



### **OPERATIONAL EXPERIENCE OF THE ALICE PIXEL DETECTOR**

### Annalisa Mastroserio Università degli Studi di Bari and INFN (Bari) On Behalf of the ALICE Collaboration





# Outline

### • ALICE Silicon Pixel Detector

- From Run 1 to Run 2
- Operation after long shutdown
- O Detector status
  - Calibration
- Trigger performances
  - Online Background rejection
  - High multiplicity
  - Double gap diffractive

# **ALICE Inner Tracking System**



# **ALICE Silicon Pixel Detector SPD**

### **Design goals :**

- Primary and secondary vertices
- Contribution to tracking
- Contribution to ALICE Lo Trigger

### **Detector characteristics :**

- spatial precision:
  - 12  $\mu$ m in r $\phi$  and 100  $\mu$ m in z
- Pixel size :425μm x 50μm (z x rφ)
- material budget: ~1.1% X<sub>0</sub> per layer
- Readout time: 256 μs
- power consumption: 1.35 kW





#### Minimum distance to the beam pipe : 5 mm

# **ALICE Silicon Pixel Detector SPD**



Smallest fully functional block : Half Stave

Detector segmentation : 10 Sector 120 half-staves (40 inner +80 outer) 10 pixel chips per half stave ➤ 1200 chips (400 + 800) Each chip has 256 x 32 pixels ➤ 9.83 x 10<sup>6</sup> pixels in total





# SPD integration in ALICE



# **Pixel Trigger Schematics**



- Basic information : FastOr bit per chip TRUE if at least one pixel is fired
- □ 1200 FastOr bits per event sent to the Pixel Trigger Electronics for processing
- IO programmable algorithms based on 1200 bits and boolean logics return 10 boolean responses to CTP

### From Run1 to Run2

• End of Run1 : March 2013

#### • Long Shut down 1

• Run2 :



- Recommissioning with beams in May 2015
  - Energy increase up to 6.5 TeV per beam
  - 25 ns bunch spacing in trains
- Instantaneous luminosity up to 5 Hz/ub
- Campaign for minimum bias and rare triggers at low pile up (μ)
- PbPb collisions in December 2015
- pPb collisions foreseen in December 2016

### Operational half-staves from Run1 to Run 2



## **Detector Configuration**

#### □ FEE configuration similar to Run 1

- Threshold campaign
- Timing campaign
- □ Same noisy pixel fraction as in Run 1
   ≈10<sup>-4</sup>
- Change of the latency of the trigger signals from the CTP lead to a timing campaign that aimed to match the internal data readout delay with the arrival of the trigger. A mis-match between the Fast-OR and the pixel data was found and solved.





## **Detector Configuration**

□ Expected increase of dead areas

- Switching on and off HV => thermal cycles that in turn cause the detaching of the readout chips from the sensor
- Dead pixels are due to missing bump bondings at the 4 corners of the chip. Other contributions are from
   Dead pixel from construction
  - □ Inefficient pixels

Inefficient and dead pixel in hs in DAQ :
Run 1 (2013) 2%
Run 2 (2015) 4.5%

#### Run 1





## **Detector Operation**

#### • Same as in Run 1 :

- Configuration done once, then tuned. Further checks only after a technical stop.
- Noisy pixels rarely appear. Usually very few in a run (<3)
- The detector configuration parameters of front-end and trigger algorithms are checked automatically at each run by means of the Alice Configuration Tool (ACT)
- Same working conditions in pp and PbPb also in Run 2
   New higher luminosity regime in pp
- Smooth operation of the detector during Run 2
  - Loss of configuration of one hs or few chips during data taking
  - Data format errors (missing header/trailer)

#### • Fraction of Phyiscs Runs with SPD :

- $\operatorname{Run} 1 (2013) = 86\%$
- Run 2 = 93%

#### • EOR caused by SPD :

- Run 1 : 2%
- Run 2: 4%

### New Feature in Run 2

□ New trigger classes used in ALICE as Lo from Pixel Trigger :

2015

2016

- Online Background rejection studies
- High Multiplicity studies
- Double gap diffractive studies
  - New firmware deployed

Fast-OR 120 Fibers Fast-OR extraction Processing Central Processing

#### Pixel Trigger electronics

#### Pixel trigger I/O

- ➢ Input : 1200 bits
- Output : 10 programmable algorithms

# **Pixel Trigger Algorithms**

| Output | Name                                                         | Algorithm                                                        |
|--------|--------------------------------------------------------------|------------------------------------------------------------------|
| 1      | Minimum Bias                                                 | $(I+O) \ge th_0 \text{ and } I \ge th_1 \text{ and } O \ge th_2$ |
| 2      | High Multiplicity 1                                          | $I \ge th_1 \text{ and } O \ge th_2$                             |
| 3      | High Multiplicity 2                                          | $I \ge th_1 \text{ and } O \ge th_2$                             |
| 4      | High Multiplicity 3                                          | $I \ge th_1 and O \ge th_2$                                      |
| 5      | High Multiplicity 4                                          | $I \ge th_1 and O \ge th_2$                                      |
| 6      | Generalized topological trigger with programmable acceptance | Based on tracklets                                               |
| 7      | Less Than                                                    | $I \le th_1 \text{ and } O \le th_2$                             |
| 8      | Spare background                                             | $O \ge I + offset_{Outer}$                                       |
| 9      | Background                                                   | $(I+O) \ge th_{(Inner+Outer)}$                                   |
| 10     | Cosmics                                                      | Selectable coincidence                                           |

# Online background estimator (2015)

#### Main idea :

- Bunch-Bunch collisions expected to have equal number of Fired Chips in the two layers. The event distribution peaked around difference in Layer1– Layer2 equals to 0
- Bunch-Gas collisions expected to have large difference in the number of Fired Chips in the two layers



Background trigger algorithm : I > O + Threshold

Recent studies performed on data taken in 2012 prove that background can be efficiently separated

• E.g. with a Threshold = 20 the background reduction is ~40%

LHC Transfer Line Test (7-8 March) beam quenched on the TDI : correlation found between BLM and oSX2



# High Multiplicity Trigger (2015)



 $I \ge 0$  and  $O \ge 70$ 

#### **p-p @ 13 TeV**



High multiplicity pp event

#### High background

# Topological Trigger (2016)

Tracklet : correlation in  $r\phi\,$  between chips in the inner layer and chips in the outer layer

#### Topological trigger : based on chip inside cones





Input parameters foresee also :

- opening angle between two tracklets
- Number of tracklets (min and max)

### Summary

- All leftover issues from Run 1 solved during Long Shutdown
- The re-commissioning of the detector and the new data taking went smoothly. The number of half-staves in read-out is the same as in Run1
- Exploitation of new trigger capabilities such as online background rejection, High Multiplicity, topological trigger for double gap diffractive events
- Detector proved to be robust providing key data and trigger information since the very beginning of LHC running
- The very good performance of the SPD during data-taking provides a fundamental information to many physics analysis that result in published papers

# Backup

# Activities during LS1

- Readout electronics issue in Run 1 : high busy time
  - problem in the firmware identified and solved
- New VME controller for crates with readout electronics
  - replaced National Instruments controller with CAEN controller
- Migration of DCS software
  - New operating systems installed in machines at P2
  - Old PVSS software for User Interface moved to the new platform WinCC
- Cooling Intervention : further improvement!
  - Issues with a pump at the cooling plant in Run 1 solved by changing the pump with a gear pump. Good stability since its replacement in March.
  - Replacement of broken compressor
- 4 new HV boards