

Overview and perspectives of HR&HV CMOS

Tomasz Hemperek

Overview

- Introduction
- Sensor design parameters by example (NIEL)
- Implementations and measurements

Hybrid Pixel Detectors

Monolithic Pixels

Depleted Monolithic Pixels

hemperek@uni-bonn.de

Introduction

Requirements for inner pixel layers

	STAR	ALICE-LHC	ILC	ATLAS-LHC	ATLAS-HL-LHC
Timing [ns]	200 000	20 000	05 350	25	25
Particle Rate [kHz/mm ²]	100	lithic Ch	250	1000	10000
Fluence [n _{eq} /cm ²]	>RAOU	> 10 ¹³	1012	2x10 ¹⁵	2x10 ¹⁶
Ion. Dose [Mrad]	> 0.3	0.7	0.4	80	>500

Sensor Design Paramters

- Substrate doping concentration (resistivity)
- Maximum sensor bias voltage
- Geometry (thickness, fill-factor)

- Worst case scenario!
- No acceptor removal (this is only simulation) Code: https://gitlab.cern.ch/TCADExamples/ChargeCollection

hemperek@uni-bonn.de

Bias voltage influence

hemperek@uni-bonn.de

Substrate doping concentration (resistivity)

hemperek@uni-bonn.de

Substrate doping concentration (resistivity) cd.

Bias @ 20V

Geometry/Fill Factor

hemperek@uni-bonn.de

Technology Overview

universität**bonn**

- AMS 350 nm
- AMS 180 nm
- LFoundry 150 nm
- Global Foundry 130 nm
- ESPROS 150 nm
- Toshiba 130 nm
- TowerJazz 180 nm
- STM 160 nm *
- IBM 130nm
- XFAB 180 nm
- ON Semiconductor 180 nm

*see: S. Hitesh [P]

Sensor performance

Substrate Properties – TCT

See: Ivan Vila, "Application of ..."

Passive LFCMOS sensor prototype

- LFoundry 150 nm CMOS technology
- 2 k Ω -cm p-type bulk, 8"
- 100/300 µm thick, backside processed
- Bump bonded to the ATLAS FE-I4
- Pixel size: 50 μm x 250 μm
- Matrix size: 16 x 36 pixels (1.8 mm x 4 mm)

CMOS foundries can do good planar sensors (8").

113 of 114 measured sensors have identical parameters

hemperek@uni-bonn.de

Device performance

Bulk process options (simple options, n-on-p)

Electronics inside charge collection well

- Collection node with large fill factor → rad. hard
- Large sensor capacitance (DNW/PW junction!) → x-talk, noise & speed (power) penalties
- Full CMOS with isolation between NW and DNW

Electronics **outside** charge collection well

- Very small sensor capacitance \rightarrow low power
- Potentially less rad. hard (longer drift lengths)
- Full CMOS with additional deep-p implant

Consequences of the additional inter-well capacitance

• cross talking into sensor The PW/DNW capacitance C_{pw} directly couples into the sensor (the CSA imput node). Even with careful layout and low noise digital circuitry the operation threshold can be affected. For example: for $C_{pw} = 100$ fF, $\Delta V_{pw} = 1$ mV => $Q_{x-talk} = 625$ e⁻

hemperek@uni-bonn.de

Readout concepts

universität**bonn**

Configurations

universität**bonn**

Standard Hybrid

with CMOS planar sensor

CMOS Active Hybrid

Bumped or glued

Depleted Monolithic

CMOS Devices Performance

AMS 180nm/350nm

- Initially low resistive substrate now also high
- Initially no PMOS isolation now also available

I. Peric et al. Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176

AMS 180 – MuPix - Mu3e @ PSI

hemperek@uni-bonn.de

AMS 180 - CCPDv4

Technology: AMS 180nm Dimension: 24 x 36 pixels (125x 33µm² each) Bias: > 60V Substrate: 20 Ohm-cm

see I.Peric, "Status of HVCMOS ..."

hemperek@uni-bonn.de

AMS 180 - CCPDv4 - Efficiency

AMS 350 demonstrator (H35DEMO)

4 resistivity : 20Ω cm (standard), 80Ω cm, 200Ω cm, $1k\Omega$ cm Device types:

- Standalone nMOS matrix
- Analog matrix
- Standalone CMOS matrix (monolithic)

Demonstrated Bias up to 160V

Full readout + control in preparation for summer test beams Irradiation campaign ongoing up to 1.5e15n_{eq}/cm² First TCT Results on 200 Ohm-cm substrate agree well with

TCAD simulations

see: I.Peric, "Status of HVCMOS ..." E. Vielella Figuras [P] A. Calandri [P]

Strip development: CHESS-1, CHESS-2, ...

