

Sebastian Dittmeier for the Mu3e Collaboration Physikalisches Institut - Universität Heidelberg

PIXEL 2016 Sestri Levante – 9 September 2016

Mu3e - Experimental Concept

Search for the charged lepton flavor violating decay $\mu^+ \rightarrow e^+e^-e^+$

- Decays of stopped muons → low momentum electrons
- Design sensitivity BR < 10^{-16} requires
 - High muon rates $O(10^8 10^9 \text{ s}^{-1})$
 - Excellent momentum resolution $\sigma_p < 0.5 \text{ MeV/c}$
- Multiple Coulomb scattering dominates momentum resolution
- > Thin silicon pixel detector: material budget $x \le 1\% X_0$ per layer

Material budget of selected pixel detectors

Experiment	Material budget per layer
ATLAS IBL [‡]	1.9 % X ₀
CMS (current) [†]	$\sim 2.0 \% X_0$
CMS (upgrade) [†]	$\sim 1.1 \% X_0$
ALICE (current)*	1.1 % X ₀
ALICE (upgrade)*	0.3 % X ₀
STAR [°]	0.4 % X ₀
BELLE II $^{\Delta}$	0.2 % X ₀
Mu3e	0.1 % X ₀
[‡] ATL-INDET-PROC-2015-001	
[†] CERN-LHCC-2012-016 ; CMS-TDR-11	♦ talk by G. Contin
* arXiv:1211.4494v1	$^{\Delta}$ talk by C. Koffmane

PIXEL 2016

Approach for a Mu3e tracking detector layer

Approach for a Mu3e tracking detector layer

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix 50 μm ~ 0.5 ‰ X₀ Talk by Frank Meier Aeschbacher about MuPix 7

FPC Flexible printed circuit Sensor powering Signal transmission 45 μ m Kapton + 28 μ m Aluminium + 10 μ m Glue $\sim 0.5\%_0 X_0$

Approach for a Mu3e tracking detector layer

 $\frac{\text{HV-MAPS}}{\text{MuPix}}$ $50 \ \mu\text{m} \sim 0.5 \ \% X_0$ Talk by Frank Meier Aeschbacher about MuPix 7

FPCFlexible printed circuitSensor poweringSignal transmission45 μm Kapton+ 28 μm Aluminium+ 10 μm Glue $\sim 0.5\%_0 X_0$

Kapton support structure Helium cooling distribution $25 \ \mu m \sim 0.1 \ \% X_0$

Approach for a Mu3e tracking detector layer

Approach for a Mu3e tracking detector layer

FPC technology

Two layer aluminium (LTU Ltd.)

- 14μm AI + 10μm polyimide per layer
- Structure sizes $\geq 65 \mu m$
- Dielectric spacing 45µm

FPC technology

FPC design considerations

- Clock, reset, configuration as bus
- High Voltage (\approx 85 V)
- Power ($P_{MuPix} \leq 400 \text{ mW/cm}^2$)
- Readout at both ends

FPC	Length	Sensors	LVDS links @ 1.25 Gb/s
Inner layers	12 cm	6	3 per sensor
Outer layers	36 cm	18	1 per sensor

FPC feasibility studies

Two layer FPC with test structures bonded to testboard

FPC studies – preliminary results

Bit error rate measurements

- 10 differential pairs
- Data rate = 1.25 Gbit/s
- No bit errors observed BER < $2 \cdot 10^{-13}$ per pair
- Up to 2.5 Gbit/s: no bit errors BER < $3 \cdot 10^{-13}$

FPC studies – preliminary results

Time Domain Reflectometry

- Differential target impedance $Z_{diff} = 100 \Omega$
- Off by more than 10%
- Bottom: glue and board coating
 Will behave differently with MuPix
- Top: missing Kapton foil

Also tested:

- Resistance of power lines: $50 120 \text{ m}\Omega$
 - \rightarrow compatible with actual conductor thickness ${\sim}12.3~\mu m$

DATA trace

11

- Cool sensors below 70°C for up to 400 mW/cm²
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

