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Outline 

•  Trigger: 
–  Multi-level trigger, Trigger trend; 

•  Readout and Signal Processing: 
–  Pulse shaping, Range compression, Digitisation, Zero suppression; 

•  Data Acquisition and Event Building: 
–  Basic DAQ, Collider DAQ, Event Building; 

•  Modules and Data Bus for DAQ systems: 
–  NIM, CAMAC, FastBus, VME, PCI, PCIe, ATCA/µTCA; 

•  Network based DAQ: 
–  Ethernet, InfinBand; 

•  The Challenge of the DAQ for the LHCb Upgrade: 
–  30 MHz Rate; 
–  32 Tb/s Aggregate Throughput. 
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Top and Bottom Halves 
of Data Processing in HEP 

•  Top Half: 
–  Processing of particle interaction events is performed on data 

stored on disks/tapes of Tier-0/Tier-X computer centre: 
•  Event tracks are reconstructed; 
•  Event kinematics is reconstructed; 
•  Useless event data are stripped; 
•  Full event is reconstructed and tagged; 
•  Mass analysis/Group analysis is performed; 
•  Local (user, n-tuple) analysis is performed. 

•  Bottom Half: 
–  Who brought the data to the Tier-0? 
–  How are they driven from the detector to the storage? 
–  How data are selected? 
–  How data coming from different sub-detector are merged 

together? 
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Once Upon a Time… 

TDAQ Systems In High Energy Physics. Domenico Galli

from%Wikipedia%
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…Experiment Data Were Read by 
“Scanners” (scan-persons) 
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Trigger+DAQ Overview 

•  How are LHC experiment read instead? 
•  Overall the main role of Trigger + DAQ is: 

–  To process the signals generated in a detector; 
–  Saving the interesting information on a permanent storage. 
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Trigger, DAQ and ECS 

•  Trigger: 
–  Either selects interesting events (signal) or rejects useless ones 

(background), in real time: 
•  I.e. with minimal controlled latency: 

–  Time it takes to form and distribute its decision. 

•  DAQ (Data Acquisition): 
–  Gathers data produced by detectors: Readout; 
–  Feeds several trigger levels; 
–  Forms complete events from fragments: Event Building; 
–  Stores event data: Data Logging; 

•  ECS (Experiment Control System): 
–  Provides Run Control, Configuration and Monitoring facilities. 
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Trigger 



The Word Trigger  
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Why Trigger? 

•  A HEP experiment can collect hundreds of EiB (260 B) of 
data in a year; 
–  Only a small subset (~1/106 events) of primary physics interest. 

•  Tape I/O lags behind many other computer components: 
–  This problem can be overcome writing in parallel to many tapes;  

•  Storage media could run over tens of G€/year. 
•  How much CPU power for post-triggering 

reconstruction  of all the events? 
•  Cannot save all raw data all the time. 
•  Eliminate useless background as early as possible: 

–  In order to save resources to process intersting events. 
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Why Trigger? The LHCb Case 

•  Experiment raw data: 
–  LHC bunch crossing rate: 40 MHz. 
–  Event rate: 10 MHz (events with at least one interaction). 
–  Event size: 35 KiB/event. 

•  330 GiB/s = 3.1 EiB/y = 3.1x260 B/y. 
•  3.3 G€/year of tapes. 

•  Events of interest: 
–  100 kHz beauty pairs. 
–  Branching fraction of the events of interest: [10-6, 10-5]. 
–  ~10 Hz of events of interest. 

•  Events to be written to tape: 
–  200 Hz of exclusive B meson decay modes. 
–  1.8 kHz of inclusive b-decays and calibration signals. 

•  68 MiB/s = 650 TiB/y = 650x240 B/y. 
•  65 k€/year of tapes. 30% duty cycle. 

100 €/TiB tape media. 
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Trigger History 

•  Bubble chambers: 
–  DAQ: stereo photograph. 
–  Low level trigger: piston expansion. 
–  High level trigger: humans (scanners). 

•  Early fixed target experiments: 
–  Merely hardware implementation. 
–  Very simple calculation. 
–  Raw discrimination. 
–  Large dead-time possible during readout. 
–  DAQ came after the trigger. 

•  Nowadays HEP experiments: 
–  Multi-level. 
–  Pipelines to pull down dead-time (< 5%). 
–  Hardware look-up tables for fast calculation. 
–  Software implementation of higher level. Cronin-Fitch experiment, 1964 

Bubble chamber event 
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Multi-Level Trigger Systems 

•  Design constraints: 
–  Detector input event rate. 
–  Tape output event rate. 
–  Available CPU power and network bandwidth. 

•  Finer selection requires: 
–  more data; 
–  more computing time. 

•  Multi-Level Trigger Systems: 
–  First level: 

•  Most coarse. 
•  Uses a small subset of the whole data set 

of all the events. 
–  Last level: 

•  Finest. 
•  Uses the whole data set 

of the only events passed through the lower level stages. 
•  More trigger levels, less data flow. 

1st level 

2nd level 

3rd level 

Detector Front End 

no 

no 

no 

yes 

yes 

yes 

D
at

a 
se

t 

D
at

a 
su

bs
et

 Data 
sub-subset 

TDAQ Systems In High Energy Physics. Domenico Galli 13

Classical Multi-Level Trigger System 
Layout 

•  1st level: 
–  Cut out simple, high rate background. 
–  Feature extraction from single sub-detector. 
–  Hardware implementation (custom electronics, ASIC, FPGA). 
–  High speed (LUT) and dead-timeless (pipelines). 

•  2nd level: 
–  Matches of data from several sub-detectors. 
–  ROI (Region Of Interest) trigger: HERA-B, ATLAS. 

•  Uses previous trigger info to decide what regions of the detector it is 
interested in.  

–  Hybrid hardware/software. 
–  Sometimes DSP (INMOS Transputer in ZEUSS, Analog Devices Sharc in 

HERA-B). 
•  3rd level: 

–  Full event reconstruction. 
–  Software (large CPU farm). 
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Trigger System Trend 

•  1st level: 
–  Disappearing in lepton accelerators (ILC) and in LHCb Experiment. 
–  Broad usage of programmable units (FPGA). 

•  Can implement algorithms that once could be implemented only in software. 
•  Line between hardware and software is blurring. 
•  But data access limited to local (sub-detector) data. 

–  Sometimes use of Neural Network: 
•  Chips: CNAPS (H1), ETANN (CDF). 

–  Higher level trigger decision are migrating to lower levels. 
•  2nd level: 

–  Disappearing (but software ROI in Atlas). 
•  3rd level (High Level Trigger, HLT): 

–  Working at higher and higher rates (large CPU farm). 
–  Pushed further and further up into the DAQ chain. 
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Trigger Rate and Event Size Trends 
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•  Past experiments: 
–  UA1, LEP, CDF, DØ. 

•  Recent Experiments: 
–  KLOE, NA49, 

H1, Zeus, 
CDF II, DØ II. 

•  Present 
experiments: 
–  Alice, Atlas, 

CMS, LHCb 
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Hardware Trigger vs Software Trigger 

•  Software trigger advantages: 
–  Flexibility:  

•  Selection rules for the events can be changed simply by modifying a software 
code. 

–  Scalability:  
•  Processed event rate can be increased simply by increasing the farm size 

(number of PCs) and the port number of the network switch . 
–  Cost:  

•  Commodity components used in software triggers are very cheap. 
•  Allows to profit from the rapid price drop in commodity components (PC, 

Ethernet cables and switches, etc.). 
–  Maintainability:  

•  Widespread commodity interfaces will continue to be available on the market 
(with increased performance). 

–  Upgradeability:  
•  Can profit from the rapid development undergone by commodity components. 

