

Impact of the Belle II Pixel Detector on CP-Violation Measurements

Fernando Abudinén

September 6, 2016

- 1 SuperKEKB and Belle II
- 2 CP-Violation Measurements
- 3 Belle II DEPFET Pixel Vertex Detector
- 4 B-Meson Vertex Resolution
- 5 Summary and Outlook

Max-Planck-Institut für Physik

KEKB/SuperKEKB Collider

Upgrade: KEKB \Rightarrow SuperKEKB Belle \Rightarrow Belle II

KEK = kō enerugī kasokuki kenkyū kikō high energy collider research organization At: Tsukuba, Ibaraki Prefecture, Japan

Belle/Belle II Experiment

	KEKB/Belle	SuperKEKB/Belle II
operation	1999 - 2010	2018 - 2025
Inst. Lumi. ${\cal L}$	$2.11 \cdot 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$8 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
e^-/e^+ beam E	8/3.5 GeV	7/4 GeV
Boost $\langle \beta \gamma \rangle$	0.425	0.284
e^-/e^+ beam I	1.2/1.6 A	2.6/3.6 A

Nano Beam Scheme

Time of Propagation counter with 20 mm quartz bars MCP-PMT readout K_L^0/μ Detector (outside) RPC Plates and plastic scintillators with SiPM readout Superconducting Magnet

homogeneous field of $1.5\,\text{T}$

 $\begin{array}{l} \textbf{Electromagnetic Calorimeter} \\ \texttt{8000 Csl Crystals, 16} X_0 \\ \texttt{PMT/APD readout} \end{array}$

Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector 4 layer double sided strips 20-50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

• •

• CP-V. in the SM
$$\Rightarrow$$
 Weak Interaction \Rightarrow \mathbf{V}_{CKM}

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}\\ V_{cd}\\ V_{td} \end{pmatrix} \begin{pmatrix} V_{us}\\ V_{cs}\\ V_{ts} \end{pmatrix} \begin{pmatrix} V_{ub}\\ V_{cb}\\ V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

= Params: 3 Real, 1 Im.: $\lambda = \sin \theta_C \approx 0.2, A, \rho, \eta$
= Unitarity: $\sum_k V_{ki}^* V_{kj} = 0 \Rightarrow \underbrace{V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*}_{\mathcal{O}(\lambda^3) - \mathcal{O}(\lambda^3)} = 0$

 \Rightarrow Largest CP-V. within the SM in the *B*-system.

Time-dependent CP-Asymmetry

$$a_{\mathsf{CP}} = \frac{N\left(B^{\theta}, \ \Delta t\right) - N\left(\overline{B}^{\theta}, \ \Delta t\right)}{N\left(B^{\theta}, \ \Delta t\right) + N\left(\overline{B}^{\theta}, \ \Delta t\right)}$$
$$= \mathcal{A}_{CP}\cos(\Delta m\Delta t) + \mathcal{S}_{CP}\sin(\Delta m\Delta t)$$

 \mathcal{A}_{CP} : Direct CP Violation:

 \mathcal{A}_{CP}

¥

$$A = \langle f | B^0 \rangle \neq \langle \bar{f} | \overline{B}{}^0 \rangle = \bar{A}$$

 S_{CP} : Mixing-induced CP Violation:

f

$$J/\psi \ K_S^0 \Rightarrow \ \mathcal{A}_{CP} = 0$$
$$\mathcal{S}_{CP} = \sin(2\beta)$$

- \blacksquare Inst. Lumi.: $\mathcal{L}_{\mathsf{Belle II}} \sim 40 \cdot \mathcal{L}_{\mathsf{Belle}}$
- \Rightarrow Background $\uparrow\uparrow\uparrow$
 - Closest to IP
- \Rightarrow Occupancy ($\sim r^{-2}$) $\uparrow\uparrow\uparrow$
 - $\blacksquare \ \langle \beta \gamma \rangle_{\rm Belle \ II} < \langle \beta \gamma \rangle_{\rm Belle \ II}$
- \Rightarrow smaller Δz
- \Rightarrow Pixel Detector needed !
- ⇒ DEPFET Technology most suited DEPleted Field Effect Transistor

Particle track parametrization $\Rightarrow \vec{t}(d_0, \phi_0, \Omega = \frac{q}{p_t}, z_0, \tan(\lambda))$ $\blacksquare d_0(z_0)$: distance between point of closest approach and IP.

• Mult. Scattering: $\Delta \phi \sim \sqrt{\frac{X}{X_0}}$

 \Rightarrow Low material budget required!

■
$$B_{CP} \rightarrow J/\psi \ K_S^0$$

■ $K_S^0 \rightarrow \pi^+ \pi^-, \ \pi^0 \pi^0$: Decay outside of PXD. X

• $J/\psi \rightarrow \mu^+\mu^-$: Both muons have at least on PXD hit. \checkmark

Events / (0:0006 cm) 1200 1000

> > -0.02

-0.01

0

B_{tag} Vertex Resolution

- Algorithm: Adaptive Vertex Fit (AVF) CMS NOTE 2008/033
 - Access: RAVE (Reconstruction in a Abstract, Versatile Environment)
 - Track weighting according to proximity to other tracks and spatial constraint.