Layer 4 Layer 3			
FPGA		Layer 2	
	Beam pipe	Layer 1	Beam pipe

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

Layer 4				
Layer 3				
FPGA		Layer 2		
	Beam pipe	Layer <u>1</u>	Beam pipe	

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

	$\leftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow \longleftarrow $		- Global He flow
Layer 4	۹		_
Layer 3			Gap He flow
FPGA	Layer 2		
	Layer 1		
	Beam pipe	Beam pipe	
			-

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

Layer 4				Global He flow
Layer 3				Gap He flow
FPGA		Layer 2		
	Beam pipe		Beam pipe	
				Local He flow
	<u>← ← ←</u>		\leftarrow	

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

Simulation of Mu3e helium cooling

- Target power consumption ($P = 250 \text{ mW/cm}^2$) seems feasible
- Higher power consumption ($P = 400 \text{ mW/cm}^2$) requires higher flow velocities

Cooling tests with detector model

Summary and Outlook

- Ultra-low material tracking detector using HV-MAPS for Mu3e
- Material budget of $\sim 1.15\% X_0$ per layer
- Aluminium FPC prototype works very well: $BER < 2 \cdot 10^{-13} @ 1.25 Gb/s$
- Cooling of sensors with Helium gas seems feasible
- End of this year: MuPix 8 ($\approx 2 \times 2 \ cm^2$)
- Integration of MuPix with FPC
- > First inner detector modules

Backyp

PIXEL 2016 Sebastian Dittmeier Ultra-low material pixel layers for the Mu3e experiment

The Mu3e Experiment

Search for the charged lepton flavor violating decay $\mu^+ \rightarrow e^+ e^- e^+$

 $\frac{\text{Standard Model}}{\text{Highly suppressed branching ratio}}$ $\frac{\text{BR}_{SM} < 10^{-54}}{\text{BR}_{SM}} \leq 10^{-54}$

Probe physics beyond SM

Any observation is a clear sign for new physics!

Searching for New Physics with Mu3e

Lepton flavor and number conservation, and physics beyond the standard model, Progress in Particle and Nuclear Physics, 71 (2013) 75-9

The Mu3e Experiment

Current limit on $\mu^+ \rightarrow e^+ e^- e^+$ BR_{meas} < 10⁻¹² (SINDRUM 1988)

$\frac{\text{Goal of Mu3e}}{\text{Enhance sensitivity to BR}} < 10^{-16}$

How to achieve this in a reasonable time?

- High muon rate $\mathcal{O}(10^9 \text{ s}^{-1})$
- Beamline at PSI (CH)

What are the main backgrounds?

- Radiative SM decay $\mu^+ \rightarrow e^+ e^- e^+ v \bar{v}$
- Accidental combinations
- Excellent momentum and vertex resolution
- Fast detector electronics and precise timing

e

Event Topologies

Material budget constraints

Major background contribution

- Momentum resolution $\sigma_p/p \propto \sqrt{x/X_0}$
- Requirement $\sigma_p < 0.5 \text{ MeV/c}$

R.M Djilkibaev and R.V. Konoplich, Phys.Rev., D79 073004, 2009

Material budget required $x \leq 1\%_0 X_0$ per layer

History of CLFV Experiments

Updated from W.J Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

Serial Readout of the MuPix7

FPC design study – two layers

Composite View

Bottom Layer

Inner detector – FPC design study

Inner detector – FPC design study

Inner detector – FPC design study

FPC feasibility studies – ongoing

Two layer FPC with test structures

- Impedance measurements using Time Domain Reflectometry
- Bit error rate measurements
- Resistance and voltage drop measurements

FPC - Time Domain Reflectometry

PIXEL 2016

FPC - Time Domain Reflectometry

- 17.5 cm long differential pair
- Glue thickness variations \rightarrow gradient in impedance

Outer detector – FPC design study

Two layer FPC for 9 sensors

- Minimum number of signals
 - 1 LVDS data link per sensor
 - Clock, Reset, configuration as bus signals
- Supply different voltages to compensate voltage drop

Helium cooling – Vibration studies

- Helium flow velocities $\approx 20 \text{ m/s}$
- Thin detector:
 - HV-MAPS 50 μm
 - FPC ≈ 80 μm
 - Kapton support 25 μm
- Vibrations induced by Helium flow?
- Michelson Interferometer

