Experiences with the INFN Mezzanine 23 Sep 2015

INtelligent Signal Processing for FrontIEr Research and Industry This project has received funding from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement n° 317446

INFN Mezzanine

Mezzanine test stand

Ongoing in Pisa

- Allestimento laboratorio
- Luca Martini: ottimizzazione banche, retina pattern finding, track fitting

- Virtex 6 Vi IPbus JTAG FSM • HitTest FSM Hit RAM
- Virtex 6 firmwa • Configures
 - Tests links (
 - Sends the I
- Giacomo Fedi, Guido Magazzù: firmware FPGA (data organizer), test della mezzanina perugina
 - Data Organizer
 - Finite State Machine to control the dataflow inside the mezzanine
 - Configurator (logic to program the Associative Memory and to load the constant inside the FPGA)

the firmware

AM

The Virtex6 firmware was changed to cope with the mezzanine

- test
- JTAG mainly software managed, no changes in
- JTAG links pass trough the Kintex7 and reach the AM chips (JTAG chained)
- Currently only the reset of Kinte GTX is done via Virtex6 software

22

AM chip JTAG

JTAG commands are wrapped into IPbus packets and sent to the Virtex6 (evaluation board) where the JTAG commands are unwrapped and interpreted by a FSM. The JTAG connections pass through the FMC connector and the Kintex7 (mezzanine) and reach the 4 AM chips in daisy-chain.

Actions:

- The single-test-chip Python scripts have been modified to work with a chain of 4 chips
- Retrieving of IDCODEs
- Configuration of AM chip SerDes:
 - PRBS test (in/out)
 - Normal operation (IDLE)

GetIDCODE:	0	50004071
GetIDCODE:	1	50004071
GetIDCODE:	2	50004071
GetIDCODE:	3	50004071

GTX reference clock

- The Kintex7 (mezzanine) GTX bit rate is 2 Gbps with a reference clock of 125 MHz.
- The 125 MHz clock is generated by ICS844021I (clock multiplier x5) and by a crystal @25 MHz.
- The crystal component had a wrong pin assignment
- The issue was **fixed** by crystal rotation

Correct the pin assignment

Frequency: 124.9932 MHz Standard dev.: 3.8 KHz

AM chips <-> FPGA links

- Each AM chip:
 - 8 SerDes input -> 8 links FPGA -> AM chips (fanouts)
 - 1 SerDes output -> 4 links AM chips -> FPGA
- SerDes are configured to run @ 2Gbps
- Can be configured in normal operation (IDLE) and in PRBS test
- Using a LeCroy 8 GHz Serial data analyzer we tested an output link near the FGPA
- No errors measured in 8 hours BER<10⁻¹⁴

FPGA -> FMC connectors links

- The mezzanine links between FPGA and FMC connector were tested using a loopback card on the FMC connector
- Eye diagrams obtained with IBERT on Kintex7

Link0 @ 8 Gbps

Link1@8Gbps

Link2@8Gbps

Characterize all the links with the data analiser

Realistic test-Logic

5 Hits through 4 GTX channels _ -Application Layer **IPbus** Protocols -TCP UDP UDP/TCP/IP IP Ethernet **IEEE 802.3** MAC (IEEE 802.11) Ethernet Physical

Matched roads through 4 GTX channels

- Aim: test of the links with a more realistic test
 - send the hits from the evaluation board to the AM chips
 - retrieve in the evaluation board the matched roads from the AM chips

