
Fast track candidates 3D clustering

23rd September 2015

Geoffrey GALBIT
IPN Lyon

Algorithm,
Hardware implementation

And results

Introduction

Geoffrey GALBIT

→ Context :

2

→ This track filtering system takes place between the Associative Memories and the fit

→ The goal of this module is to provide clean Track Candidates (5 or 6 stubs) with a low fake rate

→ The TC Builder proceeds to a 3D clustering of the stubs pattern per pattern

TC Builder Parameters fit

Track parameters

Algorithm overview

Geoffrey GALBIT

→ Step by step algorithm :

3

R

φ

Lay 5

Lay 6

Lay 7

Lay 8

Lay 9

Lay 10

Inner layers

Good stub
Fake stub
Fountain pattern (AM)

→ Each pattern is processed individually, treatment is operated simultaneously on (R, φ) and (R, Z) plans

→ The first step consist in generating all the possible
pairs of stubs from different inner layers.

→ These pairs are the 3D seeds of the algorithm.

→ Nseeds = (N5 * N6) + (N6 * N7) + (N5 * N7)

→ In our example there are 5 possible different seeds.

Z

Algorithm overview

Geoffrey GALBIT

→ Step by step algorithm :

4

R

φ

Lay 5

Lay 6

Lay 7

Lay 8

Lay 9

Lay 10 → For each 3D seed, all the other layers stubs are
tested.

→ If a stub pass the test, it is added to the current TC.

→ When all stubs are tested, if the current TC contains 5
stubs or more, it is (stored in an intermediate memory).

→ In the example the TC is not recorded for this seed
(there are only 3 stubs selected).

→ The test consist in calculating the distance between
the 3D seed projection and the stub and comparing the
result with a threshold (green triangle).

Good stub
Fake stub
Fountain pattern (AM)
Current seed stub

→ Each pattern is processed individually, treatment is operated simultaneously on (R, φ) and (R, Z) plans

Z

Algorithm overview

Geoffrey GALBIT

→ Step by step algorithm :

5

R

φ

Lay 5

Lay 6

Lay 7

Lay 8

Lay 9

Lay 10 → When a stub pass the test and is recorded in the
current TC, the distance is memorized.

→ In our example the current TC is recorded for this
seed (5 stubs selected).

→ If an other stub pass the test for the same layer, the
results of the stubs are compared in order to keep the
best alignment with the seed (only on R, φ plan).

→ When iterations over the seeds are finished, the
intermediate memory content is read if there is a valid
TC (never more than 1 TC per pattern).

Good stub
Fake stub
Fountain pattern (AM)
Current seed stub

→ nIter = (N5 * N6) * (Nstubs – N5 – N6)
+ (N6 * N7) * (Nstubs – N6 – N7)
+ (N5 * N7) * (Nstubs – N5 – N7)
- 2 * (N5 * N6 * N7)

→ For this example : nIter = 22

→ Each pattern is processed individually, treatment is operated simultaneously on (R, φ) and (R, Z) plans

Z

Hardware Implementation

Geoffrey GALBIT

→ Block diagram of one filtering module :

6

Polar translation

Combinatoric

Generation

3D Alignement

Evaluation

Track Candidate

Construction

→ Polar translation is operated by a CORDIC module for each stub of the
pattern

→ For each pattern all the combinations seeds/stub are generated
sequencially

→ For each iteration, stub is tested against the seed (3D alignment)

→ If the stub score is better than the threshold (or better than a previous stub
of the same layer), the stub is added to the TC.

→ When iteration over stubs is finished for the current seed, if the TC have 5
stubs or more, it’s memorized else it’s dropped.
→ If there is already one memorized combination, priority rule is :

6 stubs > 3inLay + 2extLay > 2inLay + 3 extLay

Track Candidate

Intermediate Storage

R, φ

Seed, Stub

Stub, AlignScore, Threshold

TC

Hardware Implementation

Geoffrey GALBIT

→ Implementation of one filtering module :

7

→ Module is fed with patterns content (1 stub per clock cycle).

→ In the first pipeline, polar translation is processed by CORDIC while an other module compute the

address where the stubs will be stored in the RAM and begins to send informations to the read logic.

