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The ATLAS Insertable B-Layer (IBL)

Detector overview
• Length: ~64cm (~7m including services in both sides)
• 14 local support structures (staves) at 3.27 cm 

overlapping in phi
• 32 R/O chips per stave
• New R/O chip: FE-I4 in IBM 130 nm CMOS

– Cell size (50 x 250) μm2

– 80 columns x 336 rows = 26880 channels / FE
• Data transfer at 160 MHz 
• CO2 cooling integrated into the staves
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Motivation
² Retain excellent vertex detector performance
² Improve heavy flavor tagging, primary and 

secondary vertex reconstruction/ separation
² Add additional redundancy of the detector in case of 

failures caused by radiation damage



… seen as a first tech step to HL-LHC
Ø New sensors with higher radiation hardness

² 5 x 1015 neq cm-2 NIEL (improved radiation hardness by factor 5)

Ø New readout chip with finer segmentation, larger active fraction and 
increased hit-rate capability
² New readout architecture and smaller cell size (250 x 50) μm2

² Large single-chip (20.2 x 18.8) mm2

Ø Lighter detector: less radiation length of support and cooling 
structures
² Improved radiation length per layer from 2.7% to 1.9% to minimize multiple 

scattering in innermost layer
² High efficiency CO2 cooling at -40oC coolant temperature

Ø New off-detector readout system
² Increased readout speed by a factor 2
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See dedicated talk by 
B. Veerlat on Friday 



Sensor technologies
Two technologies chosen: Planar and 3D

• Planar (produced by CiS)
– 200 μm thick n+-in-n sensor
– Inactive edge minimized by shifting guard 

rings (13) underneath pixel region

• 3D (produced by CNM and FBK)
– 230 μm thick n+-in-p sensor
– Column through almost the full bulk with 

two electrodes per pixel

Ø Sensor specification:
– Qualified up to 5 x 1015 neqcm-2

– Sensor max power dissipation: 200 mW cm-2

at -15°C
– Single-hit efficiency > 97%

Ø Population of sensors on the staves:
– 75% Planar (central)
– 25% 3D (at both sides, i.e. large η)
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FBK CNM



Detector construction: flow chart
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Module assembly, production and QA

~710 modules produced in total (in ~1-year)
• Verification of basic functionality at 15°C after 

the assemblage
• Thermal stress: 10x (-40°C to +40°C)
• Final qualification at -15°C
• Module yields (lower than expected, see next):

– Planar (double-chip: CiS) ~75%
– 3D (single-chip: FBK and CNM) ~ 62%

• Ranking and module selection
IBL spec < 1% pixel defects/FE
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Planar/ Double-chip

241Am source scan during Module QA

3D/ Single-chip
CiS



Bump bonding
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Two kind of defects observed on the first batches

• Large area of unconnected bumps (opens)

• Areas or single bump defects distributed over 
the module (shorts)

Ø Stopped production in late September 2012

Ø Intense investigation program
² Open bumps traced back to excessive flux in flip-

chip process
² Lack a convincing explanation of the opens origin 

but problem vanished switching to flux-free flip-
chip

Ø Restarted production with flux-free flip-chip 
process in February 2013

OPENS on a batch-1 module  

FE chip after de-soldering Sensor after de-soldering

Crosstalk of a batch-3 module  



Stave loading
• 20 production staves built in ~1-year

• 428 modules loaded in total
– Including module replacement (28)                

challenging and risky operation for           
nearby modules but possible!
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• First stave quality check at the loading site
– Optical inspection and basic electrical/functional tests 

ATLAS Preliminary

Reason of module replacement 



Stave quality assurance
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Selection of the best 14 staves
Ø Arranged modules & staves in final IBL for 

uniform low h-f distribution of dead pixels 
for h < 2 

Ø Total bad pixel ratio for the integrated 
staves is < 0.1% 

• Tuning at different temperature and
Source (90Sr) scans on the full stave

– Mimic real detector operation in clean-room
• Pixel defects

– Classified as related to sensor, FE or bump 
bonding

– 73% of all chips loaded onto staves have less 
than 0.1% bad pixel

– Percentage of disconnected bumps is less than 
0.06% for the produced staves



Wire bonds corrosion
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• Two staves were accidentally exposed to a severe condensation during QA 