FMC issue

	r.	5	n	G	F F	E		0		A
1	VREF_B_M2C	GND	VREF_A_M2C	GND	PG_M2C	GND	PG_C2M	GND	RES1	GND
2	GND	CLK3 M2C P	PRSNT M2C L	CLK1 M2C P	GND	HA01 P CC	GND	DP0 C2M P	GND	DP1 M2C P
3	GND	CLK3_M2C_N	GND	CLK1_M2C_N	GND	HA01_N_CC	GND	DP0_C2M_N	GND	DP1_M2C_N
4	CLK2_M2C_P	GND	CLK0_M2C_P	GND	HA00_P_CC	GND	GBTCLK0_M2C_P	GND	DP9_M2C_P	GND
5	CLK2_M2C_N	GND	CLK0_M2C_N	GND	HA00_N_CC	GND	GBTCLK0_M2C_N	GND	DP9_M2C_N	GND
6[GND	HA03 P	GND	LA00 P CC	GND	HA05 P	GND	DP0 M2C P	GND	DP2 M2C P
7	HA02_P	HA03_N	LA02_P	LA00_N_CC	HA04_P	HA05_N	GND	DP0_M2C_N	GND	DP2_M2C_N
8	HA02_N	GND	LA02_N	GND	HA04_N	GND	LA01_P_CC	GND	DP8_M2C_P	GND
9[GND	HA07_P	GND	LA03_P	GND	HA09_P	LA01_N_CC	GND	DP8_M2C_N	GND
0	HA06_P	HA07_N	LA04_P	LA03_N	HA08_P	HA09_N	GND	LA06_P	GND	DP3_M2C_P
1	HA06_N	GND	LA04_N	GND	HA08_N	GND	LA05_P	LA06_N	GND	DP3_M2C_N
2	GND	HA11_P	GND	LA08_P	GND	HA 13_P	LA05_N	GND	DP7_M2C_P	GND
3	HA10_P	HA11_N	LA07_P	LA08_N	HA12_P	HA13_N	GND	GND	DP7_M2C_N	GND
4	HA10_N	GND	LA07_N	GND	HA12_N	GND	LA09_P	LA10_P	GND	DP4_M2C_P
5	GND	HA14_P	GND	LA12_P	GND	HA 16_P	LA09_N	LA10_N	GND	DP4_M2C_N
6	HA17_P_CC	HA14_N	LA11_P	LA12_N	HA15_P	HA16_N	GND	GND	DP6_M2C_P	GND
7	HA17_N_CC	GND	LA11_N	GND	HA15_N	GND	LA13_P	GND	DP6_M2C_N	GND
8	GND	HA 18_P	GND	LA16_P	GND	HA20_P	LA13_N	LA14_P	GND	DP5_M2C_P
9	HA21_P	HA18_N	LA15_P	LA16_N	HA19_P	HA20_N	GND	LA14_N	GND	DP5_M2C_N
0	HA21 N	GND	LA 15 N	GND	HA19 N	GND	LA17 P CC	GND	GBTCLK1 M2C P	GND
1	GND	HA22_P	GND	LA20_P	GND	HB03_P	LA17_N_CC	GND	GBTCLK1_M2C_N	GND
2	HA23_P	HA22_N	LA19_P	LA20_N	HB02_P	HB03_N	GND	LA18_P_CC	GND	DP1_C2M_P
3	HA23_N	GND	LA19_N	GND	HB02_N	GND	LA23_P	LA18_N_CC	GND	DP1_C2M_N
4	GND	HB01_P	GND	LA22_P	GND	HB05_P	LA23_N	GND	DP9_C2M_P	GND
5	HB00_P_CC	HB01_N	LA21_P	LA22_N	HB04_P	HB05_N	GND	GND	DP9_C2M_N	GND
6	HB00_N_CC	GND	LA21_N	GND	HB04_N	GND	LA26_P	LA27_P	GND	DP2_C2M_P
7[GND	HB07_P	GND	LA25_P	GND	HB09_P	LA26_N	LA27_N	GND	DP2_C2M_N
8	HB06_P_CC	HB07_N	LA24_P	LA25_N	HB08_P	HB09_N	GND	GND	DP8_C2M_P	GND
9	HB06_N_CC	GND	LA24_N	GND	HB08_N	GND	TCK	GND	DP8_C2M_N	GND
0	GND	HB11_P	GND	LA29_P	GND	HB13_P	TDI	SCL	GND	DP3_C2M_P
1	HB10_P	HB11_N	LA28_P	LA29_N	HB12_P	HB13_N	TDO	SDA	GND	DP3_C2M_N
2	HB10_N	GND	LA28_N	GND	HB12_N	GND	3P3VAUX	GND	DP7_C2M_P	GND
3	GND	HB15 P	GND	LA31 P	GND	HB19 P	TMS	GND	DP7 C2M N	GND
4	HB14_P	HB15_N	LA30_P	LA31_N	HB16_P	HB19_N	TRST_L	GA0	GND	DP4_C2M_P
5	HB14_N	GND	LA30_N	GND	HB16_N	GND	GA1	12P0V	GND	DP4_C2M_N
6	GND	HB18 P	GND	LA33 P	GND	HB21 P	3P3V	GND	DP6 C2M P	GND
7	HB17_P_CC	HB18_N	LA32_P	LA33_N	HB20_P	HB21_N	GND	12P0V	DP6_C2M_N	GND
8	HB17_N_CC	GND	LA32_N	GND	HB20_N	GND	3P3V	GND	GND	DP5_C2M_P
9[GND	VIO B M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	DP5 C2M N
0	VIO_B_M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	RES0	GND
1			LPC Connector	LPC Connector			LPC Connector	LPC Connector		