•  Drawbacks:  
–  Variable latency. Difficult to be used for other but the last trigger 

level; 
–  DAQ/EB throughput must be suitable for the trigger. 
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Rightsizing the HLT Farm 

•  The software trigger in not designed in order to have a fixed latency. 

•  We can therefore talk over average values. 
•  The average time spent for the selection algorithm,      , must be 

less than the average period which separates the input of two 
following events in the same trigger node,                  , i.e.: 
 

•  So must be: 
 

•  In the LHCb case,                    and 
so must be Ncpu ≥ 2000. 
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LHCb Trigger Evolution 
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LHCb TDR (2003) LHCb Run (2010-2012) 
Input lumi = 1.5 x 1032 cm-2s-1  
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LHCb Trigger 
Evolution (II) 

•  2 stages: 
–  Level-0: synvhronous, 

hardware + FPGA; 
40 MHz ! 1 MHz. 

–  HLT: software, PC farm: 
1 MHz ! 2 kHz. 

•  Front-End Electronics: 
–  Interfaced to Read-out  

Network. 
•  Read-Out Network: 

–  Gigabit Ethernet LAN. 
–  Read-out @ 1.1 MHz. 
–  Aggregate thoughput: 

60 GiB/s. 
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LHCb Trigger Evolution (III) 
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Input lumi = 4 x 1032 cm-2s-1  LHCb Run (2010-2012) 
Input lumi = 1.5 x 1032 cm-2s-1  

LHCb Trigger Evolution (IV) 
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•  The events are written to local disks 
(~4 PiB available) while calibration and 
alignment is performed. 
–  Only when this is satisfactory the second 

stage of HLT executed. 

•  This step important, as better 
alignment provides better signal 
discrimination. 

•  Also means we can trust information 
we would not use otherwise in HLT (i.e. 
from RICH). 

LHCb Trigger Evolution (V) 
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•  TURBO Stream: 
–  Corollary of new procedure is that recorded 

data are already suitable for physics 
analysis. 

–  Cautiously start to exploit this feature for 
high yield studies – establish the ‘TURBO’ 
stream: 

•  Store candidates as found by the HLT; 
•  Discard most of raw data; 
•  Hence reduce storage by ~90%; 
•  No need for offline processing; 
•  Data immediately ready for analysis. 

–  TURBO used for first run-2 physics results. 

Standard DST 
~2/3 rate 

TURBO 
~1/3 rate 

LHCb Trigger Evolution (VI) 
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20-50 kHz 

Input lumi = 4 x 1032 cm-2s-1  Input lumi = 20 x 1032 cm-2s-1  



Readout 
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Pulse Processing 
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•  Typically, the detector signal undergoes the following 
analog processing before being digitized: 
–  Amplification; 
–  Filtering; 
–  Pulse shaping; 
–  Baseline restoration; 
–  Range compression; 
–  Pedestal subtraction; 
–  Etc. 

Electronics Noise 

•  Thermal noise: 
–  Created by velocity fluctuations of charge carriers in a 

conductor; 
•  Shot noise: 

–  Created by fluctuations in the number of charge carriers (e.g. 
tunneling events in a semi-conductor diode); 

–  Proportional to the total average current. 
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S/N Ratio and Bandwidth 

•  Thermal noise and shot noise are both white noise. 
–  Noise power density per unit bandwidth is constant: 

•  Larger bandwidth ! larger noise. 

•  S/N ratio increases as noise bandwidth is reduced: 
–  Until signal components are attenuated 

significantly. 
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The Pulse-Shaper Should  “Broaden”… 

•  Typically, the pulse shaper transforms a narrow detector 
current pulse to a broader pulse: 
–  In order to increase rising time; 
–  To reduce bandwidth; 
–  To reduce electronic noise; 

•  With a gradually rounded maximum at the peaking time 
TP: 
–  To facilitate measurement of the peak amplitude; 
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…But Not Too Much 

•  Broad pulses reduce the temporal spacing between 
consecutive pulses; 

•  Need to limit the effect of “pile-up”: 
–  Pulses not too broad; 

•  As usual in life: a compromise. 
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Pulse Shaping 

•  Example: CR-RC Shaper: 
–  In this case made out of CR (differentiatior) and RC (integrator) 

filters; 
–  Key elements: 

•  Lower frequency bound (related to pulse duration); 
•  Upper frequency bound (related to rise time). 
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Baseline Restorer 

•  Any series capacitor in a system prevents transmission 
of a DC component. 

•  A sequence of unipolar pulses has a DC component that 
depends on the duty factor, i.e. the event rate. 

•  The baseline shifts to make the overall transmitted 
charge equal zero. 

•  Random rates lead to random 
fluctuations of the baseline 
shift: 
–  Spectral broadening; 

•  Need baseline restorer. 
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Range Compression 
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•  A non-linear transformation: 
–  Compressing the signal according to an appropriate piecewise 

linear transfer function; 
–  Producing an output in the range best suited for digitization 

circuit. 
•  Typically sum of the outputs 

of several linear amplifiers 
with different gain and 
upper cutoff. 

Digitisation: Flash ADC 

•  Digitization: 
–  Encoding an analog value into 

a binary representation; 
–  By comparing entity with a ruler. 

•  Flash ADC is the simplest and fastest implementation: 
–  M comparisons in parallel; 
–  Input voltage V

in
 compared with M 

fractions of a reference voltage V
ref

: 

–  Result is encoded into a compact binary 
form of N bits: 
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Digitisation: Flash ADC (II) 

•  E.g.: M = 3, N = 2. 
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Digitisation: Flash ADC (III) 

•  ADC transfer function: 
–  Output code vs analog input. 
–  Discretization. 
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Digitisation: QDC 

•  QDC (Charge to Digital Converter). 
–  Often we have a current and we are interested in the total 

charge; 
–  Essentially an integration step followed by an ADC; 
–  Integration require limits: gate. 
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Digitisation: QDC (II) 

•  Relative timing between signal and gate is important: 
–  Delay tuning. 

•  Gate should be large enough to contain the full pulse and 
to accommodate for the jitter: 
–  Fluctuations are always present. 

•  Gate should not be too large: 
–  Increases the noise level; 
–  Increase dead time. 
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Digitisation: QDC (III) 

•  Pedestal: 
–  Due to PMT dark current (thermionic emission), thermal noise, 

etc.; 
–  The same noise enters the physics measurements and contributes 

with an offset to the distribution; 
–  Can be measured with 

an out-of-phase trigger. 
•  The result of a pedestal 

measurement has to be 
subtracted from the 
charge measurements. 
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Digitisation: TDC 

•  Example: measure the position of a particle in a wire 
(drift) chamber. 

•  The ionization electrons created by the passage of the 
particle will take a time t to reach the anode wire: 
–  Transit time is normally negligible with respect to t ; 
–  If we consider a constant drift speed vD (e.g.: 50 m/ns), then 

position is: 
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  x = v
D
⋅Δt



Digitisation: TDC (II) 

•  Wire chamber alone is not sufficient: 
–  We need a triggering system (e.g. a scintillator slab). 

•  We can measure the time offset between the two signals 
using a N-bit digital counter driven by a clock of 
frequency f : 
–  The wire signal acts as a start signal; 
–  The scintillator provides the stop signal. 

•  This device 
is a TDC. 
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Zero Suppression 

•  Why spend bandwidth sending data that is zero 
for the majority of the time? 

•  Perform zero-suppression and only send data 
with non-zero content: 
–  Requires to identify the data with a channel number 

and/or a time-stamp; 
–  We do not want to loose information of interest so 

this must be done with great care taking into 
account: 

•  Pedestals, 
•  Baseline variations,  
•  Noise. 

