Some toughts on the inputs from Physics

Matteo Rama,Achille Stocchi

Many sensitivity studies has to be done (probably all have to be redone sometime..) :

—> the detector is changed, the boost is changed...

- we have still to answer to some important opened
guestions on how the « final » detector will be :

Do we need a forward PID ?
Do we need a backward EMC ?
The ammount of absorber on the IFR ?

Internal geometry of SVT / Space between SVT and DCH



Physics program is so rich that it is difficult to select a golden channel...

Nevertheless we have done the following exercise for B physics quantities :

HT Minimal Non-Minimal Non-Minimal NP Right-Handed
high tan/3 FV FV (1-3) FV (2-3) Z-penguins currents

B(B — X.v) X O O
ﬂ.,r_'.-pI:B —F Xsfr'j X O

B(B — T1/) X-OKM

B(B — X.ITI7) O O O

B(B — Kvv) O X

S(Ksmy) X

3 X-C'KM X

X The GOLDEN channel for the given scenario
O Not the GOLDEN channel for the given scenario

but can show experimentally measurable deviations : Are they the seven magnificent ? E
from SM. - :




We could optimise on :

Br(B 2> X.vy)
Acp (B 2 Xs )
Br(B 2 tv)
Br(B 2> Xsll)
Br(B 2 Xsvv)
S(Ks 7' v)

p

T DUy

Recoll physics
optimisation

K, opimisation
K, veto
Kin PID

u PID and p/m sepration

Calorimeter coverage

PID coverage

These are the golden modes for physics and also challenging
ones from detector point of view !



Revisited precisions for these golden modes in Valencia meeting

Mode Sensitivity

Current 10 ab=t 75 ab™!
B(B — Xsv) 7% 5% 3%
Acp(B — Xsv) 0.037 0.01  0.004-0.005
B Bt — T+y) 30% 10% 3-4%
B(BT — uv) X 20% 5-6%
B(B — XJIT17) 23% 15% 4-6%
Arg(B — Xl )s, X 30% 4-6%
B(B — Kvr) X X 16-20%

S(K

g w0 g

)

0.24 0.08 0.02-0.03




Do we gain on sensitivity on
-> Improving the detector (acceptance..) ?

- by attacking what are considered
« irreducible » backgrounds

I'll just to some extra thinking from now on...



In superB we will use recoll (semileptonic and hadronic)

With the data sample of SuperB, all approaches
will be systematics-limited. We estimate that the
hadronic and semileptonic tagged analyses will be
able to reduce systematic uncertalnties to about
4-5%. Bince the systematics are mostly uncorrelated,
the combined branching fraction can be expected to

have a systematic error of around 3%.
From J. Walsh in Valencia

Many of the analyses will use recoil technique.

Improve the detector to « improve the recoil » is probably one or the crucial point.
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Particle identification

Kaon Momentum Distribution

K/n separation :

Tin s |-|.- -|.
4.5 L L ] LWL

)

p(GeVic

- Flavour tagging p<2Gev/c
- «two body » 1.5GeV< p4Gev/c

. . “3Eﬂgﬂﬂﬂﬂ 1D
Larger coverage will be important for: R e ]

- Tagging,
- Recolil physics ,
- multi-particle identification

- Probably very important in inclusive measurements
where we need good separation (multiple tracks)

ex to be studied b->dy vs b>sy



S/B

Example from Leonid talk py analysis considering K*y as the only irreducible backg..
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Need 1% misid. for tracks with
momentum 1<p<4GeV/c

2359

2295

8% extra coverage

Since both tracks has to be identified

the gain is in fact larger and « preliminarly »

estimated to an effective increase of

13% of events




L/t separation
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Example of physics case for m/z separation at low momentum

o plp)= 1.0GaV
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Important impact on for instance on AFB
q2:|\/I2 (”) —>Zero point is at low g?=M?2 (ll)
- NP models differ also at low @?

Done in Belle. We can have a double

of the events at low g2=M2 (ll)



. Observable B Factories (2 ab_l) SuperB

(H" W) B(B — Tv) 207% 4% (1)
””””””””” B(B — p,y) visible 5%
B(B — Drv) 10% 2%

\Y)
(+) systematically limited (to be studied with the improved detector)

2 2
BR(B—7v)=BRgy(B—1v)|1-—tan’p 4% (below limited by systematics)

H ..probably not with improved detector.
can be measured with the same precision
not limited by syst.

3 37
S = -1
z | 2abt EZ _z 10ab

| L = This analysis has be redone

- and to see how far we can
: go in precision.
tan B
2ab+?

2 M,~0.4-0.8 TeV
= for tanf~30-60

SuperB -75ab!