LFoundry LF150

P. Rymaszewski et al., JINST 11 (2016) 02 C02045 T. Hirono et al., doi:10.1016/j.nima.2016.01.088

hemperek@uni-bonn.de

LFA150:

- L-Foundry 150 nm process (deep N-well/P-well)
- Up to 7 metal layers
- Resistivity of wafer: >2000 Ω ·cm
- Small implant customization
- Backside processing

CCPD_LF prototype:

- Pixel size: 33um x 125 μm (6 pix =2 pix of FEI4)
- Chip size: 5 mm x 5 mm (24 x 114 pix)
- Bondable to FEI4 (+pixel encoding)
- 300um and 100um version
- Bonn + CCPM +KIT

CCPD_LF results

universität**bonn**

hemperek@uni-bonn.de

LFoundry timeline

hemperek@uni-bonn.de

Logic outside collecting well

ESPROS Photonic CMOS™

OHC15L

- 150 nm process (deep N-well/P-well)
- Up to 7 metal layers
- Resistivity of wafer (n-type): >2000 Ω ·cm
- Backside processing
- 50um thin
- Design: Bonn, Prag*

M. Havránek et al. JINST 10 (2015) 02, P02013

hemperek@uni-bonn.de

Fe⁵⁵ spectrum

Calibrated single hit cluster spectrum Sr⁹⁰:

TowerJazz

- TowerJazz 180 nm CMOS CIS
- Deep Pwell allows full CMOS in pixel
- Gate oxide 3 nm good for TID
- Thickness: 18 40 μm
- High resistivity: 1 8 k Ohm-cm
- Reverse substrate bias
- Modified process to improve lateral depletion
- Derived from ALICE development (CERN) see: Miljenko Suljic "ALPIDE: the "

Pixel dimensions:

- 50x50um pixel size
- **3 μm diameter electrodes** and 40um Pwell opening
- 25um EPI layer
- The pixels have a measured capacitance <5fF (approximately factor 20 less than large fill-factor pixel) C. Gao et al., NIM A (2016) 831
- With this low capacitance, simulations indicate a front end similar to the one in the ALPIDE but compatible with 25 ns timing would consume ~ 200 nA)

- Normally small electrodes produce weak fields under p-well and charge gets lost after irradiation
- This usually means that efficiency drops significantly towards pixel edges
- TJ modified its process to improve the efficiency after irradiation on pixel edges while keeping small capacitance which makes this in particularly interesting for fast charge collection after irradiation
 - Pixel capacitance without process modification ~ 2-3fF with modification <5fC

Neutron irradiation to 10¹⁴ and 10¹⁵ n/cm²

- Investigator irradiated by IJS Ljubljana in several steps up to 10¹⁵
- Irradiations up to 10¹⁶ ongoing
- This detector has received NIEL 10¹⁵ n/cm² and 1Mrad TID
- First test beam measurements indicate no efficiency loss on pixel boundaries after 10¹⁵ n_{eq}

Signal versus collection time

- Plot calibrated signal versus charge collection time
- Better timing with modified process (narrower collection time distribution)

Modified process after irradiation maintains charge collectionv

see: S. Bugiel, "The performance ..."

- A. Takeda, "Design and Development ..."
- R. Hashimoto, "Evaluation of"

hemperek@uni-bonn.de

XFAB XT180

Sonia Fernandez-Perez et al. NIM A796 (2015) 13-18 Hemperek et al. JINST 10 (2015) no.03, C03047

XT180:

- XFab 180 nm HV-SOI
- Up to 7 metal layers
- Resistivity of wafer: 100 Ω ·cm

XTB01 and XT02 prototypes:

- Pixel pitch: 15, 50, 100um
- Chip size: 2.5 mm x 5 mm
- Design/Testing: Bonn, CERN, CPPM

Leakage current (v1)

hemperek@uni-bonn.de

HV-SOI cd.

