ATLAS Track Reconstruction in Dense Environments and its Inefficiency Measurements using Pixel *dE/dx*

Jason Mansour

Institute of High Energy Physics, Beijing

On Behalf of the ATLAS Collaboration

September 6, 2016

Institute of High Energy Physics - Chinese Academy of Sciences

Tracking in Dense Environments (TIDE)

- Goal: resolve tracks even in core of high p_T jets
- Important for:
 - b-tagging and tau reconstruction
 - Boosted particle reconstruction & large jet substructure
 - Jet energy scale & mass calibration
- Leading source of systematic
 uncertainty often track reconstruction
- ⇒ Ensure constantly high tracking efficiency also inside of jets
- \Rightarrow Determine tracking efficiency precisely

Tracking in Dense Environments – NN

- Clusters shared between tracks penalized during track reconstruction → ensure high quality tracks
- Disadvantage in dense environments
 where clusters naturally merge
- Use artificial neural network (NN) to identify merged clusters and not penalize them
- ⇒ Probability of correct association of clusters to tracks at small separations greatly increased
- ⇒ Improved b-tagging and tau reconstruction performance:
 - ⇒ At 60% b-tagging working point, 10% increase in efficiency for same light-jet rejection

Minimum Truth-Particle Separation at Layer 0 [mm]

Plots from ATL-PHYS-PUB-2015-006

Efficiency from Energy Deposition (*dE/dx*)

Data driven method to determine fraction of lost tracks in jets

- Single particles, thin layers

 → dE/dx is Landau distribution
 (to first approximation)
- Multiple tracks close by or through same pixel → contribute to same cluster (merged)

- Single particle: peak at MIP energy, two particles: peak at 2x MIP energy
- Ratio of events beneath two peaks gives probability to loose track due to merging

Template method

- Clusters hit by multiple reconstructed tracks
 - In jet core ($\Delta R < 0.05$) \rightarrow Multiple-Track Template
- Clusters hit by single reconstructed tracks
 - In jet core ($\Delta R < 0.05$) \rightarrow **Data**, to be fitted
 - Outside of jet core (ΔR > 0.1) suppress Multi-Track contamination → Single-Track Template
- Fit data with linear combination of templates
- Fraction of lost tracks is given by

$$F_{\text{lost}} = \frac{N_{\text{Multiple}}}{N_{\text{Single}}}$$

09/06/2016

Fit Results

- Repeat in seven p_T bins from 200 1600 GeV
- Few events in high $p_T \rightarrow$ use low p_T templates in that region
- Minimize three-track contamination → perform fit in Region
 0.67 3.07 (0.8 3.2) MeV g⁻¹ cm² for data (simulation)

Uncertainties

- Data: Mostly statistics, and template method systematic which also decreases with more data
- Simulation: dominated by MC generator differences (better agreement with Herwig, ≈ 5% uncertainty on F_{lost})
- Additional uncertainty from choice of fit region (due to 3rd peak contamination)

Results – Fraction of Lost Tracks

- Data and Simulation agree well (within systematic uncertainties)
- Lost fraction within 1 3.5%
- Fraction reduced vastly since Run I (6 12% from 200 1200 GeV)

ATLAS Note ATL-PHYS-PUB-2016-007:

"Measurement of track reconstruction inefficiencies in the core of jets via pixel dE/dx with the ATLAS experiment using $\sqrt{s} = 13$ TeV pp collision data"

Summary

- Tracking in dense environments especially important to understand high p_T jets
- Use neural network to detect merged pixel clusters and retain tracking efficiency in jet cores
- Applied method to determine tracking efficiency in dense environments from pixel dE/dx
- Tracking inefficiency found to be 1 3.5%, significantly improved since Run I and in good agreement with simulation

Thanks for your attention!

dE/dx Variables

ATLAS uses multiple dE/dx definitions:

- Cluster dE/dx:
 - dE/dx deposited at each layer of the detector
 - Used in this analysis
- Track dE/dx:
 - Averaged over all clusters of a reconstructed track
- Truncated dE/dx
 - Averaged over all clusters of a track, but disregarding the largest dE/dx cluster

Definition of templates

ATLAS Inner Tracker

From outside in:

- Transition radiation tracker (TRT)
- Silicon microstrip tracker (SCT)
- Silicon pixel detector
 - Pixel dimensions 50µm (transverse)
 × 400µm (longitudinal), different in outer layers
 - Different modules: FEI3 modules with 8 bit time-over-threshold (ToT), FEI4 modules only 4 bit ToT
- Since Run II (2015): Insertable B-layer (IBL)
 - Close to beam pipe (R=33mm) for superior impact parameter measurement (e.g. for b-tagging)
 - Planar and 3D silicon pixel sensors
 - Pixel dimensions 50µm × 250µm

End-cap semiconductor tracker