Probing the Intergalactic Magnetic Fields by means of high energy pair halos around extreme blazars

Paolo Da Vela

INFN, Sezione di Pisa

Summary

- * Magnetic fields in galaxies and how to measure them
- Constraints of Inter Galactic Magnetic Fields (IGMF) with gamma ray observations of Active Galactic Nuclei (AGN)
- Search for extended gamma ray emission around TeV AGN with MAGIC telescopes
- Upper limits on halo emission
- Conclusions

Magnetic fields in galaxies and how to measure them

Magnetic fields in galaxies

What is the origin of these magnetic fields?

M51

Magnetic fields in galaxies and clusters of galaxies

• galactic dynamo:

• adiabatic compression:

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times \left(\mathbf{U} \times \overline{\mathbf{B}} \right) + \nabla \times \left(\langle \delta \mathbf{V} \times \delta \mathbf{B} \rangle \right)$$

$$B_{prim,0} = B_{gal} \left(\frac{\rho_{cosmic}}{\rho_{gal}}\right)^{2/3}$$

- $B_0 \simeq 10^{-14} G$ $B_{prim,0} \simeq 10^{-10} G$
- Both hypothesizes assume a pre-existing magnetic field!

On the nature of the seed fields

- The nature of the seed fields is largely unknown. From theoretical point of view two main hypothesis on their origin:
 - * the astrophysical origin
 - * the cosmological origin

Observationally we need the measurements of the magnetic fields in the Intergalactic medium

The Astrophysical origin

- Basic idea: difference in mobility between electrons and protons.
 - seeds from Radiation-Era Vorticity
 - Biermann battery effect
 - Magnetic field produced by the stars
 - Active Galactic Nuclei

The Cosmological Origin

* Four main transition phases:

The tools to measure magnetic fields

- * Standard tools to measure magnetic fields:
 - Synchrotron emission
 - Faraday rotation
 - Zeeman splitting

Synchrotron emission

* It is the emission of relativistic electrons gyrating in a magnetic field

$$j_{\nu} \propto n_e \, \nu^{(1-\gamma)/2} B_{\perp}^{(1+\gamma)/2}$$

Assuming equipartition
between energy particle
and magnetic field we
can estimate B

 The degree of polarization is an indicator of the field's directionality

Faraday Rotation

* When polarized emission propagates in a region with ionized gas and magnetic field, it undergoes Faraday rotation

Oppermann et al. 2015

$$\phi_{FR} = \frac{e^3 \lambda^2}{2\pi m_e^2 c^4} \int_0^{l_s} n_e(l) B_{\parallel} dl$$

Assuming an electron distribution we can constrain B

Zeeman Splitting

 The electronic energy levels of an atom are independent of its angular momentum vector. The presence of a magnetic field removes this degeneracy

$$\frac{\Delta\nu}{\nu} = 1.4g\left(\frac{B}{\mu G}\right)\left(\frac{Hz}{\nu}\right)$$

$$\frac{\Delta\nu}{\nu} = 10^{-9}g\left(\frac{B}{\mu G}\right)$$

21 cm line for neutral hydrogen

 $\frac{\Delta\nu}{\nu} = 6 \times 10^{-7} \left(\frac{T}{100K}\right)^{1/2}$ Doppler broadening

Extremely difficult to observe

The Inter Galactic Magnetic Field

* The IGMF is characterized by the field strength B and the correlation length $\lambda_{\rm B}$

Constraints of IGMF with γ-ray observations of AGN

Limits on IGMF with γ -ray telescopes

IR, V, UV

EBL Extragalactic Background Light

AGN

blazar

TeV

EBL e

Limits on IGMF with γ -ray telescopes

- Physical process: reprocessing of TeV photons in the GeV band
- * Measurable effects:
 - spectral features

$$E_{\gamma} \simeq 70 \left[\frac{E_{\gamma 0}'}{10 \ TeV} \right]^2 \ GeV$$

extended emission

Spectral features

 Measuring the amount of absorbed flux of a TeV blazar we can predict the the amount of cascade emission. Its suppression depends on the IGMF strength

Extended emission

* Observable effect: extended emission around the point source. The angular extension grows with increasing IGMF.

Two regimes:

 $\lambda_{\rm B} \gg D_{\rm e}$

$$\Theta_{ext} \simeq 0.5^{\circ} (1+z)^{-2} \left[\frac{\tau}{10}\right]^{-1} \left[\frac{E_{\gamma}}{0.1 \ TeV}\right]^{-1} \left[\frac{B_0}{10^{-14} \ G}\right]$$

 $\lambda_{\rm B} \ll {\rm D}_{\rm e} \qquad \Theta_{ext} \simeq 0.07^{\circ} (1+z)^{-1/2} \left[\frac{\tau}{10}\right]^{-1} \left[\frac{E_{\gamma}}{0.1 \ TeV}\right]^{-3/4} \left[\frac{B_0}{10^{-14} \ G}\right] \left[\frac{\lambda_{B0}}{1 \ kpc}\right]^{1/2}$

Our project to search for extended γ -ray emission

- * Through the study of the emission profiles of several TeV AGN we looked for halo emission around 100 GeV.
- * We used the VHE data of MAGIC telescopes to derive an analytical description of the Point Spread Function (PSF)
- * Four steps have been considered:
 - the background
 - model of PSF

