

Development of Pixel Detectors for X-ray Space Science and use in terrestrial applications

Andrew Holland^{1,2}

- 1. Centre For Electronic Imaging, Open University, UK
- 2. XCAM Ltd., Northampton, UK

Summary of Topics

- Group introductions
- X-ray detection in general
- Photon Counting X-ray Detection
- Development of CCDs for XMM
- X-ray Background
- EM CCDs for soft X-rays
- SMILE
- X-ray detection in CMOS sensors
- Spinout Applications
 - Imaging for XFELs
 - Improvements to RIXS applications

This talk will discuss : CCDs, CMOS

<u>This will not discuss:</u> Hybrids, SOI, DEPFET, pn-CCD, Cryogenic,

The Open University

- The UK's largest university
- >250,000 students, turnover ~\$600M/year
- Sited at Walton Hall, Milton Keynes
- The CEI is located in the School of Physical Sciences (SPS)

Centre for Electronic Imaging

Group Overview

• <u>Formed in 2004</u>

90% of the activity is in Space Science!

he Oper niversity

- Sponsored by e2v technologies ltd.
- ~20 People led by Prof. Andrew Holland
- <u>Detector Research and Application Development</u>
 - Advanced CCD and CMOS research
 - Development of space instrumentation
 - Development of new measurement techniques

<u>Training Engineers and Scientists</u>

- Training PhD students, plus continued training of PDRAs
- Training of professionals through 3-day residential workshops
- Creating a significant pool of highly-skilled people
- Knowledge Exchange
 - An exemplar in knowledge exchange between university and industry
 - Recently celebrated 10 year relationship with e2v technologies

XCAM Outline

- Founded in 1995 has just celebrated 20 years
- XCAM stands for "X-ray Cameras"
- Has 14 FTE staff across ~20 people
- Moved to new 7000 sq. ft. factory in 2012
- Offices, Class 1000 cleanrooms + development and production laboratories
- Specialises in scientific and industrial camera systems for optical, EUV and X-ray applications
- http://www.xcam.co.uk/

Photon Counting vs. Imaging

 Imaging mode – accumulating many photons per pixel before readout

PCR Image

• Photon counting - <1 X-ray/pixel

The Open University

- Image accumulated in digital domain
- Spectroscopy

Imaging vs. Dispersive Spectrometer

Signal Generation

e

- X-ray absorption in silicon liberates electron-hole pairs
- Number of carriers generated

n = E/ω

where E is the photon energy in eV, and $\omega_{\approx}3.65eV/e\text{-h}$ pair is the mean ionisation energy

• Variance on carriers generated

 $v = FE/\omega$

where F~0.12 is the Fano Factor in silicon

X-ray Photon Events in Pixel Detectors

- Absorption in depletion region leads to be isolated single/double events
- Absorption in field-free region leads to multi-pixel spread events

Timeline for XMM EPIC Developments

In the past, working on one space project was enough...

- 1987-1992 ESA funded various developments toward XMM,
 significant performance enhancement
- 1989 ESA adopts XMM as a "Cornerstone" Mission for launch in 10 years
 Radiation damage becomes "re-discovered"
 - 1990 EPIC consortium created Lead from Milan
- 1994 EOBB demonstrates the key performance characteristics of EPIC at Panter
- AH leaves the project..... (after essentially 10 years ..)
 - Launch of XMM in December
- 2016 ~16 years of blissful operation

~10 year build phase

1999

CCD Developments for XMM

- In the late 1980's ESA funds a series of activities under it's TRP programme to support the two X-ray instruments
 - EPIC The imaging camera 0.3-12 keV, R~30, Imaging
 - RGS Dispersed X-ray grating 0.3-2keV, R~300, Non-Imaging
- Technical Development Activities

Parameter State of Target Technology Art Noise ~10e- rms. <5 e- rms. Lower node capacitance ~1x1 cm² $2x3 \text{ cm}^2$ Developing "stitching" Area Depletion (QE) >30µm High resistivity epi 5 μm **Back-illumination** Dead Layer ~1 µm 50 nm Serial CTE 0.99998 >0.99999 SBC (also helps with radiation)

CIS now following many of the same trends

Quantum Efficiency

- Increase from 5 microns to 30-50 micron depletion
- Epitaxial layer from 20 microns to 50, 80 and 100 microns
- Back-illumination
- Open Electrode

