Physics Benchmarks with the VELO Pixel Upgrade

Lars Eklund, on behalf of the LHCb VELO group

Outline

- The role of VELO in LHCb
- Performance for the VELO upgrade
 - Tracking
 - PV, IP resolution
 - Decay time resolution
- Plans beyond the current upgrade

LHCb and its physics programme

- The original physics tag-line
 - CP-violation in and rare decays of b and c hadrons
- Programme expanded over time
 - Spectroscopy, EW, top, semi-leptonic, heavy ion, CEP, ...
- Evolution towards the upgrade
 - Precision physics in the forward region
 - Software trigger at 40 MHz
 - Increased luminosity
- Benchmarks presented here taken from the b-physics programme
 - Much of this applies across the whole programme

Non-referenced plots are from the VELO Upgrade TDR

- Very large $b\overline{b}$ cross section in the detector acceptance
 - Estimated yields at full integrated upgrade luminosity (14 TeV)

	$\sigma_{b\overline{b}}$	$\int \mathcal{L}$	# $b\overline{b}$ pairs
LHCb	220 µb	$50 {\rm fb}^{-1}$	$11 * 10^{12}$
Belle II	1.2 nb	50 ab^{-1}	$60 * 10^9$

- However: total cross-section ~100 mb
 - Average #interactions / crossing ~ 5 ($\langle \mu \rangle = 5.2$ used in plots shown here)
 - 1/60 crossing contains a b-hadron
 - Belle II: fully reconstructed, clean events
- Experimental challenges
 - Trigger on & select signal candidates
 - Precision measurements
 - Despite the high track multiplicity

6 September 2016

Relies on excellent

VELO performance

VELO in the analysis flow

- Reconstruction
 - Track and primary vertex reconstruction (PV)
- Trigger & Selection
 - Impact Parameter (IP)
 - Distance of closest approach (DOCA), secondary vertex (SV) reconstruction
 - Pointing variables & IP of the mother
 - Track & vertex quality
 - Flight distance & decay time
- Measurement
 - Some variable vs. decay time e.g.

$$\mathcal{A}(t) = \frac{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) - \Gamma_{B^{0}_{(s)} \to f}(t)}{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) + \Gamma_{B^{0}_{(s)} \to f}(t)}$$

L. Eklund

6 September 2016

- PV resolution depends on # tracks
 - Min bias: <tracks/PV> ~ 55
 - B-hadron PVs: <tracks/PV> ~ 120

 $\sigma_x \sim 5 \ \mu m$ $\sigma_z \sim 40 \ \mu m$

- PV resolution negligible contribution to uncertainty on other related quantities
- However: primary and secondary vertex association is important
 - Depends on pile-up
 - More on this later

6 September 2016

7

Impact Parameter (IP) resolution

L. Eklund

 Δ_{ij}^2 : distance between PV (0), first and second measured point (1, 2) σ_i^2 : hit resolution for the first or second measured point (1, 2)

Constant term

6 September 2016

- Dominates at high-pT
- Similar performance as current VELO
 - Reduced minimum radius: 8.2 mm \rightarrow 5.1 mm
 - Increased inner pitch: 40 $\mu m \rightarrow 55 \mu m$
- Important for signal tracks
 - Distance of closest approach (DOCA)
 - Secondary vertex (SV) resolution

Secondary Vertex (SV) resolution

Where does SV resolution matter?

- Permits selection of very clean signal peaks, e.g. $B_s^0 \rightarrow \Phi \Phi$
 - Improved resolution gives diminishing returns
- Very different for semi-leptonic decays e.g.

$$\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)} R_{\rm FF}$$

- Challenging to reconstruct & select
- Improved resolution would give significant increased signal/background
- Similar situation for $B_s^0 \rightarrow \tau^+ \tau^-$
 - Sensitivity 10⁶ times worse than $B_s^0 \rightarrow \mu^+ \mu^-$

6 September 2016

Decay time resolution

L. Eklund

Eur.