Collection with (edge-TCT) (v2)

Sepctrum of 55 Fe and 90 Sr before and after $5x10^{14}n_{eq}/cm^2$

hemperek@uni-bonn.de

Conclusions

universität**bonn**

Lots of encouraging results (high interest and large momentum in R&D) Proven good radiation tolerance of sensors (and electronics)

Main asset for p-p HEP:

- Low(er) cost alternative to conventional hybrid sensors (as monolithic or cheaper hybrid)
- Coupling smart sensor and R/O chip can increase performance of hybrid sensors (e.g. position decoding)

Main asset for X-ray Imaging:

- Alternative to Fully Depleted CCD
- Increase performance of hybrid detectors (smaller pixels)

Ongoing:

- Large (fully monolithic) devices
- Fast timing measurements

hemperek@uni-bonn.de

CMOS Pixel Collaboration

universität**bonn**

hemperek@uni-bonn.de

Backup

Noise

- AC couples pixels: (133 ± 1) e⁻
- DC couples pixels: (117 ± 1) e⁻
- IBL n-in-n planar pixel: ~ 120 e⁻ @ 117 fF input capacitance
- IBL 3D pixel: ~ 150 e⁻ @ 180 fF
- → AC pixels: > 120 fF, < 180 fF; DC pixels: < 120 fF
- First design: AC coupling R / C values and poly-silicon layer location not optimized!

hemperek@uni-bonn.de

Passive LFCMOS sensor prototype

- LFoundry 150 nm CMOS technology
- 2 k Ω -cm p-type bulk, 8"
- 300 μm thick, backside processed
- Bump bonded to the ATLAS FE-I4
- Pixel size: 50 μm x 250 μm
- Matrix size: 16 x 36 pixels (1.8 mm x 4 mm)
- Bonn + MPI

Yield/Reliability

Breakdows at "bias dot", DC version

J. Segal (SLAC)

- 113 IV curves of the 300 µm LFoundry passive sensors
- 1 has short

hemperek@uni-bonn.de

Pixel Encoding

universität**bonn**

Readout of CCPD_LF and FEI4

ToT response of 3 CCPD_LF pixels

Monolithic Deep Depletion CMOS Image Sensor

Sensor S Creations

OPTICS	SPECIFICATION			
Туре	Fully-depleted, back-illuminated, eXtreme performance (FBX [™])			
Format	8192 columns x 512 rows			
Pixel Size	7.5 μm x 15 μm			
Full Well Capacity	Gain 0: 250,000 electrons Gain 1: 10,000 electrons			
Read Noise	Gain 0: < 15 electrons Gain 1: 5 electrons			
Maximum Frame Rate	> 500 Hz			
Spectral Range	> 50% @ 380 nm 80% @ 400-900 nm > 30% @ 1000 nm			
Exposure control:	Snapshot, Integrate While Read (IWR), Non Destructive Read (NDR) High Dynamic Range (HDR)			
Dark Current	<0.5 nA/cm ²			
Binning	1x2, 2x1, 2x2, 1x4			
Output	16-bit Digital Interface, 128 outputs			
Cooling	Single Stage Thermo-electric cooler			
Power	< 12 Watts			
Customization	Call for modifications to frame rate, well depth, or pixel pitch (other standard sizes available)			

STAR Experiment

hemperek@uni-bonn.de

Trapping in irradiated silicon (NIEL)

RD50

Need to be as fast as possible!

hemperek@uni-bonn.de

Detector Capacitance

Large Fill Factor collecting node has a double junction: DNW/SUB and DNW/PW

- Backplane capacitance C_{sub} (DNW to substrate)
 - Depends on depletion depth (substrate resistivity, bias voltage)
- Inter-pixel capacitance C_n
 - Depends on fill factor and p-implant ('p-stop') geometry
- DNW to P-well capacitance C_{pw}
 - Depends on electronics circuit area and DNW/PW junction width

same as for std. Hybrid Pixels

additional

➔

capacitance for Active Pixels

LF Noise

TowerJazz 180nm Investigator

Designed as part of the ALPIDE development for the ALICE ITS upgrade

Emphasis is on small fill-factor and small capacitance

Small capacitance enables low analog power designs (and material reduction in consequence)

The pixels have a measured capacitance <5fF (approximately factor 20 less than large fill-factor pixel)

C. Gao et al., NIM A (2016) 831 http://www.sciencedirect.com/science/article/pii/S016890 0216300985

Design: C. Gao, P. Yang, C. Marin Tobon, J. Rousset, T. Kugathasan and W. Snoeys Measurements: C. Riegel, D. Schaefer, E. Schioppa, H. Pernegger, J. Van Hoorne

hemperek@uni-bonn.de

Impact of smaller capacitance

D. Kim et al. TWEPP 2015

- Increased current in a similar front end from 20nA (Alpide) to 200 nA (= 50 mW/cm² for 28 μm pitch) and varied detector capacitance between 0.25 fF, 2.5 fF and 25 fF.
- For 2.5 fF compatible with 25 ns timing.

- Reducing the detector capacitance increases amplitude
 and faster signal, therefore less amplification is necessary
- This can be used to **reduce power consumption** (and therefore services and cooling material)

