8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging.

Contribution ID: 24

Type: invited talk

The ALICE Pixel Detector Upgrade

The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE Collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new ITS will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensors with a pixel pitch of about $30\mu m \times 30\mu m$. A key feature of the new ITS, which is optimised for high tracking accuracy at low transverse momenta, is the very low material budget of 0.3% X0 per layer for the innermost three layers. This contribution presents the design goals and layout of the upgraded ALICE ITS, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector and physics performance.

Primary author: REIDT, Felix (CERN) Presenter: REIDT, Felix (CERN)