CCD22 Open Electrode Structure

- 50% of pixel has open area
- Thinned to oxide layer in open region

CCD22 – Sawn Edge of CCD

- After spending many years improving CCD performance, with large areas and good CTE of 0.999999
- Proton testing demonstrated much of this could be thrown away with CTEs in the 0.999 region
- The results provided many new insights into the damage mechanisms
- Proton radiation damage research (and qualification) is <u>still a hot subject</u> <u>today</u> for space instrumentation

The Oper Jniversit

The Open University

Began to explore the experimental and theoretical relationship between
particles/energies

The work lead to models of trap species in the CCD

- Led to the identification of several key trap species
 - Deep/slow
 - Mid-band
 - Shallow/Fast

0.42 eV P-V (V-V) complexes

- 0.3 eV "Unknown defect"
- 0.12eV O-V complex

Parallel around -80°C Parallel around -120°C Serial

Parallel CTI Measurements

Despite simple models, excerpts from the early labbooks indicate huge scatter

Supplementary Buried Channels (or "Notch")

- For small signals (e.g. X-ray photons) the charge can be confined during transport using a narrow channel
- To maintain full well handling, normally a supplementary channel is implanted creating a "notch"
- Effective confinement widths of 3-5 μm can be achieved producing a factor ~4 improvement over standard devices with 22 μm pixels

The

ACT

INCREASE IN TRANSFER INEFFICIENCY

10-5

EPIC MOS Camera Radiation Mitigation Measures

- >3cm Al shielding over 4π using forward baffle approach
- Filter wheel with thick "blocking" filter Became important for soft protons
- Ability to cool the FPA down to operating temp of -130°C
- Supplementary buried channels
- First use of Charge Injection structure
- Ability to anneal P-V centre at +130°C

Never used in practice Never used in practice

EPIC CCD Packaging and Focal Plane Array

The Open University

e₂v

December 1999 – XMM Launch

XMM is a cornerstone observatory of ESA's horizon 2000 programme. It was successfully launched in Dec 1999.

16 years of fruitful operation

e2v

Instrument Background

- In-orbit instrument background from XMM was >5x greater than original predictions
- For weak sources, S:N=S/(S+BG)^{0.5}
- Degraded background can dominate over improvements to QE
- Background comprised of :

The Open University

- Elemental fluorescence lines
- Majority of background comes from soft electrons stimulated by protons emitted from inner surfaces

XMM-SOC-CAL-TN-0018

Athena WFI Graded-Z Shield

- The Graded-Z Shield is the final surface that a particle or photon sees before hitting the detectors.
- This surface layer determines the final level of instrument background experienced.
- It is vital that this detectorfacing layer provides the necessary reduction in background.
- Complex surface geometries both for the proton shield and the detector support structure.
- Both a physics and an engineering problem.

Electron Backscattering

The EM CCD

EM CCD Gain

- The multiplication register utilises impact ionisation in 536 multiplication elements with each electron having a small chance of increasing the charge in each element.
- A common issue with faster readouts is larger readout noise. EM-CCDs supress this larger noise due to the multiplication register increasing the signal sufficiently high enough allowing for faster reads.

X-rays in an EM CCD

- EM gain can enable the CCDs to be read out with at high speed, with high noise, yet with low e.n.c.
- Modified Fano factor $v = (1+F)E/\omega$ due to shot noise on avalanche process
- Sub-pixel charge centroiding can increase spatial resolution

- Example of an Mn-K X-ray
 - Signal occupies ~12-16 pixels
 - S/N~1000:1
 - Enables centroiding to ~1 μ m

OGRE Sounding rocket

- Testing a high resolution (R~3000) grating spectrometer
- Launch (currently) scheduled for Nov. 2018
- XCAM-OU responsible for developing the X-ray camera to read out the spectrum.
- Aimed at raising the TRL of the system components

Soft X-ray Imager on SMILE

SXI CCD Configuration

- Optimised as an X-ray detector and <u>not</u> an optical imager
- Image 3791 rows
 - 6x binned at store IF
 - 631 rows
 - 5 CI rows
- Store 719 rows

