Brief summary on Redout MC studies

M. Buizza Avanzini – LLR

S-PMT meeting

Padova, Oct. 27th 2015

1

Dictionary

- **L-PMTs** = 20" PMTs
- **S-PMTs** = 3" PMTs
- S-N_{PE} = number of photo electron (= perfect charge integration) for 3" PMTs
- **S-N_{PMT}** = number of hit 3" PMTs
- L-N_{PE} = number of photo electron (= perfect charge integration) for 20" PMTs
- L-N_{PMT} = number of hit 20" PMTs

Two 3" PMT geomtries implemented in Sniper

Miao He, JUNO-15 phone meeting

Optimization of S-PMTs' position

Tub3inchV2 in different position (adding 20 inch)

Guo Rupan

Compared with the default position, percentage of increased photons :

	3 inch PMT	20 inch PMT	
3cm	~15%	~-0.07%	
5cm	~25%	~-0.2%	
10cm	~42%	~-0.6%	

Moved forward about 10cm, light shadowed by 20 inch PMT is almost negligible.

Moved forward about 5cm, the number of total photons of PMT is the largest.

S-PMT position impact on L-N_{PE} & L-N_{PMT}? (⁶⁰Co ~ 2.5 MeV)

Impact of S-PMT position on L-PMT light detection < 0.4%

MC Input files

Used Sniper MC production with J15v1r2-Pre1:

- Positrons uniformely distributed in the CD at different energy
- ⁶⁸Ge (2 annihilation γ, ~1MeV) and ⁶⁰Co files (2 γ of 1.17 and 1.33 MeV respectively, BR ~ 100%): fixed position with 1m step in radius

⁶⁸Ge: Mean dinamic range on PMTs (+10cm)

Light collected by the PMT with MAX number of pe (@~1 MeV)

<Max pe>: L-PMT: ~ 12 p.e. (RMS 3 pe) S-PMT: 1.4 p.e. (RMS 0.5 pe)

Range edge/center L-PMT: ~ 12/2.6~ 5 S-PMT: ~ 1.4/1.0 ~ 1.4

7

⁶⁰Co: Mean dinamic range on PMTs (+10cm)

Light collected by the PMT with MAX number of pe (@~2.5 MeV)

<Max pe>: L-PMT: ~ 25 p.e. (RMS 6 pe) S-PMT: 2.1 p.e. (RMS 0.5 pe)

Range edge/center L-PMT: ~ 25/3.4 ~ 7 S-PMT: ~ 2.1/1.3 ~ 1.5

4MeV e⁺: Mean dinamic range on PMTs (+10cm)

Light collected by the PMT with MAX number of pe (@ 4 MeV)

<Max pe>: L-PMT: ~ 31 p.e. (RMS 6 pe) S-PMT: 2.9 p.e. (RMS 0.8 pe)

Range edge/center L-PMT: ~ 31/4 ~ 8 S-PMT: ~ 2.9/1.6 ~ 1.8

e⁺ (~IBD): Number of PE per PMT

Large PMTs can detect up to 100pe for an IBD event in the last shell (20% of events)

S-PMT position impact on L-N_{PE} & L-N_{PMT}? (⁶⁰Co ~ 2.5 MeV)

No evident impact of S-PMT position on nor L-N_{PMT} neither L-N_{PE} A: L-N_{PE}; S-PMT +10cm B: L-N_{PMT}; S-PMT +10cm C: L-N_{PE}; S-PMT normal D: L-N_{PMT}; S-PMT normal

S-PMT position impact on S-N_{PE} & S-N_{PMT}? (⁶⁰Co ~ 2.5 MeV)

S-PMTs

L-PMT: Photon counting?

N_PMT = count number of hit PMT = Number of hit PMTs N_PE_corrected = - N_tot_PMT Log(1-N_PMT/N_tot_PMT) N_PE = True Number of PE = Perfect Charge Integration (no systematics)

S-PMT: Photon counting?