→ When there is at least one complete pattern in the memory, the read logic begins to generate all the read

addresses corresponding to an iteration (1 seed + 1 stub).

→ Last part of the module is a pipeline which tests alignment and memorizes stubs to construct TC.

Hardware Implementation

Geoffrey GALBIT

→ Focus on the 3D alignment evaluation module :

8

|(φ1 – φ2) * (R3 – R1) + (φ1 – φ3) * (R1 – R2)| ≤ |WindowWidth * (R1 – R2)|

Stub (R, φ) Score

-

-

-

-

x

+

x

x

φ1

φ2

R3

R1

φ1

φ3

R1

R2

Seed1 LayID

Stub (R, φ) Threshold

L

U

T

Stub (R, φ) Threshold

Stub (R, φ) Score

→ Same processing is operated in parallel on the R, Z plan (with different thresholds)

→ This processing step is fully pipelined

→ Multiplications are operated by DSP Slices (up to 18 bits per operand for 1 Xilinx DSP Slice)

Seed1 (R1, φ1, Z1)
Seed2 (R2, φ2, Z2)
TestedStub (R3, φ3, Z3)

→ Alignment test on R, φ :

WindowWidth
Seed2 LayID

TestedStub LayID

Full detector adaptation

Geoffrey GALBIT

→ Algorithm adaptation for the other tower types (hybrid and end-cap) :

9

→ Straight forward to adapt to other towers (exactly the same algorithm)

→ PS and 2S modules of the disk have to be split (they receives 2 distinct sets of acceptance
window width during the calibration)

Hardware Implementation

Geoffrey GALBIT

→ Full TC Builder :

10

→ The patterns of an event have to be split into different groups

→ A Clustering Module is light enough to be instanciate many times

→ The required N_Modules can be defined thanks to a latency study

Filtering Module 1Pattern Group 1

Filtering Module 2Pattern Group 2

Filtering Module NPattern Group N

Track Candidates

Track Candidates

Track Candidates

TC Builder
Data Organizer Fit

Ressources utilization

Geoffrey GALBIT11

→ Ressource utilization :

→ Note : It is not relevant to consider the I/O line (inputs and outputs of the FPGA) while the goal of this

module is to be inserted between the Data Organizer and a fitter present on the FPGA.

→ Vivado ressource utilization estimation for one filtering module on a Kintex 7 FPGA :

Latency Study

Geoffrey GALBIT

→ Latency of the filtering module:

12

→ During one event, a module can manage multiple patterns

Valid Input

RAM writing

RAM reading

Thesholding

Valid Output

Patt 1

Start

Patt 2 Patt 3

Patt 2 Patt 3

Iter Patt 1 Iter Patt 2 Iter Patt 3

Iter Patt 3

TC 1 TC 2 TC 3

Stop

Cordic lat.

nStubs P1 nIterations

Pipeline lat. Output lat.

Constant latency : around 60 CLK cycles

Total latency = Constant latency + size of the 1st pattern + sum of nIterations for all the patterns of the module

Iter Patt 2

Patt 1

Iter Patt 1

Latency Study

Geoffrey GALBIT

→ Number of clock cycles required (per filtering module per event) :

13

→ Round robin algorithm (each module take alternatively a pattern until there is no more)

→ This latency can be reduced thanks to a better algorithm (better load repartition between modules)

Efficiency

Geoffrey GALBIT

→ Current status:

14

→ > 98% in all the case for the TC Builder stage (not affecting the overall efficiency)

→ Same effect in all the towers

→ fixed point 18 bits give the same results as the floating point software simulation

Conclusion

Geoffrey GALBIT

→ Conclusion :

15

→ 3D thresholding allows a good fake rejection.

→ TC are perfectly formated for the fit step (5 or 6 stubs per TC).

→ An unique solution for barrel, hybrid and endcap towers.

→ Future work :

→ Add some optional features to the C++ (and future CMSSW) code, like the ability to emulate the

HW binning and to estimate the latency needed by the TC Builder to process an event.

→ Increase the filtering frequency (goal = 400 MHz).

→ Continue the global optimization of the filtering modules.

→ Implement a coarse track parameters estimator.

→ Insert the TC builder implementation between the Data Organizer and a Fitter