- stability of the PSF
- * comparison of PSF with profiles of AGN

Search for extended γ -ray emission around TeV AGN with MAGIC telescopes

Imaging Air Cherenkov Telescopes

ΙΑCΤ

The MAGIC telescopes

- Energy threshold ~50 GeV
- FOV 3.5°
- Energy Resolution ~16% (E>300 GeV)
- Angular Resolution ~0.06° (E>300 GeV)
- Sensitivity (5 σ in 50 hours) ~0.8% Crab Nebula flux (> 250 GeV)

y-ray direction reconstruction

- * θ: angular distance between real and reconstructed position of the source
- Distribution after selection of gamma-like events

Study of MAGIC PSF

 For the proper characterization of the PSF the acceptance on the camera must be evaluated. The key point is the off-axis response.

the shape of the background is not flat, correction for the camera acceptance

Fit of MAGIC PSF

* We used the King function to fit the MAGIC PSF

0.2

0.4

0.6

0.8

1.2

The dependence on energy

* We studied the behavior of the PSF adding an energy cut

Increasing the energy cut the King function becomes narrower

Search for extended γ -ray emission around TeV AGN

- * We compared the PSF with the emission profiles of five AGN:
 - * Markarian 421 (10 hours, z=0.03)
 - * 1ES 1011+496 (11 hours, z=0.212)
 - ✤ PKS 1424+240 (28 hours, z≥0.6)
 - * RX J1136.5+6737 (33 hours, z=0.13)
 - * 1ES 0229+200 (40 hours, z=0.14)

Comparison of the PSF with AGN

PSF model:
$$f(\theta^2) = p0 * p1 * \left[1 + \left(\frac{\theta^2}{p1}\right)^2\right]^{-p2} + p3$$

two independent methods

- * Method 1:
 - * Crab: fit with 4 free parameters
 - * AGN: p1 and p2 fixed to Crab

- * Method 2:
 - * Crab: fit with 4 free parameters
 - * AGN: fit with 4 free parameters
 - confidence contours on p1 and p2 for both Crab and AGN

Markarian 421

Method 1:

Upper limits on halo emission

Upper limits on halo

* We added a halo model to the PSF to compute upper limits

Upper limits on halo

- * The total model is: $f(\theta^2) = halo(N, \theta_{ext}^2; \theta^2) + p0 * p1 * \left[1 + \left(\frac{\theta^2}{p1}\right)^2\right]^{-p2} + p3$
- For a given halo extension (θ²_{ext}) we increased the normalization (N) until we got a worsening of the fit correspondent to 2σ level

$$U.L. \ (2\sigma source \ units) = \frac{\int_0^\infty halo(N, \theta_{ext}^2; \theta^2) d\theta^2}{\int_0^\infty p0 * p1 * \left[1 + \left(\frac{\theta^2}{p1}\right)^2\right]^{-p2} d\theta^2}$$

Markarian 421

Markarian 421

 Our procedure provided an upper limit which is more than 3 times better than previous measurement

> Most stringent upper limit for $\theta_{ext}=0.3^{\circ}$. U.L. (C.U.)=1.6%

80.0^{.Γ} Δ Extended flux U.L. (C.U.), 2 90°0 - 2 Δ Δ Δ Δ Δ 0.03 Δ Δ Δ 0.02 Δ Δ $\begin{array}{c} 0.6 \\ \theta_{ext} \ [deg] \end{array}$ 0.2 0.3 0.4 0.5 0.1

Most stringent upper limit for $\theta_{ext}=0.25^{\circ}$. U.L.(C.U.)=5%

Markarian 421: spectral emission of cascade

* Due to the vicinity of the source and the cut-off in the intrinsic spectrum the contribution of the cascade emission to the total spectrum is too low

PKS 1424+240 & 1ES 1011+496

* Also for these sources the contribution of cascade emission is too low. **To be able to constrain the IGMF we need sources with hard intrinsic spectra.**

1ES 0229+200 & RX J1136.5+6737

* These sources have intrinsic spectral index less than 1.8

In these cases our upper limits are above the source level...

1ES 0229+200 & RX J1136.5+6737

IGMF from 1ES 0229+200 and RX J1136.5+6737

* Assuming that the shape of the θ^2 distributions are due to the presence of extended emission we estimate the IGMF strength

IGMF from 1ES 0229+200 and RX J1136.5+6737

Conclusions

- We studied the emission profiles of several AGN in order to look for extended emission in VHE domain.
- * We characterized the MAGIC PSF and gave a good analytical description (the King function).
- * We computed upper limits on halo emission for two different halo models, improving previous published values on Markarian 421.
- * The emission profiles of 1ES 0229+200 and RX J1136.5+6737 are compatible with the presence of extended emissions. The implied strengths of IGMF of the order of 10^{-14} G
 - * Results needs to be confirmed with higher statistics with MAGIC.
- * Expected improvements with CTA due to better sensitivity and angular resolution

Back up

Angular resolution

- * Two techniques:
 - 1.fit of the distribution of the γ -ray excesses with a 2 dimensional Gaussian
 - 2.angular region that contains 68% of the excesses

1ES 0229+200 & RX J1136.5+6737

* Significance of the model:

