

Geometry Data formats Pattern banks

Sebastien Viret for the Lyon AM team

→ Phase II tracker geometry (*Technical Proposal* ^(*)):

- \rightarrow L1 tracking capability up to $|\eta|$ =2.4.
- \rightarrow All the modules have a good ϕ resolution (*strip pitch 90µm*)
- \rightarrow r/z pitch of the **PS modules** is 1.5mm in the disks/barrel
- \rightarrow r/z pitch of the **2S modules** is 5cm in the disks/barrel

→ (*)Reference: S.Mersi: http://mersi.web.cern.ch/mersi/layouts/.current/TechnicalProposal2014/index.html

Geometry Pattern banks Data formats

\rightarrow Future geometry (not for the demonstrator):

 \rightarrow **Tilted geometry**^(*) is currently studied, as it allows to:

- · Reduce the amount of material at high rapidity
- Reduce the cost (less modules)
- Heavily simplifies the PS modules FE electronics

 \rightarrow Available in CMSSW before end of 2015.

 \rightarrow Should be relatively harmless for the AM approach (apart from the fact that we will have to redo everything...)

→ (*)Reference: S.Mersi: http://mersi.web.cern.ch/mersi/layouts/.current/ShortTilted3xPS_3x2S_5disks_longer_uncut/index.html

 \rightarrow Phase II tracker data extraction protocol (*):

 \rightarrow Each tracker module contains contains **19 readout chips**:

→16 CBC/MPA
→2 CIC → this is where the core stub data format is defined
→1 GBT

→ (*)Reference: F.Vasey: https://indico.cern.ch/event/326723/session/4/contribution/11/material/slides/0.pdf

→ Latest CIC 2S data format (PRBF.raw):

 \rightarrow The stub payload is what will be received on the PRM (along with tower module info)

	320 bits									
payload										
neader						list of stubs			uaner	
	error / status bit	bx ID	nb stub	bx ID	chip ID	stub address	stub bend			
0	CBC1 CBC2 CBC3 CBC4 CBC4 CBC5 CBC5 CBC6 CBC6 CBC7 CBC8									
1b	9bits	12bits	4bits	3bits	3bits	8bits	4bits		Bits at '0'	

 \rightarrow It was shown that **4 bits are sufficient for the bend**^(*). Means that 2S stub size is now 18 bits. Up to 16 stubs per block. Limited to 15 as sufficient.

 \rightarrow Up to 30 stubs / 8BX / module

 \rightarrow Sufficient for 2S trigger info transmission up to PU200 (**)

→ (*)Reference: SV: <u>https://indico.cern.ch/event/350910/session/4/contribution/12/material/slides/0.pdf</u>

^{→ (**)}Reference: SV: https://indico.cern.ch/event/375536/session/4/contribution/21/material/slides/0.pdf

→ Latest CIC PS data format (PRBF.raw):

320 bits										
		boodor				payl	oad			Anallan
neader						list of	stubs			ualler
	error / status bit	bx ID	nb stub	bx ID	chip ID	stub address	stub bend	z pos		
1	MPA1 MPA2 MPA3 MPA4 MPA5 MPA6 MPA7 MPA7 MPA8 concentrator									
1	b 9bits	12bits	4bits	3bits	3bits	8bits	3bits	4bits		Bits at '0'

 \rightarrow It was shown that in PS **3 bits are sufficient for the bend** (see previous slide for ref.). Means that PS stub size is **21** bits. Up to 35 stubs per CIC block in the most ambitious GBT transmission projection (to be confirmed)

 \rightarrow Up to 70 stubs / 8BX / module (was 20 until now)

Mode	TRG size	N _{stubs} /CIC		
LP-SEC	320	14		Sufficient to pass all the stube at
LP-LEC	384	17	7	Sufficient to pass an the study at
10G-SEC	640	29		PU200 If 3GeV/c threshold
10G-LEC	768	35	K	

→ (*)Reference: SV: <u>https://indico.cern.ch/event/350910/session/4/contribution/12/material/slides/0.pdf</u>

\rightarrow **Trigger towers:**

 \rightarrow At the backend level, DTC boards send the stubs into dedicated trigger towers (**optimal tracker to DTC cabling crucial**, **but far from simple**)

 \rightarrow Three tower types: **barrel**, **hybrid**, and **endcap**

 \rightarrow A stub never belongs to more than 4 towers

\rightarrow Total PRBF.raw rate in one tower:

- \rightarrow We consider that all the stubs will arrive into the PRB boards (3GeV/c threshold)
- \rightarrow Based on tower stub rates, we can estimate the data transfer rates in an ATCA shelve containing 10 PRB boards.
- → For simplicity, we assume that there is no communication between shelves (*ie no gateway board, job done in the DTCs*), and that there is ~400 modules/tower

^{→ (*)}Reference: J.Olsen: http://indico.cern.ch/event/271059/contribution/2/material/slides/1.pdf

\rightarrow Max and average stub rate per tower (DTC \rightarrow PRB):

→ For step 1, the routing will have to be done wisely in order to ensure that each PRB receives roughly the same amount of data.

