

Super KEKB

L'esperimento Belle II a SuperKEKB

Mario Merola (INFN Napoli)

per la Collaborazione Belle II

25 Settembre 2015

SOCIETÀ ITALIANA DI FISICA

101° CONGRESSO NAZIONALE Roma, 21 - 25 settembre 2015

Physics Motivations

Open issues in HEP, related to flavour

- **Baryon asymmetry in cosmology:** new sources of CPV
- Quark and lepton hierarchy (mass and flavour), 19 free parameters in SM: GUTs (SUSY) ?
- Dark Matter: hidden dark sector ?
- **Finite neutrino masses:** (charged) lepton flavour violation (tau) ?

Search for new physics (NP)

• Energy frontier: direct production of new particles - limited by beam energy (LHC - ATLAS, CMS)

• Intensity frontier: new particles in virtual loops, deviation from SM expectations (B factories, LHCb)

If NP is found in direct searches it is reasonable to expect NP effects in B, D, τ decays 9/23/15

Physics Motivations

Open issues in HEP, related to flavour

- **Baryon asymmetry in cosmology:** new sources of CPV
- Quark and lepton hierarchy (mass and flavour), 19 free parameters in SM: GUTs (SUSY) ?
- Dark Matter: hidden dark sector ?
- **Finite neutrino masses:** (charged) lepton flavour violation (tau) ?

Search for new physics (NP)

• Energy frontier: direct production of new particles - limited by beam energy (LHC - ATLAS, CMS)

loops, deviation from SM expectations (B factories, LHCb)

If NP is found in direct searches it is reasonable to expect NP effects in B, D, τ decays 9/23/15

SuperKEKB

SuperKEKB

From Belle to Belle II

6

Belle II upgrade:

- **Extended VD region** (added pixel detector)
- Extended Drift Chamber region
- **New ECL electronics** (waveform sampling and fitting)
- Better hermeticity (adding PID and $\mu {\rm ID}$ in the endcaps)
- **High efficiency KLM detector** (some RPCs layers substituted with scintillators)

Unique capabilities of e⁺e⁻ B factories - Belle II

- 1. Beam energy constraint and adjusted for different resonances $\Upsilon(nS)$
- 2. **Clean experimental environment**, low track multiplicity and detector occupancy (w.r.t hadron collider)
 - high B, D, K, tau reco. efficiency
 - open trigger ~99% efficient
- 3. Full reconstruction of one B (B_{tag}) constraints the 4momentum of the other (B_{sig})
 - helpful in reconstruction of channels with missing energy
 - opposite side B tagging efficiency: ~30% (~2%@LHCb)

4. Excellent EM calorimetry performances

- high reconstruction efficiency of neutral final states

Physics program

- 8
 - CPV in B decays, CKM angles $(B \rightarrow J/\psi K^0, K^0 \pi^0 \gamma, K \pi)$
 - (Semi)leptonic B decays, CKM sides $(B \rightarrow D^{(*)}l\nu, \pi l\nu, \tau \nu, \mu \nu)$
 - Rare B decays (B \rightarrow Kvv, X_s γ , X_sll, $\gamma\gamma$)
 - Charm physics $(D \rightarrow l\nu, mixing, CPV)$
 - LFV tau decays ($\tau \rightarrow 31, 1\gamma$)
 - Dark Sector, Spectroscopy

	Belle	BaBar	Global Fit CKMfitter	LHCb Run-2	Belle II 50 ab ⁻¹	LHCb Upgrade 50 fb ⁻¹	Theory	
<i>φ</i> 1: ccs	0.9°		0.9°	0.6°	0.3°	0.3°	v. small.	
φ₂: uud	4 ° _(WA)		2.1 °		1 °		~1-2°	
φ₃: DK	14º		3.8°	4 °	1.5°	1°	negl.	
V_{cb} inclusive	1.7%		2.4%		1.2%			
V_{cb} exclusive	2.2%				1.4%			
 V ub inclusive	7%		4.5%	7.2%	3.0%			
 V ub exclusive	8%				2.4%			
Vub leptonic	14%				3.0%			

see backup for details on Belle2-LHCb comparison

Belle II – golden modes with 5 ab⁻¹

Belle II – golden modes with 5 ab⁻¹

Integrated Luminosity [ab-1]

10

• $B \rightarrow D^{(*)} \tau v$

- Measurement of $R^{(*)} =$ BR $(B \rightarrow D^{(*)}\tau v) / BR(B \rightarrow D^{(*)}lv)$
- **BaBar**: 3.5 σ far from SM
- LHCb: consistent with SM
- Belle: consistent with both LHCb and BaBar

• $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{u}} \mathbf{l} \mathbf{v}$

- Tension between inclusive and exclusive measurements of $|V_{ub}|$

Belle II schedule: installation and commissioning

11

BEAST phase 1 (2016): beam, no collisions, cosmicsBEAST phase 2 (2017-2018): collisions, completeBelle II detector except for Vertex Detector