Table (11): Vita57 FMC Pin Assignment

- VADJ FMC pins are connected with the 3.3 Volt pins.
- The evaluation board use the VADJ to bring 2.5 Volt ->
- \cdot The evaluation board didn't work
- $\cdot\,$ Fixed removing the VADJ pins from the adaptor FMCs

Remove the VADJ connection?

Mechanic and electric tests

- Two weeks were spent to integrate the INFN mezzanine with the PulsarIIb at FNAL
- First step: check the electric and mechanic compatibility
- Second step: check of the voltages on the mezzanine and the power consumption
- Initial step conclusion: no major issues were found, although some improvements could be done in the next mezzanine version

Recommendations from Jamieson

1) the **JTAG TDO output from the mezzanine is 1.8V and the Pulsar2b board is expecting JTAG signals to be 3.3V levels**. This signal is buffered on the Pulsar2b so I don't think it should be a problem, though.

2) the Kintex-7 system monitor/ADC pins in bank 0 (VREF_P, VP_O) are grounded, so it **is not possible to monitor the internal temperature of this Kintex FPGA**. If aggressive firmware (e.g. lots of GTX transceivers in use, fast data/clock rates) is used a thermocouple probe should be attached to the Kintex part so we can check how hot things are running. (For simple IPBus loopback operations it should not even run warm.)

3) the FMC LVDS lines (LA*, LB*, CLK_DW*, CLK_UP*) are connected to 2.5V I/O banks on the Kintex 355 FPGA. All of these signals should use the "LVDS_25" I/O standard.

4) If one needs to send an LVDS clock from the mezzanine to the Pulsar2b board, use CLK<0> (CLK_UP_P0/CLK_UP_N0). No other FMC dedicated LVDS clocks are connected on the mezzanine.

5) If one needs to send an LVDS clock from the Pulsar2b to the Mezzanine, I recommend using LA_00 as this connects to a clock capable (CC) input pin pair in the K355 FPGA.

LVDS links

- The mezzanine+Pulsar were mounted on an ATCA shelf slot.
- We developed a Pulsar firmware which permitted to test the LVDS links (in a static way). The schematic on the right shows the principle of the tests.
- The Pulsar LVDS links were tested using the loopback cards and no problems were found.
- Then, the two loopback cards were removed and the mezzanine took their place. The green blocks were substituted by a VIO instance.
- I developed a mezzanine firmware which, paired with the Pulsar firmware, checked the LVDS lines using VIO.
- All the 68 LVDS links worked properly and no swaps were found.
- In case we need more links we could use the DDR technique to double them.