N PMT = count number of hit PMT = Number of hit PMTs N_PE_corrected = - N_tot_PMT Log(1-N_PMT/N_tot_PMT) N PE = True Number of PE = Perfect Charge Integration (no systematics)

L-PMTs: 1pe regime?

PMT fraction	all	R<4m	4m < R < 8m	8m< R < 12m	12m < R < 14m	14m < R < 16m	R > 16m
1pe	0.76	0.88	0.86	0.81	0.76	0.74	0.78
[2,5]pe	0.21	0.12	0.14	0.19	0.23	0.24	0.17
>5pe	0.03	0.00	0.00	0.00	0.01	0.02	0.05

Most (~ 74-88%) of L-PMT see 1 pe per PMT

PE fraction	all	Rc4m	4m < B < 8m	8mc B < 12m	12m < B < 14m	14m < B < 16m	R > 16m
maction	an	11.54111	4				
1pe	0.52	0.78	0.74	0.66	0.56	0.49	0.45
[2,5]pe	0.35	0.22	0.26	0.34	0.41	0.41	0.27
>5pe	0.15	0.00	0.00	0.01	0.03	0.11	0.28

But a large fraction of the energy (~ 25-60%) is detected by the small fraction of PMT (24%) detecting more than 1 pe

L-PMTs: 1pe regime?

РМТ							
fraction	all	R<4m	4m < R < 8m	8m< R < 12m	12m < R < 14m	14m < R < 16m	R > 16m
1pe	0.76	0.88	0.86	0.81	0.76	0.74	0.78
[2,5]pe	0.21	0.12	0.14	0.19	0.23	0.24	0.17
>5pe	0.03	0.00	0.00	0.00	0.01	trong depende	ence on
		Most	Г see 1 pe 🕇	ne vertex posit	tion		

PE							
fraction	all	K<4m	4m < R < 8m	8m< R < 12m	12m < R < 14m	14m < R < 16m	R > 16m
1pe	0.52	0.78	0.74	0.66	0.56	0.49	0.45
[2,5]pe	0.35	0.22	0.26	0.34	0.41	0.41	0.27
>5pe	0.15	0.00	0.00	0.01	0.03	0.11	0.28

But a large fraction of the energy (~ 25-60%) is detected by the small fraction of PMT (24%) detecting more than 1 pe

S-PMTs: fraction on PMT measuring 1pe

PMT fraction	all	R<4m	4m < R < 8m	8m< R < 12m	12m < R < 14m	14m < R < 16m	R > 16m
1pe	0.96	0.99	0.99	0.99	0.99	0.98	0.95
[2,5]pe	0.03	0.01	0.01	0.01	0.01	0.02	0.05
>5pe	0.01	0.00	0.00	0.00	0.00	0.00	0.01

Almost all (~ 92-99%) 3" PMT seen 1 PE per PMT

Almost no dependence on the radius

PE fraction	all	R<4m	4m < R < 8m	8m< R < 12m	12m < R < 14m	14m < R < 16m	R > 16m
1pe	0.93	0.99	0.99	0.98	0.97	0.95	0.89
[2,5]pe	0.07	0.01	0.01	0.02	0.03	0.05	0.11
>5pe	0.03	0.00	0.00	0.00	0.00	0.03	0.03

Almost all the energy (87-99%) is detected in the single pe regime

Ongoing Efforts: JMC

- Preparing a Geant4 based simulation tool (Juno Multi-Calorimetry)
- Plan to optimize the number of needed S-PMT + multicalorimetry tests
- Geometry (S-PMT + L-PMT) is ready
- Simple physics list (G4scintillation + absorption length, no re-emission for the moment)

JMC – Rough Scintillation

L-PMT & S-PMT QE (+ CE = 0.9)

Re-emission (not used yet) LPMT - QE

LPMT - Detection Efficiency

L-PMT: Photocathode quantum efficiency

L-PMT: $N_{PE} \& N_{PMT}$

Summary

... Work in progress...