Full physics (end 2018-2024): full Belle II detector

BEAST (Beam Exorcism for A **ST**able experiment): commissioning detector, aimed at studying beam induced backgrounds near the IP

Belle II: ~650 collaborators, 99 institutions, 23 regions/countries

Summary

- In the SuperKEKB B factory e⁻ and e⁺ collisions will reach the unprecedented ٠ instantaneous luminosity of $\sim 10^{36}$ cm⁻²s⁻¹
- The upgraded Belle II detector will face the higher level of backgrounds with ٠ improved tracking and PID
- The detector commissioning is starting in 2016 with first collisions in 2017 ulletand full physics program in 2018
- The physics program includes the CP violation, (semi)leptonic B decays, rare ٠ B decays, LFV and charm physics, dark sector and spectroscopy
- With the full dataset of 50 / ab collected by 2024 Belle II will be able to shed ٠ light on the physics beyond the standard model

Thanks !

Belle II vs Belle

15

Physics prospects

17

		-	-									
	Observables	Belle or LHCb [*]		Belle II		LHCb		Observables	Belle or LHCb [*]	Belle II		LHCb
		(2014)	5 ab^-	⁻¹ 50 ab ⁻	¹ 8 fb ⁻¹ (2	2018) 50 fb ⁻¹			(2014)	5 ab^{-1}	¹ 50 ab ⁻¹	1 2018 50 fb ⁻¹
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$	0.4°	0.3°	0.6°	0.3°	Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
	α [°]	85 ± 4 (Belle+BaBar)	2	1				$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%	
	$\gamma [^{\circ}] (B \rightarrow D^{(*)}K^{(*)})$	68 ± 14	6	1.5	4	1		$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%	
	$2\beta_s(B_s \to J/\psi\phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	0.009	Charm CP	$A_{CP}(D^0 \to K^+ K^-)$ [10 ⁻⁴]	-32 + 21 + 9	11	6	
Gluonic penguins	$S(B ightarrow \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.053	0.018	0.2	0.04		$\Delta A_{CP}(D^0 \rightarrow K^+K^-)$ [10 ⁻³]	3.4*		-	0.5 0.1
	$S(B ightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011				$A_{\Gamma} [10^{-2}]$	0.22	0.1	0.03	0.02 0.005
	$S(B \rightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033				$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09	
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^{*}$			0.12	0.03		$A_{CP}(D^0 \to K_S^0 \pi^0)$ [10 ⁻²]	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03	
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$	-			0.13	0.03		$= -(D^0 + K^0 +) [10 - 2]$	0.56 + 0.10 + 0.07	0.14	0.11	
Direct CP in hadronic Decays $\mathcal{A}(B \to K^0 \pi^0)$		$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04			- Charm Mixin	$g \ x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.50 \pm 0.19 \pm 0.13$	0.14	0.11	
UT sides	$ V_{cb} $ incl.	$41.6\cdot 10^{-3}(1\pm 2.4\%)$	1.2%					$y(D^- \to K_S^{\pi^+\pi^-}) [10^-]$	$0.30 \pm 0.15 \pm 0.08$ 0.00 $\pm 0.16 \pm 0.08$	0.00	0.05	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$) 1.8%	1.4%				$ q/p (D \to K_S \pi^+ \pi^-)$	$0.90 \pm 0.15 \pm 0.06$	0.10 6	0.07	
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$) 3.4%	3.0%				$\psi(D \to K_S \pi^+ \pi^-) []$	$-0 \pm 11 \pm \frac{5}{5}$	0	4	
	$\left V_{ub}\right $ excl. (had. tag.)	$3.52\cdot 10^{-3}(1\pm 10.8\%)$	4.7%	2.4%			Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	V < 4.7	
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1\pm 26\%)$	10%	5%				$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12	
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%				$\tau \rightarrow \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3	
	$R(B\to D\tau\nu)$ [Had. tag]	$0.440(1\pm 16.5\%)^\dagger$	5.6%	3.4%								
$R(B \to D^* \tau \nu)^{\dagger}$ [Had.		g] $0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%								
Radiative	$\mathcal{B}(B o X_s \gamma)$	$3.45\cdot 10^{-4} (1\pm 4.3\%\pm 11.6\%)$	7%	6%								
	$A_{CP}(B \rightarrow X_{s,d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5								
	$S(B ightarrow K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035								
	$2\beta_s^{\rm eff}(B_s o \phi \gamma)$	-			0.13	0.03						
	$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07								
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	_								
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%								
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%								
	$C_7/C_9~(B o X_s \ell \ell)$	${\sim}20\%$	10%	5%								
	$\mathcal{B}(B_s o au au) \; [10^{-3}]$	-	< 2	-								
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1*}_{-1.0}$			0.5	0.2						