~half of the LVDS and GTX links are swapped (PulsarIIb)

Test of the GTX links

• The GTX links were tested using IBERT in the mezzanine and in the Pulsar firmwares

GTX links @4Gbps

• GTx running at 4Gbps are ok

Found Links (12)							Reset	PRBS 7-bit	PRBS 7-bit	Multiple	Multiple	Multiple	
-% Found 0	MGT_X0Y39/TX	MGT_X0Y0/RX	4.000 Gbps	3.96	0E0	2.525E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 1	MGT_X0Y38/TX	MGT_X0Y1/RX	4.000 Gbps	3.96	0E0	2.524E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 2	MGT_X0Y37/TX	MGT_X0Y2/RX	4.000 Gbps	3.96	0E0	2.525E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 3	MGT_X0Y36/TX	MGT_X0Y20/RX	4.000 Gbps	3.96	0E0	2.524E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 4	MGT_X0Y35/TX	MGT_X0Y21/RX	4.000 Gbps	3.92	0E0	2.548E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 5	MGT_X0Y34/TX	MGT_X0Y22/RX	4.000 Gbps	3.92	0E0	2.548E-13	Reset	PRBS 7-bit	PRBS 7-bit	0.00 dB (00000)	0.00 dB (000	269 mV (00	
-% Found 6	MGT_X0Y22/TX	MGT_X0Y34/RX	4.000 Gbps	3.92	0E0	2.547E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	
-% Found 7	MGT_X0Y21/TX	MGT_X0Y35/RX	4.000 Gbps	3.92	0E0	2.547E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	
-% Found 8	MGT_X0Y20/TX	MGT_X0Y36/RX	4.000 Gbps	3.92	0E0	2.546E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	
-% Found 9	MGT_X0Y2/TX	MGT_X0Y37/RX	4.000 Gbps	3.92	0E0	2.546E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	
- % Found 10	MGT_X0Y1/TX	MGT_X0Y38/RX	4.000 Gbps	3.92	0E0	2.545E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	
-% Found 11	MGT_X0Y0/TX	MGT_X0Y39/RX	4.000 Gbps	3.92	0E0	2.545E-13	Reset	PRBS 7-bit	PRBS 7-bit	1.67 dB (00111)	0.68 dB (000	1018 mV (1	

GTX links @8Gbps

- The links were not ok running at 8Gbps
- A lot of errors and link instability were found

Name	ТХ	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern	RX Pattern	TX Pre-Cursor	TX Post-Cursor	TX Diff Swing	DFE Enabled
- Congrouped Links (0)													
G G Found Links (11)							Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	Multiple	• Multiple •	Multiple 👻	1
% Found 0	MGT_X0Y22/TX	MGT_X0Y34/RX	8.000 Gbps	1.422E12	1.07E9	7.527E-4	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	1.67 dB (00111)	🔻 0.68 dB (000 🔻	1018 mV (1 🔻	1
- % Found 1	MGT_X0Y21/TX	MGT_X0Y35/RX	8.000 Gbps	1.423E12	8.349E8	5.867E-4	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	1.67 dB (00111)	🔻 0.68 dB (000 👻	1018 mV (1 🔻	1
- % Found 2	MGT_X0Y20/TX	MGT_X0Y36/RX	8.000 Gbps	1.352E12	1.086E9	8.032E-4	Reset	PRBS 7-bit 👻	PRBS 7-bit 💌	1.67 dB (00111)	🔻 0.68 dB (000 👻	1018 mV (1 🔻	1
- % Found 3	MGT_X0Y2/TX	MGT_X0Y37/RX	8.000 Gbps	1.354E12	2.188E9	1.616E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	1.67 dB (00111)	🔻 0.68 dB (000 👻	1018 mV (1 👻	1
-% Found 4	MGT_X0Y1/TX	MGT_X0Y38/RX	8.000 Gbps	1.354E12	1.719E9	1.269E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	1.67 dB (00111)	🔻 0.68 dB (000 🔻	1018 mV (1 🔻	1
-% Found 5	MGT_X0Y0/TX	MGT_X0Y39/RX	8.000 Gbps	1.355E12	3.215E9	2.373E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	1.67 dB (00111)	🔻 0.68 dB (000 🔻	1018 mV (1 🔻	1
- % Found 6	MGT_X0Y39/TX	MGT_X0Y0/RX	7.999 Gbps	1.356E12	4.938E9	3.642E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 💌	0.00 dB (00000)	🔻 0.00 dB (000 👻	269 mV (00 🔻	1
-% Found 7	MGT_X0Y38/TX	MGT_X0Y1/RX	7.999 Gbps	1.357E12	4.366E9	3.217E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	0.00 dB (00000)	👻 0.00 dB (000 👻	269 mV (00 👻	1
- % Found 8	MGT_X0Y36/TX	MGT_X0Y20/RX	7.999 Gbps	1.358E12	4.147E9	3.053E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	0.00 dB (00000)	🔻 0.00 dB (000 👻	269 mV (00 🔻	1
-% Found 9	MGT_X0Y35/TX	MGT_X0Y21/RX	7.999 Gbps	1.358E12	3.911E9	2.88E-3	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	0.00 dB (00000)	🔻 0.00 dB (000 🔻	269 mV (00 🔻	1
- % Found 10	MGT_X0Y34/TX	MGT_X0Y22/RX	7.999 Gbps	1.359E12	2.445E9	1.798E-3	Reset	PRBS 7-bit 💌	PRBS 7-bit 💌	0.00 dB (00000)	🔻 0.00 dB (000 👻	269 mV (00 👻	1
Link Group 8 (1)							Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	0.00 dB (00000)	🕶 0.00 dB (000 👻	269 mV (00 👻	1
- % Link 41	MGT_X0Y37/TX	MGT_X0Y2/RX	7.999 Gbps	2.844E12	1.478E12	5.197E-1	Reset	PRBS 7-bit 👻	PRBS 7-bit 👻	0.00 dB (00000)	🕶 0.00 dB (000 👻	269 mV (00 👻	1