M, ~1.2-2.5 TeV
for tanf~30-60




Background Processes to B — tv

Process BF Relative to signal
B*—nlv 74x10°  3x Lose one or both photons
B'—plv 1.2x10* 5x Lose two charged pions
B'omiv 1.4x10* 5x Lose pion, misreconstruct tag charge
B*—plv 2.3x10%  10x Lose pion, one or two photons, misreco tag
B*=D"Iv 2.2x10° 900 x (1) Lose all decay products of the D
... D"=Kn 3.8% 33« Lose K,n
.. D"=sK 1 11%  10x Lose K , one or both photons
. D' 11%  10x Lose K_, one or both photons
..D°—=0Prong 19.0% 150x Lose some or all neutrals
E" 4.55—
E 1.5 f—
B/N 2.8>2
. 25F // 600mrad
q;__'_r'_._T_Hr.—I 3()I()mrla.d | | | |
D_I = Ii}.ll - Iﬂ.ll - ID..ll - I0.4| - Il}.il = IIJ.GI = Iﬂ.?l = *III.EI - IO.‘_;‘I - Il
Backward EMC Extent (rad)
Figure 7.2: Background over signal ratio for the B — 7v search in the hadronic recoil as

a function of the backward extent of the EMC. The energy resolution is degraded below 700
mrad to simulate the performance of a veto device.



Recoil Technique

Kinematics:

(both HAD and SL);

Cut-and-count technique;

EXPECTED YIELDS PER ab!

SL RECOIL
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Reduction of the background - make the observation possible with 10ab! instead of 20ab™..

Integrated Luminosity[ab™]

Bt - Kt vv

cut on the K CM momentum;

HAD RECOIL

from Francesco Renga
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The physics case of reducing the background is there.

Is it realistic ?

Hermiticity

—>Helps to reduce the background when applying a cut on track multiplicity
in the recoil 30% of background is realistic ?

- Modify the distribution of Eextra

Vertexing :

—>Vertex information not really used at present

—>backg. Reduction is possible applying vertexing requirements and
secondary vertex informations

Other:
—->PID (mainly for K* analysis), KL vetos...



Bt - K*xt vy (I)

EXPECTED YIELDS PER ab™!

K*+ channel SL RECOIL HAD RECOIL
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B physics @ U(4S5)

Observable B Factories (2 ab™") SuperB (75 ab™')  Observable B Factories (2 ab™') SuperB (75 al
B(B — 1v) 20% 1% (1)

sin(28) (DAY 0.10 0.02 B(B — pv) visible 5%

cos(28) (DR 0.20 0.04 B(B — D1v) 10% 2%

S(J /4 1) 0.10 0.02

S(DTD™) 0.20 0.03 B(B — p) 15% 3% (1)

a (B — ) ~ 16° 3° B(B N w,},) 30% 5%

o (B — pp) ~ 7 2" () | |

| | / ~ 0.2 :
& {combined) ~ 6° 1-2° (%) ACP(B . P'}) 0.20 0.05

I R e
el 0-006 (1)
I ) 002 (4

| |

o 35% 5%

S(KIKIKY) 0.15 0.02 (x) B(B — Ku7) o o
S(Kgn?) 0.15 0.02 (%) Al
S(wK3) 0.17 0.03 (x) B(B — wvp) - possible
S(foks) 0.12 0.02 (%)

|Vew| (=xclusive) 4% (4) 10 (s) Possible also at LHCb

|Vea| (inclusive) L% [+] 1.5% (#)

[V, el (exclusive) 8% («) 1.0% () _

[Viiel (inclusive) 8% [ 2.0% ()



T physics

Process Sensitivity
B(r - pvy) 2x107°
B(r mey) 2x107°

(1 —eee) 2x1071°
(r—pn) 4x1071°
B(r — en) 6 x 1010
(T — £KD) 2x1071°

B, at U(55)

Charm at U(4S) and threshold

Mode Observable B Factories (2 ab™') SuperB (75 ab™")
|

| ' 1-2 % 1071 3= 107"
D" — Krta~ wp 2-3 =% 102 5% 1074
e 2-3 % 107° 5w 107t
Average up 1-2 » 1072 31070
Ip 2-3 % 1072 5o 1074
D°—Ktn~ " 3x107°
3 7Tx107*
0 grtge— 5x 1074
- To be evaluated 49 x 104
- at LHCb 3.5 x107*
3x 1072

2°

Observable Error with 1 ab™*  Error with 30 ab™*

\Via/ Vis|
B(B; — vy)

3. from B, —» K°K?"

Channel Sensitivity
DU — pPete— DO — nPutp- 2% 1078
D —qpete, D' — qutu 3x 1078
D' — Klete , D" » Klutpu~ 3x10°®

Dt - grtete~, DY 1x10°%
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