Each board recaive the DTC info from 40 modules @ 40MHz \rightarrow Average rates measured with 1000 PU+4tops events, with a 3GeV/c stub threshold. 95% limits are also given (*ie 95% of the events are below this values*).

			PU140		PU200			
Rates in stub	os/tower/BX		Tower type		Tower type			
		Barrel	el Hybrid Endca		Barrel	Hybrid	Endcap	
2001	Average rate	240	261	307	339	373	459	
3027	95% lim	339	357	423	462	497	620	

- → Means that in 95% of the case, PRB rate is lower than 62 stubs per BX at PU200. Assuming 40 bits per stubs, this corresponds to a max 'average' input rate of ~100Gbps per PRB board from the DTCs
- → Of course, tails will always occurs, but 100Gbps is already an overestimate of the average load.

→ Max stub rate per PRM (PRB→PRB):

- → Safe upper limit from DTC to PRB is ~100Gbps (*PU200/3GeV threshold/busy events only*)
- \rightarrow From there one can get the upper limit from PRB to PRB.

- \rightarrow Each PRB receives every 1 out of 10 events the data from 9 other PRBs
 - \rightarrow Max rate from PRBs to PRBs is therefore 100/10*9 = 90 Gbps
 - → Means a max input rate per FMC connector of ~25Gbps (should not forget the 10th PRB data)
 - \rightarrow Once again these values provide a safety factor of ~35% wrt what we will get at max on average. It is well within the spec of the pulsar FMC connector (64Gbps)
 - \rightarrow This is for PU200, with a 3GeV threshold.

 \rightarrow PRB \rightarrow PRM friendly format conversion should occur here

\rightarrow What are we aiming for, for the three tower types?

- → Main requirements (*necessary whatever the trackfit strategy is*):
 - \rightarrow Banks with ~1M patterns per tower
 - \rightarrow No efficiency loss for p_T>5GeV/c, more than 95% efficiency below that (*particularly in jets*)
 - \rightarrow Less than **50% fake roads** (ie roads containing less than 4 stubs from a good primary particle)
 - \rightarrow Less than 100 matched roads per tower in average, for PU up to 200
 - → If possible, less than 100 matched roads per tower in 95% of the events (ie account for tails)

\rightarrow Latest bank properties:

→ The latest emulator is not yet on CMSSW, but available on github (https://github.com/gbaulieu/amsimulation).

 \rightarrow It now includes:

- Fountain patterns (*superstrip size radius dependent*) in barrel and endcaps
- **DC bit allocation per layer** (*layers can have different DC bit numbers*)
- · New methods to print bank information
- Possibility to truncate a bank to a given size (keeping only the most probable patterns)
- Lots of methods for the testbench are also currently developed (CMSSW interface)
- \rightarrow A set of banks using all those features was created:

srm://lyogrid06.in2p3.fr/dpm/in2p3.fr/home/cms/data/store/user/gbaulieu/SLHC/bank_150828_merged/truncated/

 \rightarrow Banks are built using only tracks with a p_T>3.1GeV/c

 \rightarrow This set of banks is the result of a long optimisation process, but considering the enormous AM parameter phase space, this is not the end of the story...

\rightarrow Legacy bank properties (*barrel*):

		64s/3DC		
		32s/1DC L5		
		32s/1DC L4		
		16s/1DC L3		
		16s/3DC L2		
		8s/3DC		
D5 ⁻ D4 ⁻ D3 ⁻	D2- D1-		D1 ⁺ D2 ⁺	D3 ⁺ D4 ⁺ D5 ⁺

 \rightarrow First number is the Sstrip ϕ width, in strips, second value is the max number of DC bits in the layer.

- \rightarrow Z granularity is the module
- \rightarrow Bank truncated to 1M patterns

→ Legacy bank properties (*hybrid*):

64s	s/2DC 32s/2DC s/2DC 32s/2DC s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC	16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC	64s/3DC L6 32s/1DC L5	16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC	32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC	64s/2DC 64s/2DC 64s/2DC		
		16s/2DC	32s/1DC L4 16s/1DC L3	16s/2DC				
			16s/3DC L2 8s/3DC L1					
D5 ⁻ D4 ⁻ D	03 ⁻ D2 ⁻	D1-		D1+	D2+	D3+	D4+	D5+

 \rightarrow First number is the Sstrip ϕ width, in strips, second value is the max number of DC bits in the layer.