• No time to address this issue, since it was discovered at the end of the testing period

-In order to run at 8 Gbps
we need to configure properly the TXDiffSwing
-Same feedback from Kristian who tested the Pulsar links with a loopback card

16 AM chip mezzanine

- We received the 16 AM chip mezzanine
- Smoke tests were ok
- JTAG connections to the FPGA and to the first chain of 4 AM chips is ok
- The GTX reference clock was fixed and improved
- We received the board with only one rotated crystal (we asked for both crystals to be rotated) and it was even broken
- Ordered new crystals

GTx link test @Pisa

- We used an Xilinx Ultrascale evaluation board
- Test stand configured similar to the PulsarIIb+mezzanine setup (IBERT in both FPGAs)
- We make the GTx links working at 8 Gbps configuring the GTx of both FGPAs
- The evaluation board has only 5 links connected out of 8
- Sporadic errors were anyway found. Using the data analyzer we found that the reference clock may inject too much jitter into the GTx signal

- For the 16 AM chip mezzanine we decided to use a better quartz component of the GTX reference clock
- Indeed, the jitter of the reference clock was reduced and the GTx didn't show any error in some hours of continuous working

Clocks

125

ICS844021I

1049440211

25MHZ CRYSTAL

X2

SND

3V3 IN\G

- 100 MHz clock for the FPGA
- 4x100 MHz clock for the AM chips (fanout)
- 2x125 MHz clock for the GTX RefClock
- 100 MHz clocks are ok
- 125 MHz source of issues (pin assignment, jitter)

- To simplify the clock it's maybe better to use a single component
- It may be useful to have programmable clocks (I2C) at least for the GTX RefClock

Serial link for DO-TF configuration

- Implemented an LVDS serial link
- Takes up 5 differential pairs, 1 for the clock, 4 for the data
- Width on the parallel ends is 32 bits
- Speed is 400MHz DDR, which gives 3.2GBits/s (100MT/s for the parallel data)
- Simple custom logic has been developed for data eye calibration and word alignment
- Up so far, link has been tested to have a BER < 2.5.10⁻¹³ (0 errors so far) which can be considered sufficient for a one-time communication for configuration (not a full-time link)

Validate all the links

Additional feedbacks

- Temperature sensors (connected with the ATCA shelf manager?)
- Test points and leds
- Mechanic connection: add screws in the middle of the FMC connectors, the current screws are too close to the components
- Additional power close FMC (Jumpers) connected to GND-12V while in the mezzanine is 12V-12V
- Power connectors
- Ethernet connection
- Problem of space: mezzanine's mezzanine?
- GTX max. speed.

