Some toughts on the inputs from Physics

Matteo Rama, Achille Stocchi

Many sensitivity studies has to be done (probably all have to be redone sometime..) :

 \rightarrow the detector is changed, the boost is changed...

→ we have still to answer to some important opened questions on how the « final » detector will be :

Do we need a forward PID ?

Do we need a backward EMC ?

The ammount of absorber on the IFR ?

Internal geometry of SVT / Space between SVT and DCH

Physics program is so rich that it is difficult to select a golden channel...

Nevertheless we have done the following exercise for B physics quantities :

	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
	high ${\rm tan}\beta$	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents
$\mathcal{B}(B \to X_s \gamma)$		Х		О		О
$A_{CP}(B \to X_s \gamma)$				Х		О
$\mathcal{B}(B \to \tau \nu)$	X- CKM					
$\mathcal{B}(B \to X_s l^+ l^-)$				О	О	О
$\mathcal{B}(B \to K \nu \overline{\nu})$				О	Х	
$S(K_S \pi^0 \gamma)$						Х
β			X- CKM			Х
🞸 The GOLDEN c	hannel for the	e given scen	ario			

O Not the GOLDEN channel for the given scenario but can show experimentally measurable deviations

from SM.

Are they the seven magnificent ?

...adding of course $\tau \rightarrow \mu \gamma$

We could optimise on :

These are the golden modes for physics and also challenging ones from detector point of view !

Revisited precisions for these golden modes in Valencia meeting

Mode		Sensitiv	rity
	Current	10 ab^{-1}	75 ab^{-1}
$\mathcal{B}(B \to X_s \gamma)$	7%	5%	3%
$A_{CP}(B \to X_s \gamma)$	0.037	0.01	0.004 - 0.005
$\mathcal{B}(B^+ \to \tau^+ \nu)$	30%	10%	3–4%
$\mathcal{B}(B^+ \to \mu^+ \nu)$	Х	20%	5–6%
$\mathcal{B}(B \to X_s l^+ l^-)$	23%	15%	4–6%
$A_{\rm FB}(B\to X_s l^+ l^-)_{s_0}$	Х	30%	4–6%
$\mathcal{B}(B \to K \nu \overline{\nu})$	Х	X	1620%
$S(K^0_S \pi^0 \gamma)$	0.24	0.08	0.02 - 0.03

Do we gain on sensitivity on

- \rightarrow improving the detector (acceptance..) ?
- → by attacking what are considered « irreducible » backgrounds

I'll just to some extra thinking from now on...

In SuperB we will use recoil (semileptonic and hadronic)

With the data sample of SuperB, all approaches will be systematics-limited. We estimate that the hadronic and semileptonic tagged analyses will be able to reduce systematic uncertainties to about 4-5%. Since the systematics are mostly uncorrelated, the combined branching fraction can be expected to have a systematic error of around 3%.

From J. Walsh in Valencia

Many of the analyses will use recoil technique.

Improve the detector to « improve the recoil » is probably one or the crucial point.

Particle identification

K/π separation

- → Flavour tagging p<2Gev/c
- → «two body » 1.5GeV< p4Gev/c

Larger coverage will be important for:

- \rightarrow Tagging,
- ightarrow Recoil physics ,
- \rightarrow multi-particle identification
- → Probably very important in inclusive measurements where we need good separation (multiple tracks)

```
ex to be studied b \rightarrow d \gamma vs b \rightarrow s \gamma
```

Example from Leonid talk $\rho\gamma$ analysis considering K* γ as the only irreducible backg..