0.01 0.02 0.0 TagVz - GenTagVz [cm]

∆t - Gen. ∆t [ps]

MC Analysis $B_{CP} \rightarrow J/\psi K_S^0$

a) $q_{\sf MC}$ truth, $\varepsilon_{\sf Eff}=$ 100 % b) q tagged, $\varepsilon_{\sf Eff}=$ 35.5 %

 Δt Distribution

 $\mathcal{P}^{\mathsf{Obs}}(\Delta t, q) = \frac{e^{-|\Delta t|\tau_{B^{\theta}}}}{4\tau_{B^{\theta}}} \left[1 + \frac{q \cdot r}{4\tau_{CP}} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t))\right]$ $\varepsilon_{\mathsf{Eff}}(\mathsf{Belle}) = 29 \%$

• For $B \to \pi \pi$: tree and penguin diags. contribute!

$$\mathcal{A}_{CP} = 0$$

$$\mathcal{S}_{CP} = \sin(2\alpha)$$

$$\mathcal{A}_{CP} \neq 0$$

$$\mathcal{S}_{CP} = \sqrt{1 - \mathcal{A}_{CP}} \sin(2\alpha^{\text{eff}})$$

$$\Rightarrow \alpha^{\text{eff}} = \alpha - \Delta\alpha$$

$$\mathcal{R}$$

• Extr. of $\Delta \alpha$ through isospin $S_{\pi^0 \pi^0}$.

• $S_{\pi^0\pi^0}$ needs $\langle \Delta z \rangle \sim 130 \mu m$ of $B \to \pi^0 \pi^0$ where $\pi^0 \to \gamma \gamma$

 \Rightarrow Challenge!

• w/out $S_{\pi^{\theta}\pi^{\theta}} \Rightarrow$ 8 fold ambiguity on α

- with $S_{\pi^0\pi^0} \Rightarrow$ 2 fold ambiguity on α
- Converted $\gamma \to e^+e^-$ and $\pi^0 \to e^+e^-\gamma$ req. for $\langle \Delta z \rangle$
- Possible with $\mathcal{L}_{\text{Belle II}} = 50 \cdot \mathcal{L}_{\text{Belle}}$ and Belle II PXD?

- $\blacksquare ~\tau_{\pi^{0}} \sim 0.9~{\rm as}~\cong~0.1~{\rm nm}$
- $\Rightarrow \pi^{\theta} \text{ Vertex} = B^{\theta} \text{ Vertex}.$
 - Kinematic Vertex Fit with spatial constraint centered at the Beam Spot.

 $\hookrightarrow e^+ e^-$

$$\Delta t = t_{B^{\theta}{}_{\rm CP}} - t_{B^{\theta}{}_{\rm tag}}$$

$$B^{\theta}{}_{\mathsf{CP}} \to \pi^{\theta} \pi^{\theta}$$
$$\hookrightarrow \gamma \gamma$$

0

At least one track $(e^+ \text{ or } e^-)$ has one PXD Hit

$$\begin{array}{cccc} B^{\theta}{}_{\mathsf{CP}} \to & \pi^{\theta} & \pi^{\theta} \\ & \hookrightarrow & e^{+} & e^{-} \end{array}$$

$$\Delta t = t_{B^{\theta}{}_{\rm CP}} - t_{B^{\theta}{}_{\rm tag}}$$

- Upgrade of KEK to SuperKEKB: Boost reduction, Background increase, required maintenance of vertex resolution.
- \Rightarrow New DEPFET Pixel Vertex Detector (PXD) for Belle II.
 - PXD is crucial for the Belle II physics programm.
 - Impact of the PXD is studied with Monte Carlo Simulations:
- \Rightarrow Belle II Δt resolution is higher although $\langle\beta\gamma\rangle$ has been decreased!
 - Machine commissioning started! Begin of data taking planned for 2018!

Vertex of γ -Conversions in $B^0 \rightarrow \pi^0 \pi^0$

- a) If there is an event with $\gamma\text{-conversions}$
- \Rightarrow How Many?

b) How many Events have at least one γ -conversion?

Vertex in	Events $\%$
Beam Pipe	2.00 %
1st. PXD Layer	0.60 %
2nd. PXD Layer	0.50 %
Total inside PXD	3.10 %

c) ... and at least one $\gamma\text{-conversion}$ or one $\pi^{\theta} \to e^+e^-\gamma$ decay?

$$\begin{array}{c|c} \pi^0 \to e^+ e^- \gamma & 2.00 \% \\ \hline \textbf{Total} \ \pi^0 \cup \gamma & 5.05 \% \end{array}$$

Requirement: All converted γ in accept. and not converted in ECL

