MuPix7 A fast monolithic HV-CMOS pixel chip for Mu3e

Frank Meier Aeschbacher Universität Heidelberg

on behalf of the Mu3e collaboration

Sep 8, 2016

Introduction

Ivan Perić, Nucl.Instrum.Meth. A582 (2007) 876-885

Analog pixel electronics floats on sensor diode: monolithic design

Introduction

Ivan Perić, Nucl.Instrum.Meth. A582 (2007) 876-885

- Analog pixel electronics floats on sensor diode: monolithic design
- Industry standard HV CMOS process allows for E-field across diode \Rightarrow depletion zone of about 15 µm \rightarrow drift dominates. Realised in MuPix chips.

The MuPix7 chip is a high voltage monolithic active pixel sensor (HV-MAPS) and consists of

- Active pixel matrix
- Mirror pixel in periphery
- State machine
- Plus support circuitry (VCO, PLL, etc., not shown)

The analog cell has

- ► a reverse biased sensor (≈ -85 V)
- a charge sensitive amplifier
- a source follower to drive...

the **transmission line** to the corresponding mirror cell in the periphery.

In the **mirror cell**, the transition from analog to digital happens:

- an amplifier
- a comparator
- tuning capabilities

This separation protects the analog cell from digital crosstalk.

All this results in a **non-shuttered**, **self-triggered** monolithic pixel chip.

Upon a hit...

... the charge sensitive amplifier sends a pulse proportional to the charge...

... across the transmission line ...

BTW: every pixel has its own transmission line

... and the comparator in the periphery creates a digital signal, if above threshold.

The state machine provides clock for a counter...

... in order to create a timestamp.

The data (pixel location, timestamp) goes through the serialiser...

 \dots and all the data is transmitted to the data stream at 1.25 Gbit/s.

MuPix7

The MuPix7-chip is an implementation of this concept:

- Chip thinned down to 50 µm (nice feature of MAPS)
- Process: AMS 180 nm HV-CMOS

MuPix7: Test beams

Several MuPix7 testbeam campaigns:

- ▶ Mainz MAMI, 0.4. . . 1.5 GeV e⁻
- \blacktriangleright CERN SPS, 180 GeV π
- ▶ PSI π M1, 250 MeV π^+, μ^+, e^+ mix
- DESY, 4 GeV e⁺

Own telescopes using MuPix7 (in 4 and 8 plane configurations).

At DESY, the EUDET telescope was used as well (MIMOSA chips).

What follows is a selection of results from those campaigns.

Efficiencies of DUT in a telescope:

Technique: Extrapolate tracks to DUT. Power consumption: 300 mW/cm^2 . Data taken at PSI

Settings live in a phase space of 13 DACs, hence we tested different tunes:

Data taken at PSI

Here is a pixel efficiency map made with sub-pixel resolution (EUDET telescope @ DESY):

Mupix7, 720 mV threshold, HV = -85 V

Less optimal threshold used to enhance pixelated structure.

Pixels in rightmost column have different structure, excluded in overall efficiencies.

Same measurement folded into a 2×2 pixel sub-matrix:

We are inefficient at the edges and corners.

No surprise: Single bit readout with one threshold. In a perfect 4-corner hit, each pixel sees only 1/4 of the charge.

Rotating the DUT by 45° easily increases the depth of the depletion zone by $\approx \sqrt{2}$:

Pixel became fully efficient. Observe the change in scale.

Higher resistivity substrate could be used for mitigation.

Setup:

MuPix7: efficiency of tilted sensor

Or for different rotation angles:

Search Window 800 μ m and time cut 48 ns

Data taken at DESY

MuPix7: Time resolution

Technique: Scintillator coincidence signal as reference. Plotted timestamp scintillator – timestamp MuPix7 (300 mW/cm²) Improvement planned by implementing time-walk compensation.

We did not see any direct crosstalk between neighbouring pixels, except for charge-sharing.

Here, charge sharing is minimal.

But we observed something. If we ask for telescope events with 3 pixel hits in the DUT, one hit on a track, we got crosstalk...