Need 1% misid. for tracks with momentum 1<p<4GeV/c

Example of physics case for m/π separation at low momentum

AFB vs q²

Important impact on for instance on AFB \rightarrow Zero point is at low q²=M² (II) \rightarrow NP models differ also at low q²

Done in Belle. We can have a double of the events at low q²=M² (II)

Observable	B Factories (2 ab^{-1})	SuperB
$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\mathcal{B}(B \to \mu \nu)$	visible	5%
$\mathcal{B}(B \to D \tau \nu)$	10%	2%
(+) systematically limite	d (to be studied with the improved detecto	or)
Br(B→ τν) Br(B→ μν) ca no	4% (below limited by syste <u>probably not with improve</u> an be measured with the s ot limited by syst.	ematics) <u>d detector</u> . ame precisior

Background Processes to $B \rightarrow \tau v$

Process	BF	Relative to signal	
B⁺→π ⁰ lν	7.4 x 10⁻⁵	3x	Lose one or both photons
B⁺→ρ⁰Iν	1.2 x 10⁴	5x	Lose two charged pions
B⁰→π⁺lν	1.4 x 10⁴	5x	Lose pion, misreconstruct tag charge
B⁰→ρ⁺lv	2.3 x 10 ⁻⁴	10x	Lose pion, one or two photons, misreco tag
B⁺→D⁰lv	2.2 x 10 ⁻²	900 x (!!!)	Lose all decay products of the D
D⁰→Kπ	3.8%	33x	Lose K,π
D⁰→K _L π⁰	1.1%	10x	Lose K_L , one or both photons
$D^0 \rightarrow K_s^{\pi^0}$	1.1%	10x	Lose K_s , one or both photons
D⁰→0 Prong	19.0%	150x	Lose some or all neutrals

Figure 7.2: Background over signal ratio for the $B \rightarrow \tau \nu$ search in the hadronic recoil as a function of the backward extent of the EMC. The energy resolution is degraded below 700 mrad to simulate the performance of a veto device.

- Recoil Technique (both HAD and SL);
- Kinematics: cut on the K CM momentum;
- Cut-and-count technique;

EXPECTED YIELDS PER ab^{-1}

Reduction of the background \rightarrow make the observation possible with 10ab⁻¹ instead of 20ab⁻¹.

$B^+ \rightarrow K^+ \nu \nu$

from Francesco Renga

The physics case of reducing the background is there.

Is it realistic?

Hermiticity :

→Helps to reduce the background when applying a cut on track multiplicity in the recoil 30% of background is realistic ?

 \rightarrow Modify the distribution of Eextra

Vertexing :

 \rightarrow Vertex information not really used at present

→backg. Reduction is possible applying vertexing requirements and secondary vertex informations

Other:

 \rightarrow PID (mainly for K* analysis), KL vetos...

$B^+ \rightarrow K^{*+} \nu \nu (I)$

EXPECTED YIELDS PER ab^{-1}

Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	Super B (75 at
			·		
			$\mathcal{B}(B o au u)$	20%	4% (†)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$\mathcal{B}(B o \mu u)$	visible	5%
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\mathcal{B}(B \to D \tau \nu)$	10%	2%
$S(J/\psi \pi^0)$	0.10	0.02			
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	$\mathcal{B}(B \to \omega \gamma)$	30%	5%
$\alpha \ (B o ho ho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)		0070	570
			$A_{CP}(B o ho \gamma)$	~ 0.20	0.05
lpha (combined)	$\sim 6^\circ$	1-2° (*)	$A_{CP}(b \to s\gamma)$	0.012(+)	0.004 (†)
			$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (+)
			$\frac{nCP(0 \rightarrow (3 + \alpha))}{C(K^0 - 0 - \alpha)}$	0.05	0.000(1)
			$\mathcal{S}(K_{S}^{-}\pi^{-}\gamma)$	0.15	0.02 (*)
ረሃ ተ ደበ ተደበ ተ ደበ ነ	0.15		$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%
$S(K_s^{\circ}K_s^{\circ}K_s^{\circ})$	0.15	0.02 (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$S(K_s^{\circ}\pi^{\circ})$	0.15	0.02 (*)	$\mathcal{B}(B \to \pi \nu \bar{\nu})$	_	possible
$S(\omega K_s^0)$	0.17	0.03 (*)	/		1
$S(f_0K^0_{\mathcal{S}})$	0.12	$0.02\;(*)$			
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)		Possible also at LF	ICb
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)			
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)		Similar precision at 1	ЛОЪ
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)			

