Readout electronics for LGAD sensors

O. Alonso, N. Franch, J. Canals, F. Palacio, M. López, A. Vilà and A. Diéguez

SIC, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, Spain

M. Carulla, D. Flores, S. Hidalgo, A. Merlos, G. Pellegrini and D. Quirion

Centro Nacional de Microelectrónica (IMB-CNM-CSIC), Barcelona, Spain

oalonso@el.ub.es

Work done in the framework of the RD50 CERN collaboration and the Spanish national projects FPA2013-48387 and FPA2015-71292

Silicon Detectors with Internal Gain and Proportional Response

The aim of LGAD sensor is to improve the performance and stability against radiation of PiN diode detectors for tracking applications.

- Proportional Response (linear mode operation)
- Good efficiency and spectral range
- Better Sensibility
- Thin detector integration with the same signal and higher collection efficiency

- After Irradiation
- Similar pre & post irradiation signal (higher quality signal + lower noise increment)
- Lower increment of the power consumption

Better signal/noise ratio

Why Low Gain?

- High Gain implies higher levels of multiplication noise (inherent to the stochastic process of multiplication), spoiling the improvement of the Signal to Noise ratio.
- Collection times are increased with gain (more charge to be collected), increasing the trapping efficiency and avoiding the off-setting of the charge loss.
- Avoid cross-talk among adjacent pixels/strips.
- I. Tapan, etal., NuclearInstruments and Methods in Physics Research A388 (1997)79.

LGAD Basics. Low Gain Detector

Dead region. Charges should not be collected. Reduction of the surface leakage currents

G. Pellegrini et. al., NIM A Volume 765, 21 November 2014, Pages 12–16

Pixelated LGAD

• 6x6 LGAD Matrix

XCSIC

- Surrounded by ring (must be biased)
- We use a dedicated front-end to characterize it

- 180 nm Technology from AMS
 - o Cost
 - Good noise performance
- The fabricated prototype is 0.865 mm x 0.965 mm

Front-end ASIC

Design in AMS 180 nm

- Power supply: 1.8 V
- Power consumption x channel < 160
 uW
- Pre-amp is the main noise contribution of the circuit.
- Pre-Amplifier:
 - Gain ~ 67,5 dB
 - GBW ~ 19,5 MHz
 - PM ~ 63º
- Optimum L and Ibias to maintain ENC below 700 e- with a C_d of 20 pF
- CSA with two gains (100fC, 500fC)
- CR-RC shaper with a folded cascade structure. C's and R's are passive.

Front-end : Characterization

Front-end : Characterization

Front-end : Noise

- Charge injected equivalent to 24000 e-
- Vrms noise at lab: 0,73 mV
- Shaper output (yellow)
- CSA output (green)

LGAD Test

UNIVERSITAT DE

BARCELONA

+-111

- LGAD back illuminated
- uPositioners and Motors used to move the board with steps of 100 um
- Red laser pulsed at 1'5k Hz
- LGAD biased @ 420V
- 100 um pinhole

CSIC

*

CUU®

LGAD Test: CSA + Shaper

- LGAD back illuminated
- Ring included (Pixel6)
- Pulsed laser
- LGAD biased @ 420V
- 100 um pinhole
- Vrms noise 0.73 mV

CSIC

CUU

LGAD Test: Crosstalk

- LGAD back illuminated
- Ring not included
- Pulsed laser
- LGAD biased @ 420V
- 100 um pinhole
- Vrms noise 0.73 mV

CSIC

GUU

Conclusions and future plans

- Pixelated LGAD matrix measured for first time with a proprietary ASIC
- We have designed a very front-end with a simulated ENC below 1000 e- with a C_d of 20 pF.
- Power consumption per channel is 157 uW. Power off capabilities are implemented.
- Design the whole channel
- We are open for collaborations, just contact us ⁽²⁾:
 - o <u>oalonso@el.ub.edu</u> (ASIC and Test part)
 - <u>salvador.hidalgo@csic.es</u> (LGAD and sensors part)