The Open University

- 87 spare rows

Radiation Damage in CCD270s

- Once again, radiation damage is becoming a concern in the CCD270 for SMILE
- A combination of limited radiation shielding and large CCD area compounds the problem
- Radiation damage modelling and characterisation will need to be improved to meet the mission requirements

Silvaco Modelling

• Suggested SBC with 4 um width in the parallel direction for improved radiation hardness

Dynamic Modelling of the SBC

- We have recently created dynamic simulations of charge flow in the proposed SBC for the SXI CCDs
- Concerns that the charge may "balloon" beyond the SBC confinement into the normal channel seem un-founded
- Indicates that the improved radiation hardness will be maintained during transfer

e

CMOS Image Sensors for X-ray Detection

- e2v CIS115 is being developed for JUICE for visible imaging of Jupiter's moons
 - Back-illuminated, 9-12 μ m thick
 - 3 Mpixel, read through 4 blocks
 - 7 μ m pixel pitch
 - Area = 1.4 cm²
 - R=48µV/e-
 - Noise 4-5 e- rms.

4 analog parallel signal chains

X-ray spectroscopy with CIS115

- Recent results using Fe-55 from the calibration data of Matt Soman
- Will enable 7μm and below spatial resolution
- Around 60% of events could undergo centroiding to increase resolution further
- Probably all sub-keV X-rays may be split
- QE is currently low (device thickness) and no samples without AR coating

CIS115 Split event fractions

- With this sensor variant, the majority of photon events are split (note @6keV)
- This enables event centroiding and hence higher resolution than the pixel size
- However, this also degrades non-dispersed photon counting spectroscopy

- JUICE CIS115 sensors have ~5 μm depletion on 10 μm BI structure
- Restricted efficiency for X-ray use
- Can obtain up to $\sim 40 \mu m$ BI devices from epi-Si
- Test structures have been developed at OU and fabricated by ESPROS
- Device are currently being evaluated under a PhD studentship

 This development may go part-way toward making a useful X-ray detector using a standard CMOS process

CMOS QE Improvement - toward Full Depletion

- To make significant improvements need to use bulk FZ silicon
- & use reverse bias for full depletion
- There is a problem with conduction from pixel to back substrate, but a design has been created $\frac{1}{200}$ to overcome this enabling 200 μ m thickness
- Supported by patent
- First prototypes received from Tower-Jazz and are being tested in the laboratory
- Complementing established CMOS properties
 - Pinned photodiode for low noise
 - High speed and low power readout
 - Radiation hardness
- Will improve both X-ray and IR QE

Giving a few examples of spin-out based on CCD technology (noting CMOS for X-ray applications is less mature)

- Imaging in XFELs
 - FLASH
 - SACLA
- Spectroscopy readout for RIXS
 - SAXES

XCAM DESY FLASH Triple Camera system

Uses large area astronomical CCD44-82s

Two of the three cameras supplied to work at 100 eV on FLASH

Dual Unit camera undergoing commissioning in the vacuum chamber at DESY

MP CCD development for SACLA

 Using knowledge amassed on CCD X-ray detectors a custom CCD was designed and developed for use at SACLA

Kameshima et.al., Rev. Sci. Instrum. 85, 033110 (2014).

RIXSCam During Assembly & Test

- For improved readout of dispersed X-ray grating spectrometers
- XCAM has developed a camera system for RIXS using EM CCDs & event centroiding
- Triple-CCD camera system during assembly
- Is fabricated as 3 independent camera systems, but with a master clock for synchronisation

PAUL SCHERRER INSTITUT

Soft X-rays

- For soft X-rays in BI device photons are absorbed close to the entrance window
- Majority of X-ray events undergo lateral diffusion during drift to potential wells
- Recent results from SAXES for a de-focussed line
- 460 eV photons with high S:N

Early commissioning results

Talk Summary

- CCDs continue to be, developed for X-ray science:
 - Size, Speed, Energy range,
- In space science, radiation damage is a key concern, and TRL must be high before adoption
- EM CCDs are now being used for soft X-ray detection down to 50eV
- CMOS image sensor technology is following the development steps of CCDs
- Development of such CMOS technology will require deep(er) pockets to produce
- The ultimate in low energy <u>detectability</u> and spatial resolution will probably remain with the EM CCD for the next 5-10 years (without a "BIG" (i.e. \$\$) programme)
- The technology is finding uses in many applications; including industrial, Synchrotron research & XFELs