–  Not worth it for occupancies above ~10%. 
•  Alternative: data compression Huffman encoding 

and alike: 
–  Slow, Power-intensive. 
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Zero Suppression (II) 

•  In the LHCb upgrade all Front End electronics transmit 
data continuously at 40 MHz to the Readout Boards. 

•  Very large number of optical links needed between the 
FE and the new Readout Boards. 

•  Almost a factor of ten could be gained by sending zero-
suppressed data already at the FE: 
–  Reducing the number of optical links from ~80000 to ~10000. 

–  The zero-suppression will be performed in radiation-tolerant FE 
chips. 

–  A possible consequence of zero-suppression is a varying latency 
of data transmission. 
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Data Acquisition 
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Un-Triggered DAQ 

•  E.g.: Measure temperature at a fixed frequency: 
–  FEE: ADC performs analog to digital conversion; 

–  DAQ: CPU does ADC readout and disk write. 

•  System limited by the time τ  needed to process 
an event: 
–  ADC conversion + CPU processing + storage. 

•  The maximum sustainable DAQ rate is the 
inverse of τ, e.g.: 
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τ = 1 ms ⇒ ν =

1

τ
= 1 kHz

ADC 

Processing 

disk 

 τ

Basic Triggered DAQ 

•  E.g.: Beta decay frequency: 
–  Events asynchronous and unpredictable; 

•  A physics trigger is needed: 
–  Delay: compensates for trigger latency; 
–  Discriminator: generate an output signal 

when the amplitude of input signal 
exceeds a certain threshold. 
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Basic Triggered DAQ (II) 

•  The process is poissonian: 
–  Fluctuations in time between events; 

•  Let's assume for example: 
–  A process rate ν

ph
 = 1 kHz, i.e. λ = 1 ms; 

–  A processing time τ
daq

 = 1 ms. 
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ADC 
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  τdaq
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    f (t) = λe−λt

What if a trigger is 
created when the 
system is busy? 

Basic Triggered DAQ (III) 

•  Busy logic avoids triggers while 
the system is busy in processing: 
–  E.g.: using an AND port and a latch (flip-flop); 

•  A bistable circuit that changes state (Q) 
by signals applied to the control 
inputs (SET, CLEAR). 
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Basic Triggered DAQ (IV) 

•  Definitions: 
–  Average rate of physical events (input): ν

ph
; 

–  Average rate of DAQ (output): ν
daq

; 
–  Dead time, the time the system requires to process an event, 

without being able to handle other triggers: τ; 
–  Probability that DAQ is busy:                                   ; 
–  Probability that DAQ is free:                                        ; 

•  Therefore: 
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Basic Triggered DAQ (V) 

•  Due to stochastic fluctuations: 
–  DAQ rate always less than physics rate; 

–  Efficiency always less than 1; 
 
 

•  Example: 
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Basic Triggered DAQ (VI) 

•  To cope with the input signal fluctuations, we have to 
over-design our DAQ system by a factor 100! 
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De-Randomisation 

•  Input fluctuations can be absorbed and 
smoothed by a queue: 
–  A First In First Out can provide a ~steady 

and de-randomised output rate. 
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De-Randomisation (II) 

•  It introduces additional latency to the 
data path; 

•  The effect of the queue depends on 
its depth. 
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De-Randomisation (III) 

•  Efficiency vs traffic intensity (             ) 
for different queue depths; 

•  Analytic calculation possible for very simple systems only 
–  Otherwise Monte Carlo simulation is required 
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   ρ = τ /λ

Collider Setup 

•  Particle collisions are 
synchronous: 
–  So, do we still need de-

randomisation buffers? 
•  Trigger rejects uninteresting 

events: 
–  Good events are unpredictable; 

•  Even if collisions are 
synchronous, the time 
distribution of triggers is 
random: 
–  De-randomization is still needed. 

TDAQ Systems In High Energy Physics. Domenico Galli 55

De-Randomsation in LHCb Front-End 

•  Working point for the LHCb experiment: 
–  Max readout time: 900 ns; 
–  Derandomiser depth: 16 events; 
–  1 MHz maximum trigger accept rate. 
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LHCb DAQ Custom Component: Tell1 
Boards (the same for all sub-detectors) 

•  Input: 24 x 1.6 Gb/s optical link or 
64 x analog copper links. 

•  Output: 4 x 1000Base-T. 
•  ECS: Credit card PC (Linux) with 

separate 100Base-T interface. 

57

Tell-1 Boards (II) 

•  FIR: Finite Impulse 
Response filter. 

•  CM: Common Mode noise 
corrections. 

•  After zero suppression, 
the length of each event 
is variable. 

•  Derandomizing buffers 
are employed to average 
the data rate and the 
data processing time.  

•  To prevent any 
overflows, each buffer 
can generate a throttle 
signal that is sent to the 
readout supervisor. 

•  The readout supervisor 
suspends the trigger 
signal until the buffers 
have recovered. 
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Event Building 

•  Most HEP detectors are read out through multiple DAQ 
front-ends (~10000 in LHCb Upgrade): 
–  Each responsible for a segment of the full detector.  
–  Event-fragments are digitized, pre-processed and tagged with a 

unique, monotonically increasing number. 
•  Event building is the process of assembling the many 

fragments of readout into a single whole: 
–  Getting the pieces of the event together; 
–  It often requires the coordinated work of several computing 

nodes; 
–  Involved computing nodes need to exchange data each other; 

•  This require a data bus or a network. 
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Event Building (II) 
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Data Acquisition 
Switch 

To Trigger  
Algorithms 

1 Event fragments 
are received from 
detector front-
end 2 Event 

fragments are 
read out over a 
network to an 
event builder 3 Event builder 

assembles 
fragments into a 
complete event 4 Complete events 

are processed by 
trigger 
algorithms 

Event Builder 3 

Event Builder 3 

Event Builder 3 



Event Building and Trigger 

•  Usually low-level trigger is based on local (sub-detector) 
data: 
–  Event fragments are sent to trigger electronics through 

dedicated lines, before event building; 
•  High-level trigger requires all detector data: 

–  HLT is performed on built events. 
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Clock/Trigger Distribution and 
Synchronisation 

•  An event is a snapshot of the values  of all detector 
front-end electronics elements, which have their value 
caused by the same collision; 

•  A common clock signal must be provided to all detector 
elements: 
–  Since the c is constant, the detectors are large and the 

electronics is fast, the detector elements must be carefully 
time-aligned. 

•  Common system for all LHC 
experiments TTC (Timing, 
Trigger and Control) 
based on radiation-hard 
opto-electronics. 

Timing & Sync Control 
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•  Sampling clock with low jitter; 
•  Synch reset; 
•  Synchronization with machine bunch structure; 
•  Calibration; 
•  Trigger (with event type); 
•  Time align all the different  

sub-detectors 
and channels: 
–  Programmable delays. Modules and Data Bus 
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Modular Electronics 

•  Modularizing DAQ electronics helps in these respects:  
–  Allows for the re-use of generic modules in different 

applications;  
–  Limiting the complexity of individual modules increases their 

reliability and maintainability; 
–  You can profit from 3rd party support for common modules  
–  Makes it easier to achieve scalable designs; 
–  Upgrades (for performance or functionality) are less difficult. 
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Modular Electronic Elements 
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Rack Crate 

Board 

Fans Backplane and 
power socket 

Mechanics and Pizzas 

•  The width and height of racks and crates are 
measured in US units: inches (in, '') and 
rack units (U): 
–  1 in = 2.54 cm; 
–  1 U = 1¾ in = 4.445 cm; 

•  The width of a "standard" rack is 19 in; 
•  The height of a crate (also sub-rack) is 

measured in Us (typically, 42U); 
•  Rack-mountable things, in particular 

computers, which are 1U high are often 
called pizza-boxes; 