Histogram shows fraction of events having 3 hits vs. row. **Do we understand the pattern?**

Recall: MuPix has spatially separated analog and digital parts.

Pixel cells (sensor and preamp) are connected **point-to-point** to a corresponding digital cell (comparator, logic).

Long, single-ended transmission lines can couple signals.

But still: Why the holes in the distribution?

The space distribution between lines is not uniform. Does the pattern match?

MuPix7: DAQ performance

Studied rate dependence at **MAMI** using 855 MeV e^- focused on 5 \times 5 pixels.

Rate of $1.6 \times 10^6 \text{ s}^{-1}$ on 5×5 corresponds to $7.8 \times 10^8 \text{ Hz/cm}^2$. No rate dependence seen.

Note: This tests pixel cell rate. Full chip illuminated at that rate would saturate readout stream, but not pixels itself.

MuPix7

In summary, with MuPix7 we could show:

- We have a fully functional HV-MAPS chip, $3 \times 3 \text{ mm}^2$
- **High rate** capabilities of pixel cells demonstrated.
- **Crosstalk** on chip seen (of a special type only).
- We routinely operate systems of up to 8 chips in testbeams reliably.
- More on low-material module design tomorrow by S. Dittmeier (Teaser: 1‰ of X₀ per layer).
- Ready for next step...

Sorry, had no time to talk about the interesting physics and detector design of Mu3e, but check out https://www.psi.ch/mu3e/

Towards MuPix8

Goals:

- ▶ Scaling-up from 3 × 3 mm² to 20 × 20 mm² (active area)
- All pads on one edge (required for integration studies)
- Submission: September 2016
- Issues addressed:
 - Crosstalk
 - Streamlined slow control
 - Part of chip will feature rad hard design
- ► Foundry (AMS) now provides **higher-resistivity substrate** ($20 \Omega cm \rightarrow 80 \Omega cm$). Expect higher signal, hence higher efficiency at edges/corners.

Acknowledgements

- ► The Mu3e pixel team for all the great work.
- The efficiency measurements for several power settings have been performed at the Test beam Facility at **DESY** Hamburg (Germany), a member of the Helmholtz Association (HGF).
- We would like to thank the **PSI** for providing high rate test beams under excellent conditions.
- We owe our SPS test beam time to the SPS team and our LHCb colleagues, especially Heinrich, Kazu and Martin.
- We thank the Institut f
 ür Kernphysik at the JGU Mainz for giving us the opportunity to take data at MAMI.

ENCORE

Mu3e

You may have wondered why we are doing this.

Mu3e

You may have wondered why we are doing this.

Its unique features allow for low-energy high-rate precision physics: **Mu3e**.

The Mu3e experiment, Phase-Ib configuration:

Key requirements:

- High rate: 10⁸ muon stops on target per second
- Time resolution (pixels): 20 ns
- Vertex resolution: about 200 µm
- Momentum resolution: about 0.5 MeV
- Low material budget: $1\% X_0$ per pixel layer

Mu3e

This	translates	to	the	following	chip	requirements:
------	------------	----	-----	-----------	------	---------------

	Requirement	MuPix7	Conclusion
Pixel size (μm²)	80 imes 80	103 imes 80	\rightarrow MuPix8
Sensor size (mm ²)	20 imes 20	3 imes 3	\rightarrow MuPix8
Thickness (µm)	50	50	ok
Bandwidth per chip (Gbit/s)	3 imes 1.25	1 imes 1.25	\rightarrow MuPix8
Hit rate (MHz/cm ²)	2.5	5.5	ok
Spatial resolution (µm)	< 100	$103/\sqrt{12}$	ok
Time resolution (ns)	< 20	11	ok
Efficiency (%)	> 99	99.5	ok
Power (mW/cm ²)	\leq 300	\leq 300	ok

More on material budget and cooling requirements in the talk by S. Dittmeier tomorrow. $\label{eq:matrix} \mathcal{M}_{2}$

MuPix7 block diagram

Pixel unit cell

Observe the 3 \times 3 diode design. The analog electronics is on top of the center diode.

