The performance measurements of INTPIX6 SOI pixel detector

Bugiel S.*, Arai Y.** Dasgupta R.*, Idzik M.*, Kapusta P.[†], Kucewicz W.*, Miyoshi T.**

*The University of Science and Technology AGH-UST [†] IFJ PAN ** High Energy Accelerator Research Organization (KEK), Japan

September 8, 2016

SOI Technology	INTPIX6 00000000	Irradiation measurements	

Outline

SOI Technology

INTPIX6

- General overview
- Noise measurements
- 241-Am measurements
- Iron (55-Fe) measurements
 - Gain correction

Irradiation measurements

- Dose calculation
- Irradiation effects results
- Pattern image after irradiation

4 Summary

SOI Technology - short overview

Silicon-On-Insulator

 ${\sf SOI}$ is CMOS technology, which implements an insulator layer between handle wafer and epitaxial layer.

FOR ELECTRONICS:

- reduction of parasitic capacitances → power saving, higher speed,
- $\bullet~$ reduction of leakage currents $\rightarrow~$ power saving,
- elimination of latch-up effects,
- better resistivity for Single Event Upsets
- smaller area no guard rings,

FOR SENSORS:

- Possibility of designing monolithic pixel detectors
- Pitch down to few μm
- Small sensor capacitance (good SNR)
- $\bullet \ \ {\rm Double} \ \, {\rm SOI} \ \ \rightarrow \ {\rm may} \ \, {\rm improve} \ \, {\rm radiation} \ \ {\rm hardness}$
- Wide temperature range (4 400K)
- Cheaper then hybrid
 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < へ ○

INTPIX6 - detector overview

INTPIX6

Large format integrating type sensor designed in 200nm Lapis SOI by group from KEK.

- available on various wafers (CZ(n), FZ(n), FZ(p))
- architecture based on source-follower
- 1408×896 pixel matrix, 12 \times 12 μm^2 pixel size
- 11 parallel analog outputs
- rolling shutter readout mode

OI Technolog

INTPIX6

Irradiation measurements

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

241-Am measurements for CZ(n) sensor

 Irradiation measurement

Summary

241-Am measurements - CZ(n) sensor

- measurements in room temperature
- mainly 1-2 hit clusters
- linear up to 60 keV

イロト イポト イヨト イヨト

э

Pixel noise: ENC = 70.2 e^-

INTPIX6

Irradiation measurements 000000 Summary

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

55-Fe measurements for FZ(n) sensor

SOI Technology

INTPIX6 0000●000 Irradiation measurements

イロト 不得 トイヨト イヨト

3

Summary

Gain variations - FZ(n)

- Probably there is some leakage: the longer we wait to read the pixel, the lower pedestal is observed
- Affects not only pedestal but also gain.

SOI Technology	INTPIX6		
	00000000	000000	
Gain correction			

- Having gain for 10×10 pixel blocks we estimate gain correction factor for the whole matrix
- After including the correction factor the spread of peak position was eliminated

Iron spectrum - results

BEFORE CORRECTION

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The noise ENC:

from pixel fluctuations: $\approx 70~e^-.$ from peak width: $\approx 100~e^-.$

INTPIX6		
0000000	000000	

radiation hardness

・ロト・日本・日本・日本・日本・日本

Pedestal after irradiation

High dose is obtained irradiating the chip with high intensity (425 MBq) 55-Fe Xray source.

- The plots show pedestal after irradiation at 60 krad dose.
- The visible pattern is due to the X-ray source size.

3

nac

・ロト ・ 同ト ・ ヨト ・ ヨト

SOI Technology

INTPIX6

Irradiation measurements

Summary

Dose in SiO_2 recalculation

From the data analysis we know the number of hits in detector. From this value the BOX-dose can be calculated.

$$\Delta I_n = I_{n+1} (e^{\frac{NBOX}{N_0}} - 1)$$

$$\Delta I_n = 7 \frac{particles}{\mu s} \cdot (e^{\frac{0.2\mu m}{55\mu m}} - 1)$$

$$\Delta I_n = 0.14 \frac{particles}{\mu s}$$

Mass and dose recalculation:

$$D = \frac{\Delta I \cdot E_{\gamma} \cdot t}{m}$$

m = 2830µm · 2830µm · 0.2µm · ρ = 3.7 nkg
D = 60 krad (24 h)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

Data analysis from irradiated detector

- $\bullet~$ Up to ${\sim}30$ krad detector works properly
- $\bullet\,$ Above ${\sim}30$ krad the efficiency drops but energy resolution remains on the same level

65536

7.291

6.732

0

0

hRMSSpec

RMS

Data analysis from irradiated detector

Sac 3

INTPIX6

Irradiation measurements

Summary

Iron spectrum during irradiation

200

	INTPIX6 0000000		liation measurements	
Patterns				
10 /1 /2 /3		500 500 400 300 00 00 200 00 200		FZ(n) -300 -200 -100 -0 -101 -201 -0 -0 -101 -201 -0 -0 -201 -201
defocused laaverage of 1		 > 800 700 600 500 400 		CZ(n) irradiated - 6000 - 4000
		700 =		2000

 pattern visible even after 60 krad irradiation on CZ(n)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SOI Technology			Summary
	0000000	000000	
Summarv			

- Large (1408×896) INTPIX6 SOI detector with very small ($12 \times 12 \mu m^2$) integrating type pixels is fully functional
- ENC of about 70 electrons ($100e^-$ from FWHM) is obtained at room temperature
- The detector is operating up to at least 60 krad dose
- $\bullet~$ Good S/N ratio is maintained up to 30 krad
- For higher doses S/N decreases and number of bad pixels increases rapidly, however the imaged pattern is seen well
- With recent modification in SOI transistor LDD dose and introduction of double SOI wafer, radiation tolerance more than 10 Mrad is foreseen now.

*ロ * * @ * * E * * E * * の < @