• Observed corroded wire bonds which triggered a detailed inspection of all 
staves

Ø Stopped production in earlier September 2013

Ø Intensive investigation program & solution:

v Found Halogen (Cl or F) associated with corrosion 
product (residue)

v Aggressive cleaning helped  but also weakened the 
gold metallization

v Coating with Uretan showed a very good protection (too 
late for being applied in the production) 

Ø Rework of the affected staves already produced

1) Wire bonds removal and cleaning 

2) Re-boning all FE and wings pads
3) Keep the detector dry as much as possible



Stave integration onto IPT
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Integrated staves on support tube (IPT) within one month

• Stave was mounted with a support structure onto the IPT (clearance less than 0.8mm 
between IPT and stave) after cooling pipe extensions were made by brazing 

• Staves were connected on both ends to power and readout services and then tested

Ø Tests confirmed the results obtained during stave QA



Installed, connected and tested

• May 2014: the detector was completed and installed 

• End of June 2014: the detector was connected to power, readout and 
cooling, and then the detector commissioning started

Ø From electrical/ functional-tests no deterioration observed
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Calibration
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Noise map

Tuning: Threshold at 2500e- and TOT of 10 at 16000e- (Temp= -15 oC)

3D sensors

Vbias:
3D=20V
Planar=80V

Noise

3D

Planar

Threshold
s ≈50e-
for all

Signal
w/ 4-bit
resolution



Commissioning with cosmic rays
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November 2014:

First track with IBL
integrated into the 
ATLAS data-taking 

4-Layers Strip

3-Layers Pixel

IBL
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First tracks with the 4-Layer Pixel detector included into ATLAS data-taking
collisions at 13 TeV, May 2015.

See next talk by S. Tsuno



Wire bonds oscillation
Wire bonds operate in the 2 T B-field and most of them at low 
currents except for voltage regulator connections

• High currents can be caused by consecutive triggers or calibration 
scans (max possible AC current is ~ 100 mA)

• Test and simulation showed that wires can break at the resonance 
frequency or in one harmonic

– Digital supply lines are susceptible to current fluctuation when 
receiving triggers
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Ø Fixed Frequency Trigger Veto (FFTV) implemented into the readout chain to limit the 
number of trigger in resonance region



Mechanical distortion
• Observed in early 2015 during cosmic runs at the level of few μm/K

– Origin: CTE mismatch between service buses and staves that 
manifests itself in a r-f twisting of staves at the level of few µm/K

Ø The impact of this effect is manageable by  a careful temperature 
control at the level of ~0.2K (alignment correction every 100 
luminosity block)

18See dedicated poster on alignment  by J. Pena



FE-I4 low voltage current drift

FE low voltage current and parameters (threshold, ToT)  
drifted with integrated luminosity in 2015
Consequences: Temperature increase and electrical failures

• Understood to be caused by a N-MOS transistor leakage 
current due to defects built-up at the silicon oxide interface 
(STI) and accumulated with increasing by the total 
ionization dose (TID)

• Parametrization of the leakage current was computed

Ø Using special detector operation procedures, a 
successful data taking was possible

19See dedicated talk by K. Dette on Thursday 

FEs configured

FEs in Standby



Lessons for the future

• IBL is a new detector built relatively quickly and with a short R&D time
• Major issues discovered late in the production, during commissioning

and data-taking but no showstoppers.
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A new detector even if built by experts needs time for 
R&D, review and extensive qualification in all its domains.
Ø Mechanical distortion à stiff structure low susceptibly 

to temperature variation (low CTE).
Ø Wire bonds oscillation à potting, thick wires or no 

wires at all (TSV + RDL + Laser soldering).
Ø FE chip (NMOS transistor leakage current) à

qualification to radiation should not be done only for 
intermediate and high doses.

Lessons learned:



Summary
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The Long-Shutdown-1 was realized as an opportunity and finally a great success 
for the Pixel Detector upgrade:
Ø 4th Layer Pixel (IBL) successfully installed and in operation with good 

performance
Ø First and successful use-case of 3D-Si sensors in HEP experiment !

September 2010 Mid 2012 May 2014 Since May 2015
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