•  At least in Europe, the depth is measured 
in mm; 

•  Gory details can be found in IEEE 1101.x 
(VME mechanics standard). 
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Data Bus Milestones 
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NIM, 1964 CAMAC, 1969 VME 6U, 1981 Fastbus, 1986 

VME 9U, 1994 ATCA, 2003 PCI, 1991 PCIe, 2004 



NIM (Nuclear Instrument Modules) 

•  Not actually a data bus: 
–  No common backplane bus; 

•  Backplane provides only powers to functional modules; 
•  250 x 193 mm board size: 

–  12 boards per crate maximum; 
•  Plug-and-play approach: 

–  Does not need any 
software; 

•  Front panel settings and 
cable connections; 

•  Amplifiers, shapers, 
discriminators, delay 
units, etc. 
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BNC connectors 

LEMO connectors 

NIM (II) 

•  NIM logic levels:  
–  0 = 0A (0V); 
–  1 = -12 to -32 (typical -16) mA at 50 Ω (-0.8V); 

•  NIM connector: 
–  42 pins in total; 
–  11 pins used for power (+/- 6, 12, 24V); 
–  2 logic pins (reset & gate). 
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NIM backplane connector 

NIM (III) 

•  NIM is still alive. 
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General purpose 
NIM module with 
programmable logic  

100 MS/s digitizer 
with optical 
read-out 

CAMAC (Computer Automated 
Measurement and Control) 

•  CAMAC was the first successful databus 
interface between  commercial computers and 
custom detector electronics; 

•  Most of physics experiments in late 60’s –late 
80’s were based on parallel CAMAC electronics, 
e.g.: 
–  UA1 (interfaced to Apple MacIntosh Plus); 
–  UA2 (interfaced to VAX 11/780). 

•  Several large distributed accelerator control 
systems (CERN, Fermilab) were based on serial 
CAMAC. 
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CAMAC (II) 

•  IEEE Standard 583-1975; 
•  Up to 24 modules in a crate; 
•  1 crate controller: 

–  An interface to a computer or to 
other crates; 

•  Relatively slow: 
–  1 µs data exchange cycle; 
–  24 bit bus; 
–  24 Mb/s. 

•  Board size is relatively 
small, especially for 
multi-channel electronics. 

•  Backplane interface takes 
significant amount of board 
space. 

•  Not suitable for demanding 
analog requirements because of 
high noise of digital circuits. 

•  A lot still around. 
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CAMAC Parallel Highway Interface 
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•  IEEE 596 Parallel Highway Interface: 
–  Up to 7 crates; 
–  24-bit wide data transfers @ 1 MHz; 
–  Twisted pair cable bus, up to 15 m. CAMAC interface 

plugged into 
computer bus 

Branch 0 
Crate 0 

Branch 6 

Computer 
with CAMAC 
driver loaded 

Branch extender 
module 

Branch 6 
Crate 1 

Crate controller 
modules 

Branch terminator 
module 

Computer interface 
module (computer 
specific) 

Branch 6 
Crate 2 

Branch 6 
Crate 3 

FASTBUS 
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•  Designed by physicists for 
physicists. 

•  Large form-factor, high 
channel densities. 

•  Widely used in late 80’s –mid 
90’s in HEP community: 
–  CDF Run I (1985-1995): ~1500 

modules in ~150 crates 
–  All four experiments at the LEP  

e+e- collider at CERN; 
•  DELHI, ALEPH, L3, OPAL in 

1989-2000: ~700 crates; 
–  At SLAC, DESY and other smaller 

experiments; 

FASTBUS (II) 

•  ANSI/IEEE 960-1986 Standard: 
–  Large 367 x 400 mm board; 
–  26 slots in crate; 
–  ECL backplane signals; 
–  Asynchronous transfers; 
–  32-bit data / 32-bit address; 
–  100 ns cycle (10 MHz); 
–  Up to 320 Mb/s bandwidth; 
–  Multiprocessing; 
–  Block transfers; 
–  Sparse data scanning; 
–  Well defined control and 

status registers. 
•  But: 

–  High power consumption; 
–  Poor backplane connector; 
–  Complex inter-crate interface; 
–  Weak industry support. 
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VME (Versa Module Eurocard) 

•  VME standard was proposed in 1981 by 
Motorola, Mostek and Signetics; 

•  Processor independent, but signal set 
has its roots in MC 68000 CPU; 

•  Open architecture; 
•  VME International Trade Association 

(VITA) remains the driving force; 
•  Large number of commercial 

products (used heavily in the military); 
•  32/64 bit bus (320/640 Mb/s); 
•  Currently there are more than 1000 

VMEbus systems at CERN 
(accelerator and experiments). 
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VME Mechanics: Backplanes 
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Mandatory 
bus for all 3U 
and 6U boards 

Extension bus 
for A32D32 
6U boards 

•  16-bit Data Bus 
•  24-bit Address Bus 
•  6-bit Address Modifier Bus 
•  7 Interrupts 
•  Arbitration Bus 
•  Clock, Control and Status 

signals 
•  +5V, +12V, -12V powers, 5 

GND lines 

•  16-bit Data Bus Extension 
•  8-bit Address Bus Extension 
•  Additional +5V (3 lines) and 

GND (4 lines) 
•  64 unbussed User I/O lines 

VME Mechanics: Cards 
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160 mm 340 mm 

9U 

6U 

3U 

VME Mechanics: Crates 
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21 slot 6U crate 

21 slot 9U crate 
(with 6U section) 



VME Bus 

•  Classes of modules (logical) 
–  Master: 

•  A module that can initiate data transfers; 
–  Slave: 

•  A module that responds to a master; 
–  Interrupter: 

•  A module that can send an interrupt (usually a slave); 
–  Interrupt handler: 

•  A module that can receive (and handle) interrupts (usually a Single 
Board Computer); 

–  Arbiter: 
•  A piece of electronics (usually included in the SBC) that arbitrates 

bus access and monitors the status of the bus. 
•  It should always be installed in slot 1 of the VMEbus crate if 

interrupts are used. 
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Communication in a Crate: Buses 

•  A bus connects two or more devices and allows them to 
communicate; 

•  The bus is shared between all devices on the bus: 
–  Arbitration is required; 

•  Devices can be masters or slaves (some can be both); 
•  Devices can be uniquely identified ("addressed") on the 

bus. 
 

 Device 1 

Master 

Data Lines 

Slave 

Select Line 

Device 2 Device 4 Device 3 Device 2 Device 4 

Master 

Data Lines 

Slave 

Select Line 

Device 1 Device 3 
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PCI (Peripheral Component 
Interconnect) / PCI-X (Extended) Bus 

•  Local computer bus for attaching 
hardware devices in a computer. 

•  First standardized in 1991: 
–  Replaced the older ISA/EISA/MCA cards; 
–  Initially intended for PC cards; 
–  Later spin-offs: CompactPCI, PXI, PMC. 
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PCI Motherboard 

PCI Card 

PCI/PCI-X Bus (II) 

•  Main features: 
–  Synchronous timing (but wait cycles possible); 
–  Clock rates: 

•  Initially 33 MHz. Later: 66 MHz, (PCI-X: 100 and 133 MHz); 
–  Bus width: 

•  Initially 32 bit. Later: 64 bit; 
–  Signaling voltage: 

•  Initially 5 V. Later 3.3 V;  
–  Bus topology: 

•  1 to 8 slots per bus; 
•  Busses can be connected to form a tree; 
•  Address and data as well as most protocol lines are shared by all 

devices; 
•  The lines used for arbitration are connected point-to-point; 
•  The routing of the interrupt request lines is more complicated…  
•  A system can consist of several Initiators (master) and Targets 

(slave) but only one Initiator (master) can receive interrupts. 
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Limits of Parallel Data Bus 

•  What is wrong about “parallel”? 
–  You need lots of pins on the chips and wires on the PCBs (printed circuit 

boards): 
•  Control, data and address lines; 

–  The skew (difference in arrival time of simultaneously transmitted bits) 
between lines limits the maximum speed; 

•  What is wrong about “bus”? 
–  A bus is shared between all devices (each new active device slows every 

other device down); 
–  Speed is a function of the length (impedance) of the lines; 

•  Bus-frequency (number of elementary operations per second) can be increased, but 
decreases the maximum physical bus-length; 

–  Number of devices and physical bus-length is limited; 
–  Communication is limited to one master/slave pair at a time. 

