PAUL SCHERRER INSTITUT

Aldo Mozzanica for the Swiss Light Source Detector Group

JUNGFRAU: a pixel detector for photon science at free electron laser facilities. PIXEL 2016

- Introduction
- The pixel architecture and layout
- The ASIC and Module design
- From modules to systems and cameras
- First modules characterization results:
 - noise and gain maps in G0-HG0
 - noise across dynamic range
 - Intensity scan with visible light laser pulses
- An example of GS at work
- Specification summary
- Conclusions

Brilliance: 1.3 x 10^{33} γ / (s x 0.1% b.w. x mm² x mrad²)

Jungfrau pixel architecture

Some electronic design parameters:

- preamp: 1.2V 8uA
- CDS+comp: 1.4V 14uA
- settling time pre. ~100ns
- Tot. power 30uW/ch, max. 2A/chip

- 1st gain switch at 25 ph. , 2nd at 600 (12keV)
- Linear up to >1000 12keV ph.
- Linearity err. <1%
- pix. to pix. X-talk <<1%

Jungfrau pixel layout

- UMC 110nm technology
- Power consumption probably biggest challenge (budget of ~25uA/ch)
 - low power preamp and CDS
 - power cycled off-pixel buffer
- plenty of space for circuit, filled with SC
- Space for MiM feedback capacitor limited, low gain 13pC

(AGIPD,GOTTHARD)->7.5pC

- amplifier range optimization
- precharge of feedback capacitors
- Enclosed gate layout for most analog sections

Readout and FE Architecture

- Per row readout with bottom MUX (@ 40MHz max)
- Power cycling: 2 rows of pixel buffers are active
- ASIC output directly connected to a 8 ch. AD9257
- Total readout time = 64x265/40=0.4ms
- 4 diff. analog output per chip (32 per module)
- Max teo. frame rate 2.4 kHz

500k pixel module

- Same geometry as an EIGER module
- 2x4 chips
- 1024x512 pixels
- 3.8x7.7 cm² silicon sensor
- Sensor thickness 320 μm
- Modular readout electronics
- Water cooling, operation at 20 °C

From modules to systems

- 500k (one module), 1M (2 modules),
 4M and 16M (ESA-ESB main instruments) systems are foreseen
- same geometry as the EIGER systems (gaps,etc..)
- Horizontal gaps VERY small
- compact (20-25cm) in the Z direction
- 16Mpix @ 100Hz will generate ~3GB/s

Gain naming convention and gain options

Gain switching is automatic (per pixel) but: two options for the first gain stage:

- Normal gain **G0**
- High gain HG0 for low energies

PAUL SCHERRER INSTITUT

Gain naming convention and gain options

Gain switching is automatic (per pixel) but: two options for the first gain stage:

- Normal gain **G0**
- High gain HG0 for low energies

This is a global (module wide) manual selection

Single photon measurements

- Cu Fluorescence target
- 10us integration time
- HG0
- HV=200V
- Readout at 500-700Hz
 - limited by prototype firmware
 - 20MHz ASIC readout

Gain map and distribution (G0)

- for every pixel a Gaussian + charge sharing model function is fit to the P.H. data
- Gain is extracted as Gaussian peak position
- gain variation ~3.5% r.m.s.

gain 2d (ADC/keV)

 gain depends (slightly) on power distibution and on readout (ADC+buffers mismatch)

Noise map and distribution (G0)

- Noise map quite uniform
- Some tails in the noise distribution:

enc noise 2d

500

400

300

200

100

0 t

CH√

- 1% pixels above 85e-
- 0.1% pixels above 100e-

Noise map and distribution (HG0)

dist of gain (ADC/keV)

×10³

stuno 0 140

120

100

80

60

40

- In HG0 the gain is ~2x WRT G0
- Gain uniformity 2.7%
- Noise is 30% less
- Noise map uniform
- MPV < 50 e.n.c.
- Single photon resolution at 1.5keV demonstrated

Entries 524281

Mean

RMS

99.34

2.678

Noise across dynamic range

Automatic gain switching scan:

- White visible light illumination
- Requires etching of Al entrance window
- Increasing integration time
- plots in unit of 12keV photons
- charge injection is continuous and not pulsed

Laser dynamic range scan

Gain switching at work

Image of Fresnel Zone Plate diffraction orders at XIL beamline, SLS:

- extreme ultraviolet 92 eV photons
- vacuum 10⁻⁷ mbar
- etched sensor (no Al), module mounted to flange

Specification summary

ASIC technology	UMC110nm
mudule pixel count	525k
mudule size	80x40 mm ²
sensor thickness	320 μm
pixel size	75x75 mm ²
dynamic range	up to 10 ⁴ 12keV photons
noise r.m.s.	~50 e.n.c.
min. energy	<1.5 keV
linearity	better than 1%
point spread function	1 pixel
dead time	~200ns
ext. power consumption	30 W /module
cooling	liquid (water 20 °C)
readout time = 1/frame rate	2.4kHz with 10GbE
rate capability @ syncrotron (with 10GbE)	$10^4 \times 2.4 \ 10^3 = 2.4 \times 10^7$ photons/ch/s

- 75um pixel detector for pulsed X-ray sources, with automatic gain switching
- Tilable design, 500k 8x4 cm² modules
- noise in high gain 50e.n.c.
- low noise on the full DR
- We are gaining experience on real world gain switching datasets
- Jungfrau module production is ongoing, ready for swissFEL operation Q4.17

Acknowledgements

Back: Sebastian Cartier, Davit Mayilyan, Sophie Redford, Dominic Greiffenberg, Erik Fröjdh, Martin Brückner, Christian Ruder, Lukas Schädler

Middle: Bernd Schmitt, Dhanya Thattil, Marco Ramilli, Roberto Dinapoli, Davide Mezza, Xintian Shi, Jiaguo Zhang Front: Aldo Mozzanica, Anna Bergamaschi, Gemma Tinti

FEL pixel det. comparison

Detector system	Pixel size [µm×µm]	Electronic noise [e-]	Single photon sensitivity	Dynamic range:Photons per pulse per pixel	Repetition rate [kHz]
CSPAD	110×110	~330	Yes†	>2.5·10 ³ (@ 8 keV)††	0.12
epix100	50x50	<60	Yes	100 (@ 8 keV)	~1
epix100k	100x100	~120	yes	10000 (@ 8 keV)	~1
AGIPD	200×200	~265	Yes†	>10 ⁴ (@ 12 keV)	4500 burst
LPD	500×500	~1000	No	10 ⁵	4500 burst
DSSC	Pitch 200‡	<50	Yes	>6·10 ³ (@ 1 keV)	1000 burst
SOPHIAS	30×30	~150	Yes	TBD	0.06
JUNGFRAU	75×75	~65 G0 or 50 HG0	Yes	>10 ⁴ (@ 12 keV)	~2.4

‡hexagonal pixels
† at >5keV, for CSPAD in high gain
††in low gain
MPCCD and Parceval not in the table