise of 500 ENC

- Cool the detectors
- Use small pads to have less leakage current

Landau noise

Resolution due only to shape variation, assuming perfect time walk compensation

To minimize Landau noise:

→ Set the comparator threshold as low as you can

➔ Use thin sensors

I N EN

Irradiation - I

Irradiation causes 3 main effects:

- 1. Decrease of charge collection efficiency due to trapping
- 2. Changes in doping concentration
- 3. Increased leakage current

1) Decrease of charge collection efficiency due to trapping

We ran a full simulation of CCE effect. In 50 micron thick sensors the effect is rather small: up to 10¹⁵ neq/cm² the effect is negligible in the fast initial edge used for timing.

(poster Sec. A, B. Baldassarri)

Electronics need to be calibrated for different signal shapes

6

- 4D pixel - Sestri 201

Cartiglia, INFN, Torino

Irradiation - II

2) Changes in doping concentration

There is evidence **that in thick sensors** dynamic effects cause an apparent "initial acceptor removal" at fluences above a few $10^{14} n_{ea}/cm^2$

→ the "real" p-doping of the LGAD gain layer is deactivated.

R&D paths:

- Use Vbias to compensate for the loss on gain
- Use thin sensors: weaker dynamic effects
- Long term: Gallium doping

3) Increased leakage current

Assuming Gain ~ 15, T = -30C, Shot noise starts to be important at fluences above ~ 10¹⁵ n^{eq}/cm²

- Keep the sensor cold
- Low gain
- Small sensor

Sensors: FBK & CNM

FBK 300-micron production
Very successful, good gain and overall behavior
→ We have now a second producer

CNM 75-micron CNM 50-micron production x3 TOTEM x4 CT-PPS ATLAS High Granularity Timing Det.

Sensors for the CMS CT-PPS detectors

New production of 50 micron thick,

segmented UFSD sensors.

Gain ~ 15

32 fat strip array for CT-PPS

Strips:

3 mm x 0.5 mm 3 mmx x 1 mm

Distance between pads: 50 micron

→ Able to produce segmented UFSD

12 mm

Latest results on UFSD time resolution

Fully custom made UFSD read-out (UCSC)

CNM production of thin sensors (50 micron)

An example of the signals

Fast, low noise signals, ideal for timing

The sensor has a "no gain" frame, ideal for gain calibration with MIPS

Amplitude [mV]

Time resolution as difference UCSC-SiPM

We used a very accurate (~ 15 ps) SiPM as trigger

Multiple UFSD tracking system

Timing Resolution [ps]		
Vbias [V]	200V	240V
N=1:	34.6	25.6
N=2 :	23.9	18.0
N=3 :	19.7	14.8

Submitted to NIMA

http://arxiv.org/abs/1608.08681v1

Summary of UFSD beam test results

CNM - LGAD

2014 Frascati: UFSD 7x7mm² 300 μ m (C = 12pF, Gain =10) 2014 CERN: UFSD 7x7mm² 300 μ m (C = 12pF, Gain =10) 2015 CERN: UFSD 3x3mm² 300 μ m (C = 4pF, Gain =10 - 20) 2015 CERN: UFSD 1x1mm²75 μ m (C = 2pF, Gain =5) 2016 CERN: UFSD 1.2x1.2mm² 50 μ m (C = 3pF, Gain =15)

INFN

Summary and outlook

Tracking is 4 Dimensions is a very powerful tool

Low gain Avalanche Detectors have the potential to bring this technique to full fruition using gain ~ 10 and thin sensors Why **low** gain?

Milder electric fields, possible electrodes segmentation, lower shot noise, no dark count, behavior similar to standard Silicon detectors Why **thin** sensors?

Higher signal steepness, more radiation resistance, easier to achieve parallel plate geometry, smaller Landau Noise

Next steps:

- Radiation hard studies
- Electronics for larger sensors (20-30 pF)

Acknowledgments

We kindly acknowledge the following funding agencies:

- INFN Gruppo V
- Horizon 2020 Grant URC 669529
- Ministero degli Affari Esteri, Italy, MAE
- U.S. Department of Energy grant number DE-SC0010107
- The RD50 collaboration

The APD approach

The key to this approach is the large signal: if your signal is large enough,

So far they reported excellent time resolution on a single channel.

To be done:

- Radiation hardness above 10¹⁴ n_{eq}/cm²
- Fine Segmentation
- How to deal with shot noise (proportional to gain)

The Diamond approach

Diamond detectors have small signal: two ways of fighting this problem

I N EN

Gain in Silicon detectors

Gain in silicon detectors is commonly achieved in several types of sensors. It's based on the avalanche mechanism that starts in high electric fields: E ~ 300 kV/cm

Charge multiplication

Gain:

- α = strong E dependance
- $\alpha \sim 0.7$ pair/ μ m for electrons,
- $\alpha \sim 0.1$ for holes

 $N(l) = N_0 \cdot e^{\alpha \cdot l}$ $\mathbf{G} = \mathbf{e}^{\alpha \cdot l} \quad \alpha_{e,h}(E) = \alpha_{e,h}(\infty) \cdot \exp\left(-\frac{b_{e,h}}{|E|}\right)$ E ~ 300 kV/cm

Concurrent multiplication of electrons and holes generate very high gain

Silicon devices with gain:

- APD: gain 50-500
- SiPM: gain ~ 10^4

IN EN

TOFFEE chip

Fully custom made chip for UFSD read-out

8 input channels

8 LVDS output suited for HPTDC

Available mid summer

Time resolution:

- \sim 50 ps with 6 fC
- \sim 30 ps with 10 fC

2mm

What is the signal of one e/h pair?

(Simplified model for pad detectors)

Let's consider **one single electron-hole pair**.

The integral of their currents is equal to the electric charge, q:

$$\int [i_{el}(t) + i_{h}(t)] dt = q$$

However **the shape of the signal depends on the thickness** d: thinner detectors have higher slew rate

Possible approaches for timing systems

We need to minimize this expression:

$$\sigma_{\rm t}^2 = \left(\frac{\rm N}{\rm dV/dt}\right)^2$$

- APD (silicon with gain ~ 100): maximize dV/dt
 - Very large signal
- **Diamond:** minimize N, minimize dt
 - Large energy gap, very low noise, low capacitance
 - Very good mobility, short collection time t_r
- LGAD (silicon with gain ~ 10): minimize N, moderate dV/dt
 - Low gain to avoid shot noise and excess noise factor