•  Buses are typically useful for systems <1 GB/s: 
–  Not useful for DAQ at LHC. 
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From Parallel Data Bus 
to Switched Serial Link 

•  Parallel Buses Are Dead! 
–  RTC magazine, September 2006, Ben Sharfi CEO, General Micro 

Systems; 
•  Switched Serial Link: 

–  Packet switching; 
–  Star or mesh topology; 

•  Examples: 
–  PCIe (PCI Express); 
–  InfiniBand; 
–  Ethernet; 
–  Serial ATA; 
–  Fiber Channel; 
–  Etc. 
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Mesh 

Star 

PCIe (PCI Express) 

•  Not a bus any more: 
–  But a point-to-point link; 

•  Data not transferred on parallel 
lines but on one or several serial 
lanes: 
–  Lane: One pair of LVDS lines per 

direction; 
–  Devices can support up to 32 lanes; 

•  Protocol at the link layer has nothing 
to do with protocol of parallel PCI; 

•  Fully transparent at the S/W layer. 
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PCIe Motherboard 

PCI Card 

PCIe Performance 

•  Clock rate: 
–  2.5 GHz (PCIe1.0); 
–  5 GHz (PCIe 2.0); 
–  8 GHz, (PCIe 3.0); 
–  16 GHz (PCIe 4.0-draft); 

•  Encoding: 
–  8b/10b; 
–  128b/130b (PCIe3.0); 

•  Raw transfer rate per lane: 
–  250 MB/s, 2 Gb/s (PCIe 1.0); 
–  500 MB/s, 4 Gb/s (PCIe 2.0); 
–  985 MB/s, 7.88 Gb/s (PCIe 3.0); 
–  1969 MB/s, 15.7 Gb/s (PCIe 4.0-draft); 

•  Devices can support up to 32 lanes; 
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ATCA (Advanced Tele Communication 
Architecture) 

•  The Basic Idea: 
–  Telecom companies are using 

proprietary electronics:  
–  Let’s design a standard for 

them from scratch; 
–  It has to have all the 

features telecom companies 
need:  

•  High availability (99.999%); 
•  Redundancy at all levels; 
•  Very high data throughput; 
•  Sophisticated remote 

monitoring and control; 
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ATCA Components 
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AMC (Advanced Mezzanine Card) carrier 

ATCA Shelf 

Switch blade 

Payload card 

Rear Transition Module 

ATCA 

•  More of a system than a board 
standard;  

•  Started in 2001 by ~100 
companies; 

•  One form factor:  
–  Front: 8U x 280 mm x 30.48 mm 

(14 slots per 19” crate); 
–  Rear: 8U x 60 mm (5W); 

•  Supply voltage: -48 V: 
–  DC-DC conversion each on-board; 

•  Power limit: 200 W 
(400-600-800 W) per card; 

•  Connectors: 
–  Zone 1: One connector for power & shelf management; 
–  Zone 2: 1-5 ZD connectors for data transfer; 
–  Zone 3: User defined connector for rear I/O.  

TDAQ Systems In High Energy Physics. Domenico Galli 91

Zo
ne

 1
 

Zo
ne

 2
 

Zo
ne

 3
 

ATCA Connections 
(“Fabric Agnostic”) 

•  The ATCA backplane provides point-to-point connections 
between the boards and does not use a data bus. 

•  Zone-2 provide the connections to the Base Interface and 
Fabric Interface. 

•  The Base Interface can only be 10BASE-T, 100BASE-TX, or 
1000BASE-T Ethernet: 
–  Since all boards and hubs are required to support one of these 

interfaces there is always a network connection to the boards. 
•  All Fabric connections use point-to-point 100 Ω differential 

signals: 
–  Zone-2 is called "Fabric Agnostic" which means that any Fabric that 

can use 100 Ω differential signals can be used with an ATCA 
backplane. 

•  The Fabric is commonly Gigabit Ethernet, but can also be 
Fibre Channel, 40-Gigabit Ethernet, InfiniBand, PCI Express, 
etc.  
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AMC (Advanced Mezzanine Card) 

•  ATCA blades are big. 
•  Small mezzanine modules could be helpful to modularize 

their functionality: 
–  PMC/XMC mezzanines are not hot-swappable; 
–  Let’s design a new type of mezzanine for ATCA  
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µTCA / MTCA (Micro TCA) 

•  AMC mezzanines are great but ATCA is a heavy standard 
and the H/W is expensive: 
–  Let’s define a standard that allows for using AMCs directly in a 

shelf; 
–  i.e. Promote the AMC from “mezzanine” to “module”. 
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µTCA / MTCA (II) 
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Which Module Standard in LHC 
Upgrade? 

•  LHC and experiments at CERN: 
–  Still many VMEbus and PCI based; 
–  CMS: Several µTCA systems in operation; 
–  ATLAS: ATCA proposed as VMEbus replacement, many R&D 

projects; 
–  LHCb: first favored ATCA then decided to go for PCs; 
–  ALICE: Still planning to use ATCA; 

•  Control systems of new accelerators: 
–  µTCA everywhere; 
–  XFEL@DESY, SCLS@SLAC, FAIR@GSI. 
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Network Based DAQ 
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DAQ for Large HEP Experiment 

•  What defines large? 
–  The number of channels: for LHC experiments O(107) 

channels: 
•  A (digitized) channel can be between 1 and 14 bits; 

–  The rate: for LHC experiments everything happens at 
40.08 MHz, the LHC bunch crossing frequency: 

•  This corresponds to 24.9500998 ns or 25 ns among events; 

•  HEP experiments usually consist of many 
different sub-detectors: 
–  Tracking, calorimetry, particle-ID, muon-detectors. 
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Network Based DAQ 

•  In large (HEP) experiments we typically have thousands of 
devices to read, which are sometimes very far from each 
other: 
–  Buses can not do that; 

•  Network technology solves the scalability issues of buses: 
–  In a network devices are equal ("peers"); 
–  In a network devices communicate directly with each other: 

•  No arbitration necessary; 
•  Bandwidth guaranteed; 

–  Data and control use the same path: 
•  Much fewer lines (e.g. in traditional Ethernet only two) 

–  At the signaling level buses tend to use parallel copper lines. 
Network technologies can be also optical, wire-less and are typically 
(differential) serial. 
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High Speed Data Link Technology 

•  HERA-B: 
–  Shark link (proprietary, by Analog Devices) until level 2, than Fast 

Ethernet. 

•  DØ:  
–  Fast Ethernet / Gigabit Ethernet.  

•  CDF:  
–  ATM / SCRAMnet (proprietary, by Systran, low latency replicated non-

coherent shared memory network). 

•  CMS:  
–  Myrinet (proprietary, Myricom) / Gigabit Ethernet. 

•  Atlas / LHCb / Alice:  
–  Gigabit Ethernet. 

