ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

Miljenko Šuljić on behalf of ALICE collaboration

8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, Genova, Italy

5th – 9th September 2016

Inner Tracking System upgrade

- Aimed to replace ALICE ITS during the LHC Long Shutdown 2 in 2019/20
- Increase readout speed \rightarrow Readout Pb-Pb collisions at 100 kHz
- Improve impact parameter resolution
 - Reduce pixel size: O(50 x 425 μ m²) → O(30 x 30 μ m²)
 - Reduce distance from the IP: 39 mm \rightarrow 23 mm
- Reduce inner layers X_0 : ~1.14% \rightarrow ~0.3%
- Improve tracking efficiency at low $\boldsymbol{p}_{\scriptscriptstyle T}$
- All 7 layers with binary pixels

TDR

approved

(2014)

ITS requirements

Parameter	Inner Barrel	Outer Barrel	ALPIDE
Chip size	15 mm x 30 mm		·
Chip thickness	50 µm	100 µm	<i>•</i>
Spatial resolution	5 µm	10 µm	~5 µm
Detection efficiency	> 99 %		1
Fake hit rate	< 10 ⁻⁶ pixel ⁻¹ event ⁻¹		<<< 10 ⁻⁶ pixel ⁻¹ event ⁻¹
Integration time	< 30 µs		~ 2 µs
Power density	< 300 mW cm ⁻²	< 100 mW cm ⁻²	< 40 mW cm ⁻²
TID radiation hardness*	2700 krad	100 krad	Tested at 350 krad
NIEL radiation hardness*	1.7×10 ¹³ 1MeV n _{eq} cm ⁻²	10 ¹² 1MeV n _{eq} cm ⁻²	 ✓

* This includes a safety factor of ten.

For comparison STAR HFT ULTIMATE sensor:

- Integration time 190 μ s Fake hit rate ~ 10⁻⁶ Power density 170 mW cm⁻²
- Radiation environment up to 90 krad and 10¹² 1MeV n_{eq} cm⁻²

Technology

- TowerJazz 180 nm CMOS imaging sensor process
- Deep p-well shielding n-well allowing in-pixel PMOS
 - More complex in-pixel circuitry
- High-resistivity (> 1 k Ω cm) p-type epitaxial layer (18 to 30 μm) on p-type substrate
- Substrate bias → Increase of depletion volume

- Larger charge collected by seed pixel
- Lower input capacitance
 → better S/N ratio
- Short collection time
- Better non-ionising radiation tolerance

ALPIDE design

Very low power front end ~40 nW/pixel Total power consumption <40 mW/cm²

Features:

- In-pixel amplification
- In-pixel discrimination
- In-pixel multi event buffer
- In-matrix zero suppression (priority encoding)
- Triggered or continuous acquisition (global shutter)

Principle of operation

- Charge created in epitaxial layer is collected
- Signal is shaped and compared to threshold
- Signal is strobed into an in-pixel memory
- Hit pixels are read out asynchronously (priority encoding)

ALPIDE development

pALPIDE-3 specifications

- Pixel pitch:
 - 29.24 x 26.88 μm²
- 8 pixel flavours
 - Different collection diodes and reset mechanisms
- Different epitaxial thickness
 - 18 $\mu m,\, \mbox{25}\, \mu m$ and 30 μm
- 2 varieties of input transistor
 - pALPIDE-3a: W = 0.22 μ m, L = 0.18 μ m
 - pALPIDE-3b: W = 0.92 μ m, L = 0.18 μ m
 - Same noise level but different fake hit rate \rightarrow RTS noise
 - Larger input transistor size reduces significantly RTS noise

Test beam results

ALICE

- Test carried out using telescope made entirely of ALPIDE prototypes
- Campaigns at PS (CERN), BTF (Frascati), DESY (Hamburg), Pohang (Korea) and SLRI (Thailand)
- Measured performance:
 - Different varieties of pALPIDE-3 (a & b)
 - Before and after both ionising and non-ionising radiation

Efficiency and fake hit rate I

Larger input transistor \rightarrow lower fake hit rate

Efficiency and fake hit rate II

Large margin for efficiency > 99% even after irradiation

Spatial resolution

Spatial resolution still at \sim 5 µm after irradiation

Summary and outlook

- ALPIDE is the state of the art MAPS to be installed in the new ALICE Inner Tracking System
 - Asynchronous and sparse readout
 - Very low power consumption
- Final prototype version performed up to specifications in extensive test beam campaign

(ϵ > 99%, fake hit rate << 10⁻⁶ pix⁻¹evt⁻¹, spatial resolution ~ 5 µm)

• ALPIDE final design submitted in May 2016

 \rightarrow delivered end of August

- Validation of ALPIDE started
 - \rightarrow production starting soon

Backup slides

08/09/2016

PIXEL2016 - M. Šuljić - MAPS for the ALICE ITS upgrade

ALPIDE development

Front end circuit

08/09/2016

PIXEL2016 - M. Šuljić - MAPS for the ALICE ITS upgrade

Principle of operation II

Digital circuit

Readout

- The matrix is read out asynchronously by use of 512 priority encoders
- Serial bus for configuration and triggering (\approx 40 MHz)
- High speed serial link with up to 1.2 Gb/s for data readout

Substrate bias

Threshold and noise

- \rightarrow S-curve scan
- \rightarrow Parameter extraction (threshold and noise)
- Threshold to noise ratio > 10 σ_{noise}
- MIP signal ~ 1000 e-