Mu3e

We use a High-Voltage Monolithic Pixel Sensor (HV-MAPS):

- HV CMOS technology used automotive and audio industry
- Reverse biasing up to -85 V routinely (-93 V tested)
- Thinning to 50 µm possible and done
- Self-triggered, continuous readout (no shutter, darkframe etc.)

Mu3e

Several generations of MuPix chips realised:

Version	Year	Main features
MuPix1/2 MuPix3 MuPix4 MuPix6 MuPix7	2011/12 2013 2013 2014 2014	Analog prototype chips First digital readout Working digital readout and timestamping Readout bugs fixed, double-staged preamplifier Fast serial readout (1.25 Gbit/s), internal state ma- chine_internal_clock generation

MuPix3–7 have an active area of $3.2 \times 3.2 \text{ mm}^2$, chip size is $\approx 3.5 \times 4 \text{ mm}^2$. MuPix7 pixel size: $103 \times 80 \,\mu\text{m}^2$, making up a 32×40 matrix.

MuPix7: Fast serial readout signal

Signal quality of fast readout signal at 1.25 Gbit/s is very good:

Clock is at 125 MHz, high speed clock internally generated. Measured on test bench using chip on standard test board.

MuPix7: Telescope

Telescope setup, e.g. at PSI π M1:

Telescope with 4 MuPix7 planes, 1 plane elected as DUT

MuPix7

Integration studies:

- ► Build a prototype of an inner layer module: 2 × 3 chips.
- Studies with different flex print options (1 signal layer, 2 power layers):
 - ► Traditional: 3 layer copper: conservative but reliable, too much material for final design (2‰ X₀)
 ⇒ Electrical integration studies
 - Baseline: 1 copper layer (signal), 2 aluminium layers (power/GND), sandwiched (1.2‰ X₀ possible)
 ⇒ Copper technology has nice spacing (10 µm feature sizes available)
 - ▶ Optimal: 2 layer Aluminium, if necessary with one additional layer. Uses pad-bonding (1‰ X₀)

 \Rightarrow Technology implemented by ALICE. Riskier approach, new territory but promising. $\ref{eq:approx}$

Efficiency of 4-corners vs. bricked layout

ToyMC for a sample charge cylinder with unit radius. Shows fraction of charge seen in the pixel under the impact center. Range [-8,8] corresponds to a pixel of 80 µm size and 5 µm charge radius.

Efficiency of 4-corners vs. bricked layout

Efficiency vs. threshold (arbitrary units).

A 4-corner pixel starts to loose hits if threshold is above 25% of full charge generated.

Bricked pixel gives some headroom.

MuPix7: Radiation hardness

- MuPix7 is not a rad-hard design. Full stop.
- Rad-hardedness is not a requirement for the Mu3e experiment (low energetic electrons).
- ▶ Nevertheless we irradiated samples at SPS with approx. 1.5×10^{15} and 7.8×10^{15} protons/cm².
- Leakage current rises. Especially between HV and n-well. Thermal run-away above 55 V.
- Digital part still functional, e.g. state machine runs without any hiccups.
- Chips can be tuned to operate. Noisier than unirradiated. Efficiency lower. Data analysis ongoing.
- Rad-hard design studies started within our group.

MuPix7: Radiation hardness

MuPix7 is not a rad hard design. Nevertheless we tested it:

HV Currents of Irradiated Chips

MuPix7: Time resolution

Technique: Scintillator coincidence signal as reference. Plotted timestamp scintillator – timestamp MuPix7 (Settings used: 1000 mW/cm^2)

Trigger TimeStamp Difference Distribution for Single Events

MuPix7: Time resolution

ToT can be measured for one selected pixel. Anticorrelation clearly visible (Settings used: 1000 mW/cm^2).

MuPix7: DAQ performance

- CERN SPS: MuPix7 run successfully at rates of about 500 kHz (on chip)¹.
- Speed limit of MuPix7 telescope: about 1 million tracks per second. Can be increased by optimising DMA transfer.
- Fast data transfer and reconstruction demonstrated (simulation and at DESY).
 - Hits sorted on FPGA
 - Transferred to memory using DMA
 - Processed in GPU for track reconstruction.
 - 300 MB/s with simulated data achieved².