•  LHCb Upgrade:  
–  InfiniBand, 100-Gigabit Ethernet. 
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Two Philosophies in HEP DAQ 
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•  Send everything, ask 
questions later: 
–  ALICE, CMS, LHCb; 

•  Send a part first, get 
better question; 

•  Send everything only 
if interesting: 
–  ATLAS. 

The LHCb DAQ 
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The ALICE DAQ 
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• Two stage hardware trigger L0 + L1 
• High Level Trigger (HLT) on 
separate farm 

The ATLAS DAQ 

•  L1 selects events at 
100 kHz and  defines 
regions of interest; 

•  L2 pulls data from the 
region of interest and 
processes the data in a 
farm of processors 
L2 accepts data at 
~1 kHz; 

•  Event Filter reads the 
entire detector (pull), 
processes the events in 
a farm and accepts at 
100 Hz; 
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The CMS DAQ 
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The CMS DAQ (II) 
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Trigger/DAQ parameters 
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No.Levels Level-0,1,2  Event  Readout  HLT Out 
Trigger   Rate (Hz)  Size (Byte)  Bandw.(GB/s)  MB/s (Event/s) 

 
   4  Pb-Pb 500  5x107  25  1250 (102) 
  p-p    103  2x106   200   (102) 
 
 
   3   LV-1 105  1.5x106  4.5  300 (2x102) 

  LV-2 3x103   
 
 
   2   LV-1 105  106  100  ~1000 (102) 
       
 
 
   2  LV-0  106  3.5x104  35  70 (2x103) 
 

A
LI
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M
S
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C
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The Event Builder Network 
(in LHCb and CMS) 

Force10 E1200 equipment 
"  Port densities: 

"  14 slots for line-cards 
"  Biggest port density is 90 1000Base-

T ports per line-card (90/48 over-
committed) 

"  14 x 90 = 1260 1000Base-T ports. 
"  Switching Fabric 

"  Switching capacity is 
"  Raw: ~1.6 Tb/s, 
"  Usable: ~1.2 Tb/s (140 GiB/s), 
"  Backplane capacity: ~5 Tb/s. 
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LHCb HLT CPU Racks 

•  1800 1U rack-
mounted boxes. 

•  2 x 1000Base-T 
interfaces, to 
keep separate: 
–  Data; 
–  ECS 

(Experimental 
control system). 
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Which Protocol to Move Data through 
the Network? 

•  Why not TCP? 
–  To avoid mechanisms which slow down data transmission (slow start, 

congestion avoidance). 
–  Reliability mechanisms (fast retransmission, fast recovery) are useless 

due to latency constraints: 
•  If a fragment of an event is dropped by the network we prefer to get the 

next event rather than retransmit the same event. 
•  Why not UDP? 

–  In our application we have no use for the UDP port numbers,  
–  UDP checksum redundant with the Ethernet CRC (Cyclic Redundancy 

Check) information in a switched network.  
•  Also, the UDP checksum is performed by the CPU (at least for fragmented 

datagrams), as opposed to the Ethernet CRC done by the MAC  and so uses up 
additional resources.  

•  Why IP? 
–  Datagram fragmentation is well defined by the standard. 
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Gigabit Ethernet IP Transfer Rate 
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Gigabit Ethernet Frame Transfer Rate 
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Why a New Transport Protocol? 

•  The optimal Ethernet payload/overhead ratio, is achieved when the 
IP datagram fills completely the 1500 B Ethernet payload. 

•  Moreover the Gigabit Ethernet throughput drops for small frame 
size. 

•  However, each Tell-1 board can send only data-fragments pertaining 
to the associated sub-detector element, which usually is much smaller. 

•  In order to optimize the payload/overhead ratio, fragments from 
multiple (~20) events have to be aggregated (MEP, Multi Event 
Packet) into a single IP datagram. 

•  MEP is a LHCb custom OSI-level 4 (transport) protocol. 
–  OSI-level 3 (network) is IP; 
–  OSI-level 2 (datalink) is Ethernet. 
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The LHCb MEP Protocol over IPv4 

•  Custom 
protocol 

•  Implemented 
as a Linux 
Kernel 
module.  

•  Optimized 
for the 
transport of 
Multi Event. 

8

Pre-
amble

6

Dest.
address

6

Source
address

2

Len/Type
protocol

46....1500

Data 
(+  protocol)

4

FCS

data payload Ethernet Header
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> 0x600  Type o. protocol   
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2
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Time HL

1 2

Header
Chechsum
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address

4 4
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Service

2

Total
length Fr-Offs. to Live
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. Proto

PAD
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1
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1

2 2

Data-1

...2N
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2

Ev.ID
2

2 2 ...2M ... 1500
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3

Data-3To be created in FPGA 
And transmitted to 1000Base-T 
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The LHCb Upgrade 
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The LHCb Upgrade - Timeline 

•  Shall take place during the Long Shutdown 2 (LS2) 
–  In 2018. 

LHCb Upgrade LHCb up to LS2 
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Luminosity and Event Multiplicity 

•  Instantaneous luminosity leveling at 4×1032 cm-2 s-1,  ±3% around the target 
value. 

•  LHCb was designed to operate with a single collision per bunch crossing, 
running at a instantaneous luminosity of 2×1032 cm-2 s-1 (assuming about 
2700 circulating bunches): 
–  At the time of design there were worries about possible ambiguities in assigning 

the B decay vertex to the proper primary vertex among many. 
•  Soon LHCb realized that running at higher multiplicities would have been 

possible. In 2012 we run at 4×1032 cm-2 s-1 with only 1262 colliding 
bunches: 
–  50 ns separation between bunches 

while the nominal 25 ns (will available 
by 2015). 

–  4 times more collisions per crossing 
than planned in the design.  

–  The average number of visible 
collisions per bunch crossing 
in 2012 raised up to µ > 2.5. 

–  µ ~ 5 feasible but… 
LHCb 
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Luminosity and Event Multiplicity (II) 

•  At present conditions, if we increase the luminosity: 
–  Trigger yield of hadronic events saturates; 
–  The pT cut should be raised to remain within the 1 MHz L0 output 

rate; 
–  There would be not a real gain. 
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•  Due to the available bandwidth and the limited discrimination power of 
the hadronic L0 trigger,  LHCb experiences the saturation of the trigger 
yield on the hadronic channels around 4×1032 cm-2 s-1. 

•  Increasing the first level trigger rate considerably increases the 
efficiency on the hadronic channels.  

The 1 MHz L0 Rate Limitation 
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Mean visible interactions per 
crossing 

27 MHz 

Running Conditions 

µ =5.2 

The LHCb Upgrade 

•  Readout the whole detector at 40 MHz. 
•  Trigger-less data acquisition system, running at 

40 MHz (~30 MHz are non empty crossings): 
–  Use a (Software) Low Level Trigger as a throttle 

mechanism, while progressively increasing the power 
of the event filter farm to run the HLT up to 40 
MHz. 

•  We have foreseen to reach  20×1032 cm-2s-1 and 
therefore to prepare the sub-detectors on this 
purpose: 

–  pp interaction rate 27 MHz. 
–  At 20×1032 cm-2 s-1 pile up µ  5.2 

–  Increase the yield in the decays with muons  
by a factor 5 and the yield of the hadronic channels 
by a factor 10. 

•  Collect 50 fb−1 of data over ten years. 
–  8 fb−1 is the integrated luminosity target,  

to reach by 2018 with the present detector;  
–  3.2 fb−1 collected so far. 
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LHCb Upgrade: Consequences 

•  The detector front-end electronics has to be entirely rebuilt, 
because of the current readout speed is limited to 1 MHz. 
–  Synchronous readout, no trigger.  
–  No more buffering in the front-end electronics boards. 
–  Zero suppression and data formatting before transmission to optimize the 

number of required links.  
•  Average event size 100 kB 

–  Three times the optical links as currently to get the required bandwidth, 
needed to transfer data from the front-end to the read-out boards at 40 
MHz.  