Phys

26

(2016)

- Flight distance (FD) measured by VELO
 - Momentum and mass measured by tracking system $t = \frac{m \cdot FD}{m}$

 $l = \frac{1}{p}$

- Lifetime measurements: decay time resolution matters if $\sigma_t \sim \tau$
- Decay time resolution important for oscillation
 measurements
 - Works as a statistical dilution factor

$$D = e^{-\frac{\Delta m^2 \sigma_t^2}{2}}$$

6 September 2016

Oscillations in $B_d^0 \rightarrow D^- \mu^+ \nu_\mu X: \Delta m_d = 0.505 \text{ ps}^{-1}$

LHCb

0.5

U

-0.5

(a)

Decay time resolution

Current VELO: $\sigma_t = 48.3$ fs Upgrade VELO: $\sigma_t = 43.4$ fs

Cf. $\sigma_t \approx 50$ fs on 2011 data (similar decay: $B_s^0 \rightarrow {}^J/_{\Psi} \Phi$)

Dilution factor
$$D = e^{-\frac{\Delta m^2 \sigma_t^2}{2}}$$

6 September 2016

• B-hadron and charm meson lifetimes:

- $\tau \sim 0.4 1.5 \ {\rm ps}$
 - Resolution not an issue
- Charm baryon lifetimes: it starts to matter

$$au_{\Lambda_c^+}pprox 200~{
m fs}$$

$$au_{\Xi_c^0} pprox 110 \, \mathrm{fs}$$

 $au_{\Omega_c^0}pprox 70~{
m fs}$

- Doubly-heavy baryons even more so!
- B_d^0 oscillations: $\Delta m_d = 0.505 \text{ ps}^{-1}$
 - Dilution factor = 1
- B_s^0 oscillations: $\Delta m_s = 17.8 \text{ ps}^{-1}$
 - $B_s^0 \rightarrow \Phi \Phi$, current VELO $\sigma_t = 48.3 \text{ ps}$
 - Dilution factor D = 0.69
 - $B_s^0 \rightarrow \Phi \Phi$, upgraded VELO $\sigma_t = 43.4 \text{ ps}$
 - Dilution factor D = 0.74

Difference corresponds to a 15% increase in effective signal yield

L. Eklund

- Reconstruction efficiency varies, e.g. as a function of decay time
- Upper decay time acceptance in current VELO
 - Long flight distance in z: run out of VELO stations

- Long radial flight distance
 - $R\Phi$ geometry and pattern recognition algorithm disfavours tracks not originating from the z-axis
- Modelled and corrected for in analyses
 - Labour intensive process
 - Remainder: systematic uncertainty
- Pixel geometry less susceptible to this effect
 - But it is important to consider potential systematics already at the design stage

Target: $\int \mathcal{L} = 300 \text{ fb}^{-1}$

- 6x integrated luminosity 6x radiation damage
 - Current upgrade: 8x10¹⁵ 1 MeV n_{eq} maximum
 - Is 5x10¹⁶ 1 MeV n_{eq} feasible?
 - Conventional sensors or new technologies?
 - Conservative: move away from the beam
 - R_{min} = 12.5 mm gives same dose
 - Resolution degrades
- 10x luminosity 10x data rates
 - VeloPix has 4 x 5.12 Gbit/s links for hottest ASIC
 - On-chip data transport
 - Increase the serial link speed?
 - Move O/E transition to hybrid?
 - Conservative fall-back
 - Move away from the beam
- Even higher multiplicity environment
 - Pattern recognition, IP resolution, ...
 - Resolution remains crucial

L. Eklund

- Track association to primary vertex
 - VELO upgrade: 1% mis-association
 - At 10x luminosity: 13% mis-association
 - Degrades decay time & IP resolution
- 4D tracking: time stamp each track
 - Improves tracking performance
 - PV mis-association vs. time resolution
 - 200 ps resolution/hit recovers current performance
- Fits well other Phase-II upgrade plans
 - Timing in PID detectors (TORCH)
 - R&D well advanced, option for Phase-Ib
 - Timing in calorimetry
 - R&D ongoing but very expensive

- LHCb is a precision experiment in a challenging environment
 - The excellent performance of VELO is crucial for its success
- LHCb Upgrade is read out at 40 MHz @ 5x current luminosity
 - VELO tracking performance is improved
 - VELO resolution is improved or maintained
- Preliminary studies for a Phase-II upgrade
 - 10x upgrade luminosity
 - Challenging but exciting detector R&D prospects