- \rightarrow Z/R granularity is the module
- \rightarrow Bank truncated to 1.5M patterns

\rightarrow Legacy bank properties (endcap):

64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC	64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC	64s/2DC 64s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC	32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC	16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 8s/2DC	L L L L 16s/2DC	6 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC 16s/2DC	32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 16s/2DC 16s/2DC 16s/2DC	64s/2DC 64s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC 32s/2DC	64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC	64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC 64s/2DC
D5-	D4-	D3-	D2-	8s/2DC 8s/2DC D1-	8s/2DC	1 8s/2DC 8s/2DC D1 ⁺	D2+	D3+	D4+	D5+

 \rightarrow First number is the Sstrip ϕ width, in strips, second value is the max number of DC bits in the layer.

- \rightarrow Z/R granularity is the module
- \rightarrow Bank truncated to 1M patterns

→ Legacy bank performances (efficiencies):

→ Total number of patterns is 56M (~440 AM06 chips, so ~18k chips for the full system)

	Muons		Elec	trons	PU	40 + 4tops	PU200 + 4tops		
	$p_T \ge 3$	$p_T \ge 10$	$p_T \ge 3$ $p_T \ge 10$		$p_T \ge 3$	$p_T \ge 10$	$p_T \ge 3$	$p_T \ge 10$	
ϵ^{SR}	$100.0_{-0.05}$	$100.0_{-0.05}$	97.0 ± 0.1	98.4 ± 0.1	98.0 ± 0.1	98.4 ± 0.2	98.1 ± 0.1	98.5 ± 0.2	
ϵ^{TW}	99.9 ± 0.05	99.9 ± 0.05	99.8 ± 0.05	99.8 ± 0.05	$100.0_{-0.05}$	$100.0_{-0.05}$	$100.0_{-0.01}$	$100.0_{-0.05}$	
ϵ^{AM}	99.0 ± 0.05	99.1 ± 0.05	94.9 ± 0.1	95.8 ± 0.1	97.8 ± 0.1	99.5 ± 0.1	97.8 ± 0.1	99.3 ± 0.2	
ϵ^{CB}	99.9 ± 0.05	99.9 ± 0.05	98.4 ± 0.1	98.5 ± 0.1	99.3 ± 0.05	99.4 ± 0.1	99.1 ± 0.1	99.3 ± 0.2	
$\epsilon^{SR \to CB}$	98.8 ± 0.05	98.9 ± 0.05	91.4 ± 0.2	92.8 ± 0.2	95.2 ± 0.1	97.3 ± 0.2	95.0 ± 0.1	97.2 ± 0.3	

Table 6: Efficiencies up to the combination builder, for $p_T \ge 3 \text{GeV/c}$

 \rightarrow AM step efficiencies within requirements

→ Legacy bank performances (road rates and fakes)

→ Values	given	for F	⊃U+4to	os events
----------	-------	-------	--------	-----------

		PU cor	ditions
		140	200
e	Matched road rate (in roads/BX/tower)	30,2	40,4
arr	95% limit (in roads)	123	149
ä	Fake road proportion (in %)	19,0	32,2
id.	Matched road rate (in roads/BX/tower)	28,1	42,4
ybr	95% limit (in roads)	108	141
H	Fake road proportion (in %)	37,2	53,6
ap	Matched road rate (in roads/BX/tower)	19,5	28,1
qc	95% limit (in roads)	69	92
En	Fake road proportion (in %)	24,3	28,1

 \rightarrow Well within requirements at PU140 (95% limit a bit too large for the barrel, but OK). Situation is a bit worse at PU200, but relatively acceptable.

 \rightarrow Fake rate larger in hybrids because matching threshold lower (4 inst. of 5)

 \rightarrow Current tracker geometry will evolve in the coming weeks. This should not impact the efficiency of our approach (*apart endcap tower rate reduction*).

 \rightarrow Data transmission/formats from modules to the PRM is still not frozen, some important points must be solved asap:

- Modules to DTC cabling
- PRB to PRM data format conversion

 \rightarrow The latest results on the AM stage are quite encouraging, we have good (*ie within requirements*) performances with 1M patterns banks (*1.5M for hybrid*) for most of the towers. More than sufficient for the demonstrator.