•  GBT links simplex (DAQ) 9000, GBT duplex (ECS/TFC) 2400 
•  New HLT farm and network to be built by exploiting new LAN 

technologies and powerful many-core processors. 
•  Rebuild the current sub-detectors equipped with embedded front-end 

chips: 
–  Silicon strip detectors: VELO, TT, IT  
–  RICH photo-detectors: front-end chip inside the HPD. 

•  Consolidate sub-detectors to let them stand the foreseen luminosity 
of 20.×1032 cm-2 s-1. 
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•  Intermediate layer of electronics boards arranged in crates to decouple FEE 
and PC farm: for buffering and data format conversion.  

•  The optimal solution with this approach: ATCA, µTCA crates, ATCA carrier 
board hosting AMC standard mezzanine boards. 

•  AMC boards equipped with FPGAs to de-serialize the input streams and transmit 
event-fragments to the farm, using a standard network protocol, using 10 Gb 
Ethernet. 

FEE 

FEE 

FEE 

FEE 

FEE 

FEE 

LHCb DAQ Upgrade: First Idea 
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DAQ Present View 

•  Use PCIe Generation 3 as communication protocol to inject data from the 
FEE directly into the event-builder PC. 

•  A much cheaper event-builder network: 
•  Data-centre interconnects can be used on the PC: 
•  Not realistically implementable on an FPGA (large software stack, lack 

of soft IP cores,…) 
•  Moreover PC provides: huge memory for buffering, OS and libraries. 
•  Up to date NIC and drivers available as pluggable modules. 

16-lane PCIe-3 edge-connector bandwidth:  
16  × 8 Gb/s = 128 Gb/s = 16 GB/s  

400 nodes 

HLT 

HLT 

data-centre interconnects  
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DAQ Architecture Upgrade  

Average event size 50 kB 
Average rate into farm 1 MHz 
Average rate to tape 5 kHz 
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DAQ Architecture Upgrade (II) 
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The LHCb Upgrade 
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PCI-e Gen 3 Tests 
Electronics Front-End ##  Data-Centre Interconnect 

TDAQ Systems In High Energy Physics. Domenico Galli

GPU used to test 16-lane PCIe-3 
data transfer between the 
device and the  host memory 

The FPGA provides 8-lane PCIe-3 
hard IP blocks and DMA engines. 

•  ALTERA evaluation board, Stratix V GX FPGA 

The PCIe-Gen3 DMA Test Setup 
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DMA PCIe-Gen3 Effective Bandwidth 
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 DMA maximum transfer rate ~ 56 Gb/s  
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"  A main FPGA manages the input streams and transmits data to the 
event-builder PC by using DMA over PCIe Gen3. 

PCIe-Gen3 Based Readout 

TDAQ Systems In High Energy Physics. Domenico Galli 129 TDAQ Systems In High Energy Physics. Domenico Galli 130

The LHCb Upgrade 
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InfiniBand Tests 
Event Builder Network 
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InfiniBand vs Ethernet 

•  Guaranteed delivery. Credit based flow control:  
–  Ethernet: Best effort delivery. Any device may drop packets; 

•  Hardware based re-transmission: 
–  Relies on TCP/IP to correct any errors; 

•  Dropped packets prevented by congestion management: 
–  Subject to micro-bursts; 

•  Cut through design with late packet invalidation: 
–  Store and forward. Cut-through usually limited to local cluster; 

•  RDMA baked into standard and proven by interoperability 
testing: 
–  Standardization around compatible RDMA NICs only now starting; 
–  Need same NICs are both ends; 

•  Trunking is built into the architecture: 
–  Trunking is an add-on, multiple standards an extensions; 
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InfiniBand vs Ethernet (II) 

•  All links are used: 
–  Spanning Tree creates idle links; 

•  Must use QoS when sharing with different applications: 
–  Now adding congestion management for FCoE but standards still 

developing; 
•  Supports storage today; 
•  Green field design which applied lessons learnt from 

previous generation interconnects: 
–  Carries legacy from it’s origins as a CSMA/CD media; 

•  Legacy protocol support with IPoIB, SRP, vNICs and 
vHBAs; 

•  Provisioned port cost for 10 Gb Ethernet approx. 40% 
higher than cost of 40 Gb/s InfiniBand. 
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EB network: Ib vs GbE 

TDAQ Systems In High Energy Physics. Domenico Galli 134

IB Performance Test 

$  Performances tests performed at CNAF. 
$  PCIe Gen 3, 16 lanes needed: 

$  Any previous version of the PCI bus represents a bottleneck for 
the network traffic; 

$  Exploiting the best performances required some tuning: 
$  Disable node interleaving and bind processes according to NUMA 

topology; 
$  Disable power saving modes 

and CPU frequency 
selection: 

$  PM and frequency switching 
are latency sources. 

A
. 

Falabella et al 
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IB Performance Test (II) 

$  Ib QDR (Quad Data Rate): 
$  Point-to-point bandwidth with RDMA write semantic (similar 

results for send semantic); 
$  QLogic : QLE7340, Single port 32 Gbit/s (QDR); 
$  Unidirectional throughput: 27.2 Gbit/s; 
$  Encoding 8b/10b. 

A
. 

Falabella et al 
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IB Performance Test (III) 

$  Ib FDR (Fourteen Data Rate): 
$  Point-to-point bandwidth with RDMA write semantic (similar 

results for send semantic); 
$  Mellanox : MCB194A-FCAT, Dual port, 56 Gbit/s (FDR); 
$  Unidirectional throughput: 54.3 Gbit/s (per port); 
$  Encoding 64b/66b. 

A
. 

Falabella et al 
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The LHCb Upgrade 
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Event Builder Tests 
CPU NUMA Architectures, Event Builder Network 

TDAQ Systems In High Energy Physics. 
Domenico Galli

Event Builder Fluxes: 400 Gb/s 

PCIe40 
Event Building 

Network 
Interface 

from  
the FEE 
128 Gb/s 

to the 
event builder 

from the 
event builder 

Events to be assembled  
on this machine 

Opportunity for doing 
pre-processing of  
the full event  

to the HLT 

Accelerator 

DDR3 
40-50 GB/s 
Half duplex 

QPI 
2x16 GB/s 
Full duplex 

DDR3 
40-50 GB/s 
Half duplex 

Presently dual FDR – 110 Gb/s 

Memory throughput 200 Gb/s Memory throughput 200 Gb/s 

… it works! 
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Event Builder CPU Performance 

CPU consumption Memory I/O bandwidth 
EB and HLT EB 

EB and HLT EB 

EB and HLT 
EB 

Memory consumption 

~ 6 GiB 

Memory consumption  
limits opportunistic  
trigger usage. 

46% 

The CPUs used in the test are Intel E5-2670 v2 with a C610 chipset. 
The servers are equipped with 1866 MHz DDR3 memory in optimal 
configuration. Hyper-threading has been enabled. 

At about 400 Gb/s more than 80% of the CPU resources are free 

•  PC sustains the event building at 100 Gb/s 
today. 
•  The Event Builder performs stably at 400 Gb/s 
•  Aggregated CPU utilization of EB application 
and trigger 46%  
•  We currently observe 50% free resources for 
opportunistic triggering on EB nodes: event 
builder execution requires about 6 logical core. 
Additional 18 instances of the HLT software 
running simultaneously. 
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Event Builder Performance 

•  LHCb-daqpipe software: 
–  Allows to test both PULL and PUSH protocols; 
–  It implements several transport layer implementation: 

IB verbs, TCP, UDP; 
•  EB software tested on test beds of increasing 

size: 
–  At CNAF with 2 Intel Xeon server connected back-to-

back; 
–  At Cern with 8 Intel Xeon cluster connected through an 

IB-switch; 
–  On 128 nodes at the 512 nodes Galileo cluster at the 

Cineca. 
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EB Test on 2 Nodes 

 
 

•  Measured bandwidth as seen by the builder units on two 
nodes equipped with Mellanox FDR (max bandwidth 54.3 
Gbit/s considering the encoding); 

•  Duration of the tests: 15 minutes (average value 
reported). 

