

Diamond Pixel Detectors and 3D Diamond Devices

N. Venturi University of Toronto For the RD42 Collaboration PIX2016 06.09.2016

Content

- RD42 collaboration
- Diamond Beam Monitor (DBM):
 - DBM in ATLAS
 - DBM test beam
- 3D diamond detectors beam tests at CERN
 - 3D detector concept in pCVD diamond
 - Large scale 3D detector
- Conclusions

The 2016 RD42 Collaboration

 The 2016 RD42 Collaboration

 121
 A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶,

 M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini²,

 V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Berger, M. Bes³⁰, J-M. Brom⁹, M. Prost¹⁵

 D. Obre 200

V. Belvaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³ A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹ D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹ A. Dabrowski³. R. D'Alessandro⁵, W. de Boer¹², B. Dehning³, C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³ T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹ C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan^{15,} K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵, F. Kassel¹² M. Kis⁷, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹ I. Mandic¹¹, C. Mathieu⁹, N. McFadden²³, M. Menichelli³¹, M. Mikuž¹¹, A. Morozzi³¹, R. Mountain²², S. Murphy²⁴ M. Muškinja¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹ H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C.J. Schmidt⁷, S. Schnetzer¹⁶, T. Schreiner⁴, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, B. Sopko²⁰, V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶, C. Sutera², A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹ N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶, J.C. Wang²², P. Weilhammer³, J. Weingarten²⁵, C. Weiss³, T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ loffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP. Moscow, Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany ¹³ CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy ³⁰ LPSC-Grenoble, Grenoble, Switzerland ³¹ INFN-Perugia, Perugia, Italy

31 Institutes

127 Participants

N. VENTURI (UOT), DIAMONG PIXEL DETECTORS and 3D Diamond devices

The RD42 Program

- Characterization of diamond as sensor material (irradiation, test beams)
 - **scCVD**: expensive and limited area (very pure, high CCD)
 - **pCVD**: less expensive but more intrinsic charge traps
- Constantly improving sensor material in collaboration with vendors:
 - 300-325 μ m charge collection distance in production (Q > 10ke)
 - 400 μm charge collection distance in sight
- Supporting of existing machine/experiment devices (BCMs, BLMs, lumi)
- Development of diamond detectors:
 - for the LHC (BLMs)
 - for upgrade to HL-LHC experiments (3D diamond devices)

- DBM: pixel detectors in ATLAS with tracking capabilities
- Total production: 45 diamonds (500 μm thickness) read out with FE-I4B
- Modules assembled at CERN
- Installed during LS1

8 telescopes (2 with Si) symmetric around ATLAS IP: 854<|z|<1092 mm 3.2<|η|<3.5

N. Venturi (UoT), Diamond Pixel Detectors and 3D Diamond devices

Diamond Beam Monitor: Data

- Use hits from the three modules for reconstructing tracks
- Can discriminate between IP and background particles
- Final alignment still to be done
- Loss of modules in 2 electrical incidents in 2015
 - -> now in re-commissioning phase

Longitudinal distance of the projected particle tracks to the interaction point

Radial distance of the projected tracks of the closest approach to the interaction point

N. Venturi (UoT), Diamond Pixel Detectors and 3D Diamond devices

DBM test beam

- Test beam campaigns at CERN SPS to study the DBM characteristics:
- Lower charge from diamond necessitates low threshold operation of FE chip
- Developed a new tuning algorithm for FE-I4B not using Pulser DAC: Threshold Baseline Tuning

MDBM-120

Tuning	Method	Threshold Value
Standard ATLAS	Pulser DAC	~ 3-4 ke (Si)
Optimal DAC	Pulser DAC	~ 1.5-2.2 ke (Diamond)
Threshold Baseline	Noise Occupancies	~ 1 ke (Diamond)

Threshold Baseline Tuning

- Developed by University of Bonn
- Algorithm based on noise occupancy scans
- Initial Condition:
 - -> Set global threshold (GDAC) to a rather high value
 - -> Set pixel thresholds (TDAC) to lowest possible value

Algorithm Loop:

DBM Test Beam: Efficiencies

OPTIMAL DAC TUNING THRESHOLD ~1.5-2.2 ke

THRESHOLD BASELINE TUNING

THRESHOLD ~1 ke

- Average efficiency of planar Silicon: 97.5% (cross-checks on-going)
- Applicable to ATLAS-IBL (for Si sensors after irradiation)
- Diamond can reach reasonable efficiency!