B physics @ U(4S)

Process		Sensitivity		Mode	Observable	B Factories (2 ab ⁻¹)	Super B (75 ab
$\mathcal{B}(\tau \rightarrow$	$\mu \gamma)$	2×10^{-9}					
$\mathcal{B}(\tau \rightarrow$	en	2×10^{-9}			$x_D^{\prime 2}$	$1-2 \times 10^{-4}$	$3 imes 10^{-5}$
~~~~~	017	2 / 10		$D^0 \rightarrow K^0_s \pi^+$	$\pi^- y_D$	$2-3 \times 10^{-3}$	$5 imes 10^{-4}$
,	,		<b>_</b> _	<u> </u>	$x_D$	$2-3 \times 10^{-3}$	$5 \times 10^{-4}$
$\mathcal{B}( au  ightarrow$	eee)	$2  imes 10^{-10}$		Average	$y_D$	$1-2 \times 10^{-3}$ $2-3 \times 10^{-3}$	$3 \times 10^{-4}$ $5 \times 10^{-4}$
$\mathcal{B}(\tau \rightarrow$	un)	$4 imes 10^{-10}$		$D^0 \rightarrow K^+ \pi^-$	xD x' ²	2-3 × 10	$3 \times 10^{-5}$
<b>P</b> (	)	$6 > 10^{-10}$		$D \rightarrow K \pi$	$x \\ y'$		$7 \times 10^{-4}$
$\mathcal{D}(\tau \rightarrow$	<i>eη</i> )	0 X 10		$D^0 \rightarrow K^+ K^-$	$y_{CP}$	To be evaluated	$5 \times 10^{-4}$
$\mathcal{B}( au  ightarrow$	$\ell K^0_s)$	$2  imes 10^{-10}$		$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x = v	at LHCb	$4.9 \times 10^{-4}$ $3.5 \times 10^{-4}$
			_		q/p		$3 \times 10^{-2}$
1				┕──────────────────────────────────────	φ		2*
	$B_{s}$ at U	)(55)			Channel	Sens	itivity
ervable	Erro	r with $1 \text{ ab}^{-1}$ Err	or with 30 $ab^{-1}$		, ,		
					$D^0 \rightarrow \pi^0 e^+ e^-, I$ $D^0 \rightarrow \pi e^+ e^-, D$	$\mathcal{D}^{0} \to \pi^{0} \mu^{+} \mu^{-} \qquad 2 \times 2^{0}$	$10^{-8}$ $10^{-8}$
					$D^{0} \rightarrow \eta e^{-} e^{-}, D^{0}$ $D^{0} \rightarrow K_{c}^{0} e^{+} e^{-}, D^{0}$	$D^0 \rightarrow K^0_c \mu^+ \mu^- \qquad 3 \times$	$10^{-8}$
		0.000	0.001		$D^+ \rightarrow \pi^+ e^+ e^-,$	$D^+ \rightarrow \pi^+ \mu^+ \mu^- \qquad 1 \times$	$10^{-8}$
		0.006	0.004				
$ V_{ts} $		0.08	0.017		$D^0 \rightarrow \pi^0 e^{\pm} u^{\mp}$	2 ×	10-8
$_s  ightarrow \gamma \gamma)$		38%	7%		$D^{0} \rightarrow \eta e^{\pm} \mu^{\mp}$	2 × 3 ×	$10^{-8}$
					$D^0 \to K^0_{\mathcal{S}} e^\pm \mu^\mp$	3  imes	$10^{-8}$
om $B_s \to K^0 \overline{K^0}$		24°	11°				

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.