•  Bandwidth measured is on 
average 53.3 Gbit/s: 
–  98% of maximum allowed; 

•  PM disabled. 

A
. 

Falabella et al 
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EB Test on 128 Nodes 

 
 

•  Extensive test on the CINECA Galileo TIER-1 cluster. 
–  Nodes: 516; 
–  Processors: 2 8-core Intel Haswell 2.40 GHz per node; 
–  RAM: 128 GB/node, 8 GB/core; 
–  Network: Infiniband with 4x QDR switches. 

•  Limitations: 
–  Cluster is in production: 

•  Other processes are polluting the network traffic; 
–  No control on power management and frequency switching; 

•  The fragment composition is performed correctly up to a 
scale of 128 nodes: 
–  Maximum allowed for the cluster batch system. 

TDAQ Systems In High Energy Physics. Domenico Galli 143

EB Test on 128 Nodes (II) 

 
 

A
. 

Falabella et al 
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LHCb Upgrade: Temporary 
Software LLT 

•  Throttle mechanism, while progressively increasing the power 
of the EFF to run the HLT up to 40 MHz. 

•  The LLT algorithms can be executed in the event builder PC 
after the event building.  

•  Preliminary studies show that the LLT runs in less than 1 ms, 
if the CALO clusters are built in the FEE. 

•  Assuming 400 servers, 20 LLT processes running per PC, and a 
factor 8 for the CPU power from the Moore Law, the time 
budget available turns out to be safely greater then 1 ms: 

 
 

 
 

   

1
40MHz

×400×20×8≈ 3.2 ms
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LHCb Upgrade: HLT Farm 

•  Trigger-less system at 40 MHz: 
–  A selective, efficient and adaptable software trigger;  

•  Average event size: 100 kB; 
•  Expected data flux: 32 Tb/s; 
•  Total HLT trigger process latency: ~15 ms: 

–  Tracking time budget (VELO + Tracking + PV searches): 50%  
–  Tracking finds 99% of offline tracks with pT >500 MeV/c 

•  Number of running trigger process required: 4×105; 
•  Number of core/CPU available in 2018: ~200: 

–  Intel tick-tock plan: 7 nm technology available by 2018-19, the 
number of core accordingly scales as   
12 × (32 nm/ 7 nm)2 = 250, equivalent 2010 cores.  

•  Number of computing nodes required: ~1000. 
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Scaling and Cost 

•  Unidirectional: scaling the present LHCb architecture to 40 MHz, use 
of intermediate crates, ATCA and AMC board and cables, 10 and 40 
GbEthernet. Cost to operate at 40 MHz: 8.9 MCHF.  
The cost due to the ATCA crate has not been included. 

•  Bidirectional: PCIe and InfiniBand proposed approach. 
Cost to operate at 
40 MHz: 3.8 MCHF. 
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•  Laboratorio di Elettronica INFN-Bologna: Ignazio Lax, 
Gabriele Balbi et al.; 

•  INFN-CNAF: Antonio Falabella, Francesco Giacomini, 
Matteo Manzali et al.; 

•  INFN-Padova: Marco Bellato, Gianmaria Collazuol et al.; 
•  CERN: Niko Neufeld, Daniel Hugo Cámpora Pérez, Guoming 

Liu, Adam Otto, Flavio Pisani, et al.; 
•  Other… 
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ECS: Experiment Control System 

•  Besides Trigger and DAQ, the Online System include the 
ECS, in charge of the Control and Monitoring of: 
–  Detector Operations (ex Slow Controls); 

•  GAS, HV, LV, temperatures...; 

–  Data Acquisition and Trigger; 
•  FE Electronics, Event building, EFF, etc.; 

–  Experimental Infrastructure; 
•  Cooling, ventilation, electricity distribution, ... ; 

–  Interaction with the outside world; 
•  Magnet, accelerator system, safety system, etc.; 
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ECS: Experiment Control System (II) 

TDAQ Systems In High Energy Physics. Domenico Galli 151

Detector Channels 

Front End Electronics 

Readout Network 

HLT Farm 

Storage 

L0 

Ex
pe

ri
m

en
t 

Co
nt

ro
l S

ys
te

m
 

DAQ 

DCS Devices (HV, LV, GAS, Cooling, etc.) 
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TFC 
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ECS: Finite State Machines (FSM) 
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Trigger Rate / Event Size Comparison 

Event 
Size 

L1 Input 
Rate 

L1 output 
Rate 

L2 output 
Rate 

L3 output 
Rate 

KTev 8 KiB 100 KHz 

800 MiB/s 

20 KHz 

160 MiB/s 

2 KHz 

7 MiB/s 
CDF 270 KiB 50 KHz 

13 GiB/s 

300Hz 

80 MiB/s 

80 Hz 

23 MiB/s 
DØ 250 KiB 10 KHz 

2.5 GiB/s 

1 KHz 

250 MiB/s 

70 Hz 

13 MiB/s 
BaBar 33 KiB 

(1200 L1) 

2 KHz 

2.4 GiB/s 

None 

(65 MiB/s) 

100 Hz 

4 MiB/s 
BTev 50-80 KiB 800 GiB/s 80 KHz 

8 GiB/s 

4 KHz 

200 MiB/s 
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Trigger Rate / Event Size Comparison 
(II) 

Event 

Size 

L1 Input 

Rate 

L1 output 

Rate 

L2 output 

Rate 

L3 output 

Rate 

Atlas 1-2 MiB 75 KHz 

100 GiB/s 

3 KHz 

5 GiB/s 

200 Hz 

300 MiB/s 

CMS 1 MiB 100 KHz 

100 GiB/s 

100 Hz 

100 MiB/s 

LHCb 35 KiB 1 MHz 1.1 MHz 

60 MiB/s 

2 KHz 

68 MiB/s 
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BaBar Trigger and DAQ System 
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CDF Trigger and DAQ System 

VRBS: VME readout buffers 
SM: Scanner Manager 
SCPU: Scanner CPU 
CV: converter node (build event) 
PR: processor node 
OU: output node 
CS/DL: consumer server/data logger 
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DØ Event Builder and Level-3 Farm 

ROC: Readout crate 
SBC: Single board computer 
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Atlas Trigger and DAQ System 
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CMS Trigger and DAQ System (II) 
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Christenson, Cronin, Fitch and Turlay PRL 13, 138 (1964) 

Detector Layout of KL
0→→ππ++ππ   

Experiment of Cronin and Fitch 
(1964) 

Early Fixed Target Triggers 
1964 Cronin & Fitch CP Violation 

Experiment: 
–  KL

0 mesons produced from 30 GeV 
protons bombarding  Be target. 

–  Two arm spectrometer with Spark 
Chambers, Cerenkov counters and 
Trigger scintillators. 

–  Spark chambers require fast 
(~20 ns) HV pulse to develop spark, 
followed by triggering camera to 
photograph tracks. 

–  Trigger on coincidence of 
Scintillators and Water Cerenkov 
counters. 

–  Only one trigger level. 
–  Deadtime incurred while film 

advances. 
  

TDAQ Systems In High Energy Physics. Domenico Galli


		2015-11-27T14:06:26+0100
	Domenico Galli