3D pCVD Diamond Sensor

00000

Metallization

pattern:

3D

Phantom

(NO electrode in the bulk)

Strip

Same electronic read-out: 3 devices simultaneously

- First 3D pCVD diamond device:
 - Compare pCVD strip detector at 500 V with 3D (and phantom) at 60 V
 - Same metal mask on top and bottom for 3D (and phantom)
 - > increase the probability of connecting columns (amorphous carbon)

3D Diamond Sensor: Signal

• Measured signal: visually 3D gives more charge that planar strip

- Measured signal (diamond thickness 500 μm):
- Planar Strip average charge: 6,900e or $ccd = 192 \mu m$
- **3D** average charge: **13,500e** equivalent to ccd = $350-375 \,\mu\text{m}$
- -> For the first time collect >75% of the average charge

Large 3D diamond sensors

- In May 2016 we tested the first full 3D in pCVD (1cm²) (no phantom, no strip) with dramatic improvements:
- 1. An order of magnitude more cells (1188 vs 99)
- 2. Smaller cell size (100 μm vs 150 μm)

Readout side

Bias side

Preliminary results of full 3D pCVD device:

- First plot of 3D collected charge in small "good" region
- Largest signal in pCVD diamond:
 - > 85% of released charge collected
- Full analysis in progress

Conclusions

- RD42 collaboration is testing the diamond material characteristics
 -> Production and material capabilities are increasing
- **DBM** is being re-commissioned in ATLAS:
 - -> 2015 data analysis showed good collisions/background discrimination
 - -> New tuning algorithm used in DBM test beam with promising efficiencies
- 3D pCVD detector prototypes made great progress:
 - -> first time more than 75% of charge collected at 60 V bias
 - -> scale up worked; smaller cells worked: more than 85% of charge collected

OUTLOOK: build a 3D diamond pixel detector

Back-up Material

Si vs C

		silicon ^a		natural	
				diamond b	
proton number	[]	14		6	
atomic number	[]	28.0855	[9]	12.011	[9]
lattice constant	[Å]	5.4310	[10]	3.5668	[10]
mass density	$[\mathrm{gcm^{-3}}]$	2.329	[10]	3.515	[10]
cohesive energy	[eV/atom]	4.63	[11]	7.37	[11]
melting point	[K]	1685	[10]	4100 ^(c)	[10]
band gap	[eV]	1.124	[10]	5.48	[10]
relative dielectric constant d	[]	11.9	[10]	5.7	[10]
resistivity	$[\Omega cm]$	$20\times 10^{3(e)}$		$> 10^{13}$	[11]
	$[\Omega \mathrm{cm}]$	$5\times 10^{11~(f)}$	[3.2.3]	$> 10^{14} {}^{(g)}$	[3.2.3]
breakdown field	$[V/\mu m]$	30		1000	
electron mobility	$\left[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}\right]$			1500	[12]
		1450	[10]	2400	[13]
hole mobility	$\left[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}\right]$			1000	[12]
		≈ 440	[10]	2100	[13]
electron saturation velocity	$[\mathrm{cm/s}]$			2×10^7	[13]
hole saturation velocity	$[\mathrm{cm/s}]$			10^{7}	[13]
thermal expansion coefficient	$[10^{-6} \mathrm{K}^{-1}]$	2.59	[10]	0.81.0	[14]
thermal conductivity	$\left[\mathrm{Wcm^{-1}K^{-1}}\right]$	1.4		2023	[14]
energy to create <i>eh</i> -pair	[eV]	3.6	[15, 16]	13	[13, 17]
radiation length	[cm]	9.4	[9]	12.03	[3.75]
specific ionization loss	$[{\rm MeV/cm}]$	3.9	[3.3.1]	6.2	[3.3.1]
ave. no. of <i>eh</i> -pairs/ <i>mip</i>	$[\text{pairs}/100~\mu\text{m}]$	9000	[3.3.5]	3600	[11]
ave. no. of <i>eh</i> -pairs/ <i>mip</i>	$[pairs/300 \ \mu m]$	27000	[3.3.5]	11850	[3.3.5]

N. Venturi (UoT), Diamond Pixel Detectors and 3D Diamond devices

Radiation hardness of diamond

 $k_{24 \text{ GeV p}} \sim 0.62 \pm 0.07 \times 10^{-18} \, \mu \text{m}^{-1} \text{cm}^{-2}$

DBM in ATLAS

DBM tunings

Standard Threshold Tuning:

- Using internal pulser for charge injection
- Tuning of threshold and feedback
- Threshold 15 PulserDAC ≈ 1500e (rather low threshold)
- Gain 150 PulserDAC ≈ 9000e at 8ToT (high gain, low feedback)

NEW Threshold baseline tuning:

- No PulserDAC used, based on individual pixel noise occupancy
- Threshold estimated to be \approx 900e (Calibration with Si-modules)
- Pixel and global feedback current is kept at their default values

3D Device in pCVD Diamond

- Measured noise:
 - Strip: 88e
- Phantom: 92e
- 3D no noisy strip: 104e

3D